

DZone, Inc. | www.dzone.com

By James Sugrue

About Eclipse Plug-ins

E
cl

ip
se

 P
lu

g
-i

n
 D

e
ve

lo
p

m
e

n
t

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#70

Eclipse Plug-in Development

Hot
Tip

Eclipse has a dedicated perspective for development
of plug-ins, the PDE (Plug-in Development
Environment). You can download Eclipse for RCP/
Plug-in Developers with all you need to get started
from http://www.eclipse.org.

CONTENTS INCLUDE:
n	 About Eclipse Plug-ins
n	 How Plug-ins Work
n	 The OSGi Manifest
n	 The Plug-in Manifest
n	 Plug-in Model
n	 Hot Tips and more...

The Eclipse platform consists of many plug-ins, which are
bundles of code that provide some functionality to the entire
system. Plug-ins contribute functionality to the system by
implementing pre-defined extension points. You can provide
extension points in your own plug-in to allow other plug-ins to
extend your functionality.

How plug-ins work

A plug-in describes itself to the system using an OSGi manifest
(MANIFEST.MF) file and a plug-in manifest (plugin.xml) file.
The Eclipse platform maintains a registry of installed plug-ins
and the function they provide. As Equinox, the OSGi runtime,
is at the core of Eclipse, you can think of a plug-in as an OSGi
bundle. The main difference between plug-ins and bundles
is that plug-ins use extension points for interaction between
bundles.

Plug-ins take a lazy-loading approach, where they can be
installed and available on the registry but will not be activated
until the user requests some functionality residing in the plug-in.

the osgi manifest

 MANIFEST.MF, usually located in the META-INF directory,
deals with the runtime details for your plug-in. Editing of the
manifest can be done through the editor provided, or directly
in the MANIFEST.MF tab. The following is an example of one
such manifest for a simple plug-in:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Myplugin
Bundle-SymbolicName: com.dzone.tests.myplugin
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: com.dzone.tests.myplugin.Activator
Require-Bundle: org.eclipse.ui, org.eclipse.core.runtime
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6

The Eclipse OSGi Framework implements the complete OSGi
R4.1 Framework specification and all of the Core Framework
services. Here we list the most common manifest headers and
directives.

Manifest Entry Use Example

Manifest-Version Manifest versioning
information for your own
records

1.0

Bundle-
ManifestVersion

A bundle manifest may
express the version of the
syntax in which it is written
by specifying a bundle
manifest version. If using
syntax from OSGi Release
4 or later, you must specify
a bundle manifest version.
The bundle manifest
version defined by OSGi
Release 4 is “2”.

2

Bundle-Name Human readable name for
the plug-in.

MyPlugin

Bundle-SymbolicName A unique name for this
plug-in, usually in package
naming convention.

com.dzone.
tests.myplugin

Bundle-Version The version of this plug-
in. This should follow
the typical three number
versioning format of
<major version>.<minor
version>.<revision>
This can also be appended
by an alphanumeric
qualifier.

1.0.1.alpha

Bundle-Activator The activator, or plug-in
class, that controls this
plug-in.

com.dzone.
tests.
myplugin.
Activator

Bundle-Vendor Human readable string for
the plug-in provider.

DZone

Bundle-Classpath A comma-separated list
of directories and jar
files used to extend this
bundle’s functionality.

lib/junit.
jar,lib/
xerces.jar

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Eclipse Plug-in Development

Require-Bundle A comma-separated list of
symbolic names of other
bundles required by this
plug-in.

rg.eclipse.ui,
org.eclipse.
core.runtime

Bundle-
ActivationPolicy

Manifest header identifying
the bundle’s activation
policy. This replaces the
deprecated Eclipse-
LazyStart directive.

Lazy

Bundle-Required
ExecutionEnvironment

Manifest header identifying
the required execution
environment for the
bundle. The platform
may run this bundle if
any of the execution
environments named in this
header match one of the
execution environments it
implements.

JavaSE-1.6

Export-package A list of the packages that
this bundle provides for
export to other plug-ins.

com.dzone.
tests.api

Plug-in Runtime
The Require-bundle manifest header has some extra
functionality to help you manage your runtime dependencies.
Bundles can be marked as optional dependencies by
annotating the bundle with �;resolution:=optional.

You can also manage which version of the bundle your
dependent on needs to be present using the ;bundle-
version=”<values>” annotation. Here, the <values> that we
refer to are a range of versions where you can specify minimum
and maximum version ranges. The syntax of this range value is
illustrated through these examples:

Example Meaning

3.5 Dependent only on version 3.5 of this bundle

[3.5, 3.5.1] Must be either version 3.5 or 3.5.1

[3.0, 4.0] Must be a version of 3.0 or over, but not 4.0

Additional Eclipse Bundle Headers
Eclipse provides a number of addition bundle headers and
directives. These extra headers are not part of the OSGi R4.1
specification, but allow developers to use additional Eclipse
OSGi Framework functionality.

Manifest Entry Use Example

Export-Package Additional directives
are available to manage
the access restriction of
exported packages.

x-internal

The default value for this
property is false. When
internal packages are
specified as true using this
option, the Eclipse PDE
discourages their use.

x-friends

This option is similar to
x-internal, but allows
certain bundles to use the
exported packages that
have this option. Other
bundles are discouraged.
The x-internal option
takes precedence over
x-friends.

Export-Package:
org.eclipse.
foo.internal;
x-internal:=true

Export-Package:
org.eclipse.foo.
formyfriends;
x-friends:=”org.
eclipse.foo.
friend1”

the plug-in manifest

With the Manifest.MF file looking after the runtime
dependencies, plugin.xml deals with the plug-in extensions
and extension points.

An extension allows you to extend the functionality of another
plug-in in your system. An extension can be added through the
plug-in editor’s Extensions tab, or to your plugin.xml.

 <extension point=”org.eclipse.ui.preferencePages”>
 <page
 class=”com.dzone.tests.myplugin.preferences.
 SamplePreferencePage”
 id=”com.dzone.tests.myplugin.preferences.
 SamplePreferencePage”
 name=”Sample Preferences”>
 </page>
 </extension>

Each extension point has a XML schema which specifies the
elements and attributes that make up the extension. As you
can see in the listing above, each extension point has a unique
identifier. The <page> element above is specified in the XML
schema for the org.eclipse.ui.preferencesPages extension.

Hot
Tip

Plug-ins and extension points are expected to have
the same unique identifiers following the Java
package naming pattern.

You can also define your own extension points, and we will
detail that process in a later section.

Plug-in model

The plug-in class is a representation of your plug-in running in
the Eclipse platform. A plug-in class in Eclipse must extend org.
eclipse.core.runtime.Plugin, which is an abstract class that
provides generic facilities for managing plug-ins. When using
the project wizard in the PDE, this class typically gets assigned

Activator as its default name. Whatever name you assign to
this plug-in class, it must be the same as that mentioned in the
Bundle-Activator directive of your MANIFEST.MF.

The class has start and stop methods that refer to the
BundleContext and are provided by the BundleActivator
interface. These methods allow you to deal with the plug-ins
lifecycle, so that you can do both initialization and cleanup
activities at the appropriate times. When overriding these
methods be sure to always call the superclass Implementations.

Hot
Tip

Plug-ins that contribute to the UI will have activators
that extend AbstractUIPlugin, while non-UI plug-ins
will extend Plugin.

Eclipse-
PlatformFilter

This allows you to set
particular rules for your
bundle before it can start.

osgi.nl for language
osgi.os for operating
system
osgi.arch for
architecture
osgi.ws for windowing
system

Eclipse-
PlatformFilter: (&
(osgi.ws=win32)
(osgi.os=win32)
(osgi.arch=x86))

All entries in the manifest can be internationalized by moving
them to a separate plugin.properties file.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Eclipse Plug-in Development

Plug-ins are normally set to load lazily, so that the code isn’t
loaded into memory until it is required. This is normally a good
thing as you don’t want to affect the startup time of Eclipse. If
you do require your plug-in to start up and load when Eclipse
launches, you can use the org.eclipse.ui.startup extension
point.

<extension point=”org.eclipse.ui.startup”>
 <startup class=”com.myplugin.StartupClass”></startup>	
</extension>

The startup class listed above must implement the
org.eclipse.ui.IStartup interface which provides an
earlyStartup() method. The method is called in a separate
thread after the workbench initializes.

Lazy Loading

The Eclipse platform provides a number of extension points
that you can hook into, to provide additional functionality. The
concept behind an extension point is that a class provides
some extendable behavior, and publishes this behavior as an
extension point. In order to run this code, the plug-in requires
a host – in this case your own plug-in.

In your plugin.xml you take this extension point and provide
extra information to help it run. You will usually need to provide
some class that implements a particular interface in order to do
this.

Extension Points

Here we will run through some useful extension points in the
Eclipse platform. Note, that to make some of these available
for your plug-in, you will usually need to add dependencies.

Example Meaning

org.eclipse.core.runtime
.preferences

Allows plug-ins to use the Eclipse
preferences mechanism, including the
setting of default preference values.

org.eclipse.core.runtime
.applications

A plug-in that wishes to use the
platform but control all aspects of its
execution is an application.

org.eclipse.core.resources
.builders

Useful for IDE builders who wish to
provide an incremental project builder,
processing a set of resource changes.

org.eclipse.core.resources
.markers

Markers are used to tag resources with
use information – this marker can then
be utilized in the problems view.

org.eclipse.ui.activities The activity extension point allows the
filtering of plug-in contributions from
users until they wish to use them.

org.eclipse.ui.editors Allows the addition of new editors to
the workbench, which can be tied to
particular file extension types.

org.eclipse.ui.intro When Eclipse is first started up
the welcome page, or intro is
displayed. This extension point allows
contributions to the welcome page.

org.eclipse.ui.menus Allows custom menus to be added
to the workbench either in the main
menu, toolbar or popup menus
through the locationURI attribute.

org.eclipse.ui.perspective Allows the addition of a perspective
factory to the workbench, defining a
particular layout of windows.

org.eclipse.
ui.propertyPages

Adds a property page for objects of a
given type.

org.eclipse.ui.themes Allows the customization of the user
interface, overriding the default colors
and fonts.

org.eclipse.ui.views Provides the ability to add views to the
workbench.

Creating your own extension points

As well as being a user of extension points, a plug-in can
provide its own extensions for other plug-ins. Extension points
allow loose coupling of functionality – your plug-in exposes a
set of interfaces and an extension point definition for others to
use.

Extension Point Definition
You can create your extension point through the plugin.xml
file, or through the Add button in the Extension Points tab of
the plug-in editor.

For identifying your extension point you need to provide a
unique identifier and a human readable name. At this point
you can also point to a schema file and edit it afterwards. An
extension point schema must have .exsd as its suffix.

Bundle Context
A BundleContext is associated with your plug-in when it is
started. As well as providing information about the plug-in, the
BundleContext can provide information about other plug-ins
in the system. By providing a listener to BundleEvent, you can
monitor the lifecycle of any other plug-in.

Bundle
The terms Bundle and Plug-in may be used interchangeably
when discussing Eclipse. The Bundle class provides us with the
OSGi unit of modularity. There are six states associated with
bundles:

State Meaning

UINSTALLED The bundle is uninstalled and not available.

INSTALLED A bundle is in the INSTALLED state when it has been
installed in the Framework but is not or cannot be resolved

RESOLVED Before a plug-in can be started, it must first be in the
RESOLVED state.

A bundle is in the RESOLVED state when the Framework has
successfully resolved the bundle’s code dependencies.

STARTING A bundle is in the STARTING state when its start method is
active.

If the bundle has a lazy activation policy, the bundle may
remain in this state until the activation is triggered.

STOPPING A bundle is in the STOPPING state when its stop method
is active.

When the BundleActivator.stop method completes the
bundle is stopped and must move to the RESOLVED state.

ACTIVE A bundle is in the ACTIVE state when it has been
successfully started and activated.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Eclipse Plug-in Development

 

Figure 2: The Extension Point editor

When creating your extension point, you will first want to
create one or more elements with attributes that will be used.
Each extension point attribute has a number of associated
properties:

Attribute Use

Name The name of the extension point attribute.

Deprecated Whether the attribute is deprecated or not.

Use Whether the attribute is optional, required or
default. Default allows you to specify a value for
the attribute if it hasn’t been used.

Useful Tools

The PDE plug-in editor provides a number of useful utilities for
working with your plug-ins. The Dependencies tab in particular
is essential for organizing your runtime.

 

Figure 3: The Dependencies Tab

Type The available types are Boolean, String, Java,
Resource and Identifier. While Boolean and
String are self –explanatory, Resource should be
used if the attribute is a file. Identifier provides a
reference id for the extension point.

Extends If the type is Java this must be the name of the
class that the attribute must extend.

Implements If the type is Java this must be the name of the
class that the attribute must implement.

Translatable If the type is String this Boolean value indicates
whether the attribute should be translated.

Restrictions If the type is String this can be used to limit the
choice of value to a list of strings.

Description Attribute documentation.

References If the type is Identifier, this provides the id of
the extension point that you want to reference.
This will allow implementers of the extension
point to easily find the id, without having to look
through the plug-in registry.

Once you have created your elements and attributes for the
extension point, the element can be added to a sequence
for this extension. You can control the multiplicity of your
extension here.

The mapping of XML to extension point declaration is simple;
for users of your point, an xml element in the extension point
will always appear on the left hand side tree, as part of the
extension point declaration, while the xml attributes will
appear as extension point attributes.

The Code Behind an Extension Point
With the extension point defined, the producer of this needs to
provide some implementation that makes use of any extension
point contributions.

To get a list of all the implementers of your extension point
you can query the extension registry as follows, providing your
extension point identifier as the parameter.

IConfigurationElement[] config = Platform.getExtensionRegistry()
		 .getConfigurationElementsFor(“myextid”);

To use the implementing extension point, you can get the
object from the IConfigurationElement.

 final Object o = config[i].createExecutableExtension(“class”);

 

Figure 1: The New Extension Point Wizard

Defining an Extension Point Schema
The PDE provides an editor for defining your .exsd file,
consisting of three tabs. First, the Overview tab allows you to
provide documentation and examples for your extension point.
This is an essential step if you want your extension point to be
adopted. Next, the Definition tab presents a graphical way to
define your schema, while the Source tab allows editing of the
.exsd XML definition.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Eclipse Plug-in Development

Hot
Tip

When launching an application containing you plug-
in, use the -consoleLog program argument from
the Run Configurations dialog to see output to the
system console.

Logging
It is recommended to log to a file, rather than using System.
out. The Activator or plug-in class provides a facility to access
the plug-in logging mechanism through the getLog() method,
returning the org.eclipse.core.runtime.ILog interface.

Each log entry using this framework is of typ�e IStatus. Any
CoreExceptions thrown in Eclipse have an associated IStatus
object. An implementation of this interface, Status, is available
for use. There is �also a MultiStatus class which allows multiple
statuses to be logged at once.

Distributing your PLug-in

Since Eclipse 3.4, p2 has been used as the method to provision
your application with new or updated plug-ins. For build
managers who have used the Update Site mechanism before,
there doesn’t need to be any change.

To create an update site you can use the wizard provided to
create a new site.xml file. Using the Software Updates menu,
users can point to your update site on the web and download
the plug-in.

Enhancing your plug-in

When developing your plug-in, you should be aware of the
wide variety of projects available in the Eclipse eco-system that
help make your development easier and faster. This section
gives an overview of just a few of the useful projects that exist,
and explains how they can be used in your project.

Eclipse Modeling Project
http://eclipse.org/modeling/

The Eclipse Modelling Project provides a large set of tools
for model driven development. The most popular part of
this project is the Eclipse Modelling Framework (EMF). Using
this technology, you can define a model in the ecore format,
generate Java code to represent, serialise and de-serialise the
model. Other tools within the modelling project utilise EMF to
provide more specialised frameworks for developers.

The Connected Data Objects (CDO) project provides a three-
tier architecture for distributed and shared models.

The Graphical Modelling Framework (GMF) allows you to
generate graphical editors for your model based on EMF and
the Graphical Editing Framework (GEF). For developers who
want to provide textual editor for their own language or DSL,
XText provides a EBNF grammar language and generates a
parser, meta-model and Eclipse text editor from this input.

Eclipse Communication Framework
http://eclipse.org/ecf

If your plugin requires any communication functionality, the
ECF project is the first place to look. ECF consists of a number
of bundles that expose various communication APIs. These
APIs range from instant messaging, dynamic service discovery,
file transfer to remote and distributed OSGi. Real-time shared
editing functionality is also available in the framework,
allowing you to collaborate remotely on anything that you are
editing within your plug-in’s environment.

Business Intelligence and Reporting Tools
http://eclipse.org/birt

BIRT is an open source reporting system based on Eclipse.

 

Figure 4: Plug-in Registry

By adding some extra functionality over this simple
implementation, you can leverage p2 to add extra meta data
to your update site, which will make the installation experience
faster for end users.

p2 Update Site Publisher
The UpdateSite Publisher application is provided by p2 to
generate an artifact.xml and content.xml files for your standard
update site. You can run this application in headless mode
using org.eclipse.equinox.p2.publisher.UpdateSitePublisher.
The following shows an example of how to run this application,
taken from the p2 wiki.

java -jar <targetProductFolder>/plugins/org.eclipse.equinox.
launcher_*.jar
 -application org.eclipse.equinox.p2.publisher.UpdateSitePublisher
 -metadataRepository file:/<some location>/repository
 -artifactRepository file:/<some location>/repository
 -source /<location with a site.xml>
 -configs gtk.linux.x86
 -compress
 -publishArtifacts

Read more about p2 at http://wiki.eclipse.org/Equinox/p2

From here you can investigate the plug-in dependency
hierarchy, starting with your plug-in as the root. You can also
see which plug-ins are dependent on your own plug-in, as well
as find any unused dependencies. This can be useful if you
previously added a dependency to use an extension point, but
have found that it is since no longer required. Finally, and most
importantly, the tab provides a utility for investigating for cyclic
dependencies.

Another useful tool for plug-in development is the Plug-in
Registry view. This can be accessed from the Window>Show
View>Other..>Plug-in Development category. This view will
display all the plug-ins that are currently available in your
Eclipse installation.

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Java Performance Tuning
Adobe Live Cycle
Agile Adoption 3
F#
WPF
Blaze DS
PostgreSQL

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Eclipse Plug-in Development

ISBN-13: 978-1-934238-62-2
ISBN-10: 1-934238-62-7

9 781934 238622

50795

RECOMMENDED books

ABOUT the Author

James Sugrue is a software architect at Pilz Ireland, a company using many Eclipse
technologies. James is also editor at both EclipseZone and Javalobby. Currently he is
working on TweetHub, a Twitter client based on RCP and ECF. James has also written
previous Refcardz covering EMF and Eclipse RCP.

Zone Leader: EclipseZone, Javalobby

Twitter: @dzonejames

In Eclipse Rich Client
Platform, two leaders
of the Eclipse RCP
project show exactly
how to leverage Eclipse
for rapid, efficient,
cross-platform desktop
development.

BIRT provides both programmatic access to report creation, as
well as functionality to create your own report template within
the Eclipse IDE. While BIRT allows you to generate reports in
file formats such as PDF, it is also possible to use BIRT on an
application server to serve reports through a web browser.

Equinox
http://eclipse.org/equinox

As we have described in this card, Equinox is the Eclipse
implementation of the OSGi R4 core framework specification,
and provides the real runtime for all your plug-ins. However, as
well as running your plug-ins on the desktop on an instance of
Eclipse, you can take Equinox and run it on a server, allowing
your plug-in to run on browsers as well as the desktop.

Rich Ajax Platform
http://eclipse.org/rap

With the emergence of the web as a real platform for rich
applications, the Rich Ajax Platform allows you to take a
standard RCP project, and with some minor modifications,
make it deployable to the web. This idea of single-sourcing is
key to the RAP project, and reduces the burden for developers
to make an application ready for either the desktop or the
web.

The same programming model is used, while qooxdoo is
used for the client side presentation of your SWT and JFace
widgets.

This book presents
detailed, practical
coverage of every
aspect of plug-in
development--with
specific solutions for the
challenges you’re most
likely to encounter.

BUY NOW
books.dzone.com/books/eclipse-plug-ins

BUY NOW
books.dzone.com/books/eclipse-rcp

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://eclipse.dzone.com/
http://java.dzone.com/
http://twitter.com/dzonejames
http://books.dzone.com/books/eclipse-plug-ins
http://books.dzone.com/books/eclipse-rcp

