

DZone, Inc. | www.dzone.com

By Leo Hsu and Regina Obe

About Postgresql

e
ss

e
n

ti
al

 P
o

st
g

re
s

q
l

w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#71

Essential PostgreSQL

PostgreSQL is the world’s most advanced open source
database. It runs on numerous platforms: Linux, Unix,
Windows, Mac OSX. It is simple to install, fast, sports
enterprise features such as advanced spatial support via
PostGIS, windowing functions, and table partitioning. It
supports almost all SQL-92, SQL:1999, SQL:2003 and many
SQL:2006 and SQL:2008 standards. In addition to its enterprise
features, it has the added benefit of supporting numerous
languages for authoring stored functions and an extensible
procedural language architecture to introduce new languages.

Targeted at novices and professionals alike, this Refcard will
help you quickly navigate some of PostgreSQL’s most popular
features as well as its hidden gems. It will cover topics such
as configuration, administration, backup, language support,
and advanced SQL features. Items marked with [8.4] were
introduced in PostgreSQL 8.4.

CoNteNts INCluDe:
n	 About PostgreSQL
n	 Configuration
n	 Data Types
n	 Commonly Used Functions
n	 Database Objects
n	 Tools and more...

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Hot
Tip

All these can be edited with a text editor. They can
be edited via PgAdmin III if contrib/adminpack.sql is
installed in master postgres db.

CoNfIgurAtIoN

PostgreSQL uses three configuration files to control overall
operations. You can find these files in the initialized data
cluster (the folder specified during the initialization process
using initdb -d).

File Purpose

postgresql.conf Controls the listening port, IP, and default query planner settings,
memory settings, path settings, and logging settings. Can be queried
via pg_settings database view.

pg_hba.conf Controls the authentication models used by PostgreSQL and can be set
per user, per database, per IP range or a combination of all.

pg_indent.conf Controls mapping of an OS user to a PostgreSQL user.

postgresql.conf
Many of these service settings can be overridden for each
session, database, or user/role.

Option Description

listen_addresses Use ‘*’ to listen on all IPs of the server, ‘localhost’ to just local or a comma
separated list of IPs to listen on.

port Defaults to 5432, but can be changed to allow multiple postgresql daemon
clusters/versions to coexist.

search_path List of default schemas that don’t need schema qualification. First schema
is where non-schema qualified objects are created.

constraint_
exclusion

Options (on, off, partial). Partial was introduced in 8.4 and is the new
default. Allows planner to skip over tables if constraint ensures query
conditions can not be satisfied by the table. Mostly used for table
partitioning via table inheritance.

pg_hba.conf
PostgreSQL supports many authentication schemes to control
access to the database. The pg_hba.conf file dictates which
schemes are used based on the rules found in this file. You
can mix and match various authentication schemes at the
same time. The rules are applied sequentially such that the
first match fitting a connection is the one that is used. This is
important to remember because if you have a more restrictive
rule above a less restrictive, then the more restrictive is the one
that trumps.

The most commonly used authentication schemes are trust
(which allows connections without a password) and md5
which authenticates with md5 encrypted passwords. Others
include: reject, crypt, password (this is plain text), krb5, ident
(authenticate simply by identity of user in OS), pam, ldap.

The example pg_hba.conf entries below allows all local
connections to connect to all databases without a password
and all remote connections to authenticate via md5.

TYPE DATABASE USER CIDR-ADDRESS METHOD

host all all 127.0.0.1/32 trust

host all all 0.0.0.0/0 md5

DAtA tyPes

PostgreSQL has numerous built-in types. In addition, you can
define custom types. Furthermore, all tables are considered to
be types in their own right, and can therefore be used within
another table’s column. Below are the common built-in types.

Data and Time Types
Type Description

Date The date is a datatype to represent dates with no time. Default
representation is ISO 8601 e.g. ‘YYYY-MM-DD’. Use datestyle
configuration setting to control defaults.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Essential Postgresql

Timestamp This includes both date and time and is timezone-neutral.
‘2009-07-01 23:00’

Timestamp with time zone Timestamp with timezone. ‘2009-07-01 23:00:00-04’

Time Time without date ‘23:14:20’

Time with time zone ‘23:14:20-04’

Interval A unit of time used to add and subtract from a timestamp.
SELECT TIMESTAMP ‘2009-07-01 23:14:20’ + INTERVAL ‘4
months 2 days 10 hours 9 seconds’

Constituents of datetime,
use date_part function to
extract

century, day, decade, dow (starts Sunday), doy, epoch, hour,
isodow (day of week starts on Monday), minute, month, quarter,
week, year

Numeric Types
Type Description

int, int8 4 byte and 8 byte integers

serial, serial4, serial8 Sequential integers. This can be used during table creation to specify
auto-numbered fields.

numeric(s,p) Decimal numbers. s is scale and p is precision.

double precision Floating point numbers

String Types
Type Description

varchar(n) (aka
character varying)

Max of n characters, no trailing spaces

char(n) Padded to n characters.

text Unlimited text

Other Types
array Arrays in PostgreSQL are typed and you can create an array of any type. To define a

column as an array of a specific type, follow with a brackets. Example: varchar(30)[].
You can also autogenerate arrays in an SQL statements with constructs such as.
SELECT ARRAY[‘john’,’jane’];
SELECT ARRAY(SELECT emp_name FROM employees); [Pre 8.4]
SELECT array_agg(emp_name) FROM employees; [8.4]

enum Enumerators, introduced in version 8.3
CREATE TYPE cloth_colors AS ENUM (‘red’,’blue’,’green’);
When used in a table, you define the column as the name of the enum. Sorting is
always in the order the items appears in the enum definition.

boolean true/false

bytea Byte array used for storing binary objects, such as files.

lo Large object. Stored in a separate system table with object ID reference to the
large object. Useful for importing files from file system and storing and exporting
back to file system.

Common Global Variables
Variable Description

CURRENT_
TIMESTAMP, now()

Returns current date and time with timezone

CURRENT_DATE Returns current date with no time

CURRENT_TIME Just time with no date

CURRENT_USER returns user name of session user

CommoNly useD fuNCtIoNs

DateTime Functions and Operators
Function Description

age(timestamp, timestamp) Returns an interval spanned by timestamp1 and
timestamp2

age(timestamp) Difference from current time

date_part(text,timestamp), date_
part(text,interval)

Example:
date_part(‘day’, timestamp ‘2009-07-04 11:05:45’) => 4
date_part(‘hour’, interval ‘560 minutes’) => 9

operators +, -, / (for intervals only) You can add (orsubtract) intervals to datetimes. You can
perform subtraction between two datetimes. You can
divide intervals into smaller intervals.

generate_series(timestamp,
timestamp, interval) [8.4]

Generate rows of timestamps.
SELECT generate_series(DATE ‘2009-09-12’, DATE
‘2009-09-14’, INTERVAL ‘10 minutes’);

Text Functions and Operators
Function Description

|| (string || string, string || number) Concatenation

length Number of characters in string

lpad, rpad Left and right pad
lpad(‘A’, 5, ‘X’) => XXXXA
rpad(‘A’, 5, ‘X’) => AXXXX

lower, upper, initcap Lower, upper, proper case.

md5 md5 hash

quote_ident Quotes keywords and expressions not suitable for
identity when unquoted.
quote_ident(‘in’) => “in”
quote_ident(‘big’) => big

quote_literal Escapes both single and double quotes.

quote_nullable Similar to quote_literal but doesn’t quote NULL

split_part Takes a delimited string and returns the nth item.
split_part(‘abc|def’, ‘|’, 2) =>def

strpos(text,subtext) Returns numeric position of subtext within text.

trim, ltrim, rtrim Trim spaces in string.

Array Functions
Function Description

|| Array concatenation
ARRAY[1,2,3] || ARRAY[3,4,5] => {1,2,3,3,4,5}

unnest [8.4] Converts an array to rows
SELECT anum FROM unnest(ARRAY[1,2,3]) AS anum

array_upper(anyarray, dimension)
array_lower(anyarray,dimension)

returns upper/lower bound of the requested array
dimension
array_upper(ARRAY[ARRAY[‘a’], ARRAY[‘b’]],1) => 2

array_to_string(anyarray,
delimiter_text)

Converts an array to a text delimited by the delimeter.
array_to_string(ARRAY[12,34], ‘|’) => 12|34

Other Functions
Function Description

generate_series(int1,int2,[step]) Returns rows consisting of numbers from int1 to int2 with
[step] as gaps. Step is optional and defaults to 1.

min, max, sum, avg, count Common aggregates.

row_number,rank,dense_
rank,percent_rank, lead, lag,
first_value, nth_value [8.4]

window functions

DAtAbAse objeCts

Here is a listing of what you will find in a PostgreSQL server or
database. An * means the object lives at the server level, not
the database level.

Object Description

Databases* PostgreSQL supports more than one database per service/daemon.

Tablespaces* Logical representation of physical locations where tables are stored.
You can store different tables in different tablespaces, and control
data storage based on database and user/group role.

User/Group roles* Roles can have child roles. A role with login rights can be thought
of as a user.

Languages These are the procedural languages installed in the database.

Casts PostgreSQL has the unique feature of having an extensible cast
system. It has built-in casts, but allows you to define your own and
override default casts. Casts allow you to define explicit behavior
when casting from one object to another, as well as autocast
behavior.

Schemas These are logical groupings of objects. One can think of them as
mini-databases within a larger database. An object always resides
in a schema.

Tables, Views Views are virtual tables that encapsulate an SQL SELECT statement.
In PostgreSQL, tables can inherit from other tables and a query of a
parent table will drill down to its children.

Rules Rules are tied to tables or views. They are similar to triggers except
they can only be written in SQL and they rewrite a statement rather
than actually updating directly. Views are implemented as SELECT
rules with optional DO INSTEAD inserts/update rules to make them
updateable)

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Essential Postgresql

Functions, triggers,
and aggregates

Can be written in any enabled language in the database, live in
schemas. You can define your own custom aggregate functions.
Trigger functions are special classes of functions that have OLD
and NEW variables available that hold a pointer to the OLD and
NEW data. Triggers are bound to table and a trigger function and a
trigger function can be reused by many triggers.

Operators, operator
classes, operator
families

Live in schemas. Many are predefined, but more can be added and
allow you to define things such as +, =, etc. for custom data types.

Sequences Autocreated when defining columns as serial. In PostgreSQL,
sequences are objects in their own right and can be shared across
many tables.

Types Live in schemas. Don’t forget that you have the flexibility to create
your own custom data types in PostgreSQL.

tools

PostgreSQL comes bundled with several tools useful for
administration and query writing.

Tool Description

psql Command-line client packaged with PostgreSQL. Good for automating
SQL jobs, copying data, outputing simple html reports.

createdb, dropdb For creating and dropping a database from the OS shell.

PgAdminIII Popular graphical user interface packaged with PostgreSQL.

pg_restore Command-line tool for restoring compressed or tar backups.

pg_dump Command-line tool for doing backups. Great for automated backups

pg_dumpall Command-line tool for dumping all databases into a single backup.

pgAgent A daemon/service that can be downloaded from
http://www.pgadmin.org/download/pgagent.php.
Used for scheduling SQL jobs and batch shell jobs. Jobs can be added
easily and monitored using the PgAdmin III job interface.

pgsql2shp Packaged with PostGIS (free spatial extender for PostgreSQL at
http://www.postgis.org). Command-line tool to dump spatial data out to
ESRI shapefiles and DBFs.

shp2pgsql Packaged with PostGIS. Command-line tool that can load ESRI
shapefiles or plain DBF files into PostgreSQL.

phpPgAdmin Not packaged with PostgreSQL, but downloadable or installable via
PostgreSQL application stackbuilder. Similar to phpMyAdmin, it allows
administration of PostgreSQL via web interface. Also downloadable
separately at http://phppgadmin.sourceforge.net

Psql CommoN tAsks

PSQL is a command-line tool that allows you to run ad-hoc
queries, scripts, and other useful database management routines.
PSQL runs in both a non-interactive mode (straight from the OS
shell prompt) and an interactive mode (PSQL terminal prompt).
In both modes, the following arguments apply:

Argument Description

-d Database. Defaults to the user (via system identification if no user is specified).

-h Server host. Defaults to localhost if not specified.

-p Port. Defaults to 5432 if not specified.

-U Username you are trying to log in with. Defaults to system user name.

PSQL Non-Interactive Mode
Getting help

psql –help

Execute an SQL script stored in a file

psql –h localhost -U postgres –p 5432 –f pgdumpall.sql

Output data in html format

psql -h someserver -p 5432 -U postgres -d dzone -H -c “SELECT * FROM
pg_tips” -o mydata.html

Execute a single statement against a db

psql -U postgres –p 5432 -d dzone -c “CREATE TABLE test(some_id
serial PRIMARY KEY, some_text text);”

Execute an SQL batch script against a database and send
output to file

psql -h localhost -U someuser -d dzone -f scriptfile.sql -o outputfile.txt

PSQL Interactive Mode
To initiate interactive PSQL, type

psql –U username –p 5432 –h localhost –d dzone

Once you are in the the psql terminal you can perform a myriad
of tasks. Below are some of the common ones.

Quit \q

Cancel out of
more screen

:q

Help on psql
commands

\?

Help on SQL
commands

\h some command

Switch database \connect somedatabase

List all databases \l

\dtv p* List tables and views that start with p.

\du List user/group roles and their group memberships and server level
permissions

\d sometable List columns, data types, and constraints for a table

\i somefile Execute SQL script stored in a file.

\o somefile Output contents to file.

Retrieve prior
commands

Use up and down arrows

\timing Toggle query timing on and off. When on, query output includes timing
information.

\copy Copy from client computer to server and from server to client computer.
Example: The following command string copies data to local client
computer in CSV format with header.
\copy (SELECT * FROM sometable) TO ‘sometable.csv’
WITH HEADER CSV FORCE QUOTE

ADmIN tAsks

Backup and Restore
Below are common backup and restore statements

Create a compressed backup

pg_dump -h someserver -p 5432 -U someuser -F c -b -v -f “somedb.
backup” somedb

Create a compressed backup of select tables

pg_dump -h localhost -p 5432 -U someuser -F c -b -f “somedb.backup”
-t “someschema.table1” -t “someschema.table2” -v somedb

Create a compressed backup excluding a particular schema

pg_dump -h localhost -p 5432 -U someuser -F c -b -f “somedb.backup”
-N someschema -v somedb

Restore a compressed backup

pg_restore –h localhost –d db_to_restore_to –U someuser somedb.backup

Restore select schemas from backup

pg_restore –h localhost –d db_to_restore_to –U someuser -n
someschema1 -n someschema2 somedb.backup

Output a table of contents from backup file

pg_restore -l -f “toc.txt” “somedb.backup”

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Essential Postgresql

Restore only items in the table of contents

pg_restore -h localhost -d db_to_restore -U someuser -L “toc.txt”
“somedb.backup”

Hot
Tip

pg_dumpall currently only dumps to plain text sql.
pg_dumpall backups must be restored with psql. For
space savings and flexibility, use pg_dump. With
pg_dump compressed and tar backups, you can
selectively restore objects. You can not selectively
restore with plain text backups.

Below are common switches used with pg_dump [D], pg_
restore [R], pg_dumpall [A]. These tools are packaged with
PostgreSQL and are in the bin folder. They are also packaged
with pgAdmin III and are in the PgAdmin III/1.10/ folder.

Switch Tool Description

b, --blobs D Include large objects in dump.

-d, --dbname=NAME R Specify name of database to restore to.

-F, --format=c|t|p D R Specify backup file format (c = compressed, t = tar, p = plain
text). Plain text backups must be restored with psql.

-c, --clean D R A Clean (drop) schema prior to create (for pg_dumpall drop
database prior to create).

-g, --globals-only A Dump only global objects (roles, schemas, tablespaces), no
databases.

-i D This will ignore the version of the command-line tool and
will allow processing even if an older command-line is used
to dump a newer PostgreSQL server.

-j, --jobs=NUM [8.4] R Use this multiple parallel jobs to restore. This is especially
useful for large backups and speeds them up significantly
in many cases.

-l, --list R Print summarized TOC of the archive.

-L, use-list=filename R Use TOC from this file for selecting/ordering output.

-n, --schema=NAME D R Dump/restore only select objects in schema(s).

-N, --exclude-
schema=SCHEMA

D R Exclude from dump/restore named schema(s).

-r, --roles-only A Dump only roles, no database or tablespace.

-t, --table=NAME D Backup only named table(s) along with associated indexes,
constraints, and rules.

-T, --exclude-
table=NAME

D Exclude named table(s) from backup.

-v --verbose D R A Controls verbosity.

User Rights Management
These are SQL commands you can use to control rights. They
can be run in the PSQL interactive, via an SQL script, or via
PgAdmin.

Creat a new role with
login rights that can
create objects

CREATE ROLE somerole LOGIN NOSUPERUSER INHERIT
CREATEDB NOCREATEROLE;

Create a group role
with no login rights and
members inherit rights
of role

CREATE ROLE somerole NOSUPERUSER INHERIT
NOCREATEDB NOCREATEROLE;

Add a role to another role GRANT somerole TO someotherrole;

Give rights to a role Example uses:
GRANT SELECT, UPDATE ON TABLE sometable TO somerole;
GRANT ALL ON TABLE sometable TO somerole;
GRANT EXECUTE ON FUNCTION somefunction TO somerole;
-- Grant execute to all users
GRANT EXECUTE ON FUNCTION somefunction TO public;

Revoke rights REVOKE ALL ON TABLE sometabled FROM somerole;

Give insert/update rights
to select columns [8.4]

GRANT INSERT, UPDATE (somecolumn) ON sometable TO
somerole;

DAtA DefINItIoN (DDl)

Many of the examples we have below use named schemas. If
you leave out the schema, objects created will be in the first
schema defined in the search_path and dropped by searching
the search path sequentially for the named object.

Create a new database CREATE DATABASE somedatebase WITH OWNER = someuser;

Creat a schema CREATE SCHEMA someschema;

Changing database
schema search path

Sets the default schema to someschema
ALTER DATABASE somedatabase SET search_path =
someschema, public;

Dropping objects with
no dependents

A drop without a CASCADE clause will not drop an object if there
are objects that depend on it, such as views, functions, and tables.
For drop database you should be connected to a database other
than the one you’re dropping.
DROP DATABASE somedatabase;
DROP VIEW someview;
ALTER TABLE sometable DROP COLUMN somecolumn;
DROP FUNCTION somefunction;

Dropping object and all
dependents. (Use with
caution.)

DROP SCHEMA someschema CASCADE;

Create a table in a
schema

CREATE TABLE sometable (id serial PRIMARY KEY, name character
varying(150), status boolean NOT NULL DEFAULT true);

Create a child table CREATE TABLE somechildtable (CONSTRAINT pk_somepk
PRIMARY KEY (id)) INHERITS (someparenttable);

Create a check
constraint

ALTER TABLE sometable ADD CONSTRAINT somecheckcontraint
CHECK (id > 0);

Create or alter a view CREATE OR REPLACE VIEW someview AS SELECT * FROM
sometable
[Prior to version 8.4 adding new columns to a view requires
dropping and recreating]

Add a column to a table ALTER TABLE sometable ADD COLUMN somecolumn timestamp
NOT NULL DEFAULT CURRENT_TIMESTAMP;

Add a functional index
to a table

CREATE INDEX idx_someindex ON sometable USING btree
(upper(somecolumn));

Create a new type CREATE TYPE sometype AS (somecolumn integer,
someothercolumn integer[]);

Create a trigger CREATE OR REPLACE FUNCTION sometrigger()

RETURNS trigger AS

$$

BEGIN

IF OLD.somecolumn <> NEW.somecolumn OR (OLD.
somecolumn IS NULL AND NEW.somecolumn IS NOT NULL)
THEN

NEW.sometimestamp := CURRENT_TIMESTAMP;

END IF;

RETURN NEW;

END;

$$

LANGUAGE ‘plpgsql’ VOLATILE;

Add trigger to table CREATE TRIGGER sometrigger BEFORE UPDATE ON sometable
FOR EACH ROW
EXECUTE PROCEDURE sometriggerupdate();

Suppress redundant
updates [8.4]

A built in trigger that prevents updates that would not change
any data.
CREATE TRIGGER trig_01_suppress_redundant BEFORE UPDATE
ON sometable FOR EACH ROW
EXECUTE PROCEDURE suppress_redundant_updates_trigger();

Hot
Tip

A table can have multiple triggers, and each trigger
for a particular event on a table is run in alphabetical
order of the named trigger. So if order is important,
name your triggers such that they are sorted in the
order you need them to run

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Essential Postgresql

query AND uPDAte (Dml)

These are examples that showcase some of PostgreSQL query
features.

Retrieving data
View running queries SELECT * FROM pg_stat_activity;

Selecting the first record of each
distinct set of data

-- this example selects the store and product
-- where the given store has the lowest price
-- for the product. This uses PostgreSQL
-- DISTINCT ON and an order by to resort
-- results by product_name.
SELECT r.product_id, r.product_name, r.product_price
FROM (SELECT DISTINCT ON(p.product_id) p.product_
id, p.product_name, s.store_name, i.product_price
 FROM products AS p INNER JOIN inventory As i
 ON p.product_id = i.product_id
 INNER JOIN store AS s ON i.store_id = s.store_id
ORDER BY p.product_id, i.product_price) As r;

Using window function to
number records (row_num)*

SELECT ROW_NUMBER() OVER(ORDER BY p.product_
price) As row_num, p.product_name
FROM products;

Using window function to
number records by category
and price *

--numbering restarts for each category
SELECT ROW_NUMBER() OVER(PARTITION BY
p.product_category ORDER BY p.product_price),
p.product_category, p.product_price
FROM products AS p
ORDER BY p.product_category, p.product_price

Non-Recursive CTE with 2
CTE expressions. Note a CTE
expression has only one WITH,
each subexpression is separated
by a , and the final query follows.

Example returns the lowest
priced car in each category

 WITH c AS
(SELECT country_code, conv_us
FROM country
),
prices AS
(SELECT p.car, p.category, p.price*c.conv_us As us_price
FROM cars As p
 INNER JOIN c
 ON p.country_code = c.country_code
)
SELECT DISTINCT ON(category)
 category, car, us_price
FROM prices
ORDER BY category, us_price;

Recursive CTE * inventory, gives
full name which includes parent
tree name e.g
Paper->Color->Red->20 lbs

WITH RECURSIVE tree AS
(SELECT id, parentid,
 CAST(item As text) As fullname
FROM products
WHERE parentid IS NULL
UNION ALL
SELECT p.id,p.parentid,
 CAST(t.fullname || ‘->’
 || p.item As text) As fullname
FROM products As p
 INNER JOIN tree AS t
 ON (p.parentid = t.id)
)
SELECT id, fullname
FROM tree;

Adding and Updating Data
Insert statement with multirows --requires 8.2+

INSERT INTO tableA(id,price)
VALUES
 (1,5.00), (1,5.25)

Insert statement from select only
load items not already in table

INSERT INTO tableA(id,price)
SELECT invnew.id,invnew.price
FROM tableB As invnew LEFT JOIN tableA As invold ON
(invnew.id = invold.id)
WHERE invold.price IS NULL;

Cross update only update items
for a particular store where price
has changed

UPDATE tableA
 SET price = invnew.price
FROM tableB AS invnew
WHERE invnew.id = tableA.id
AND NOT (invnew.price = tableA.price);

Insert from a tab delimited file
no header

COPY products FROM “/tmp/productslist.txt” WITH
DELIMITER ‘\t’ NULL As ‘NULL’;

Insert from a comma delimited
file with header row

--these copy from the server’s file system
COPY products FROM “/tmp/productslist.csv” WITH CSV
HEADER NULL As ‘NULL’;

Copy data to comma delimited
file and include header

--this outputs to the server’s file system
COPY (SELECT * FROM products WHERE product_rating
= ‘A’) TO ‘/tmp/productsalist.csv’ WITH CSV HEADER
NULL As ‘NULL’;

ProCeDurAl lANguAges

PostgreSQL stands out from other databases in its extensive
and extendable support for different languages to write
database stored functions. It allows you to call out to libraries
native to that language. We will list the key as well as
some esoteric ones. The ones with * are preinstalled with
PostgreSQL and can be enabled. Some require additional
installs in addition to the language handler.

You can create set returning functions, simple scalar functions,
triggers, and aggregate functions with most of these
languages. This allows for languages highly optimized for a
particular task to work directly with data without having to
always copy it out to process as you normally would need to
with a simple database storage device. Language handlers
can be of two flavors trusted and untrusted. An untrusted
language can access the file system directly.

CREATE PROCEDURAL LANGUAGE ‘plpythonu’ HANDLER plpython_call_handler;
CREATE OR REPLACE somename(arg1 arg1type)
 RETURNS result_argtype AS
$$
 body goes here
$$
LANGUAGE ‘somelang’;

Language Description Req

sql*
(trusted)

Enabled in all dbs. Allows to write simple functions and
set returning functions in just sql. The function internals
are visible to the planner so in many cases performs better
than other functions since the planner can strategize how to
navigate based on the bigger query. It is simple, fast, but
limited in functionality.
CREATE OR REPLACE FUNCTION prod_state(prev
numeric, e1 numeric, e2 numeric)
 RETURNS numeric AS
$$
 SELECT COALESCE($1,0) + COALESCE($2*$3,0);
$$
LANGUAGE ‘sql’ IMMUTABLE;

none

c* Built in and always enabled. Often used to extend
PostgreSQL e.g. postgis, pgsphere, tablefunc or for
example introduce new windowing functions (introduced
in PostgreSQL 8.4). Functions are referenced from a .so
or .dll file.
CREATE OR REPLACE FUNCTION summary(geometry)
 RETURNS text AS
‘$libdir/postgis-1.4’, ‘LWGEOM_summary’
 LANGUAGE ‘c’ IMMUTABLE STRICT;

none

plpgsql*
(trusted)

Not always enabled but packaged so can be installed.
CREATE FUNCTION cp_upd(p_key integer, p_value
varchar)
RETURNS void AS
$$
BEGIN
IF EXISTS(SELECT test_id FROM testtable WHERE test_id
= p_key) THEN
 UPDATE testtable
 SET test_stuff = p_value
 WHERE test_id = p_key;
ELSE
 INSERT INTO testtable (test_id,
 test_stuff)
 VALUES(p_key, p_value);
END IF;
 RETURN;
END;
$$
LANGUAGE ‘plpgsql’ VOLATILE;

none

plperl
(trusted),
plperlu
(untrusted)

CREATE OR REPLACE FUNCTION use_quote(TEXT)
RETURNS text AS $$
 my $text_to_quote = shift;
 my $qfunc = $_SHARED{myquote};
 return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

perl

plpythonu
(untrusted)

CREATE FUNCTION fnfileexists(IN fname text) RETURNS
boolean AS
$$
 import os
 return os.path.exists(fname)
$$
LANGUAGE ‘plpythonu’;

python

plr Good for doing advanced stats and plotting using R
statistical language.

CREATE FUNCTION r_quantile(float8[])
RETURNS float8[] AS
$$
quantile(arg1, probs = seq(0, 1, 0.25),
names = FALSE)
$$ LANGUAGE ‘plr’;

R

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

upcoming titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Essential Postgresql

reCommeNDeD bookAbout the Authors

ISBN-13: 978-1-934238-62-2
ISBN-10: 1-934238-62-7

9 781934 238622

50795

plsh
(untrusted)

Allows to write in shell script
CREATE FUNCTION callscript(id integer) RETURNS text AS
$$
#!/bin/sh
wget -q “http://somesite.com/somepage?id=$1” >/dev/
null 2>&1
echo “done”
$$
LANGUAGE ‘plsh’ VOLATILE;

sh

Common Procedural Tasks
Create a trigger and use in table

CREATE FUNCTION mytable_ft_trigger() RETURNS trigger AS $$
BEGIN
 NEW.tsv :=
 setweight(to_tsvector(‘pg_catalog.english’,
 coalesce(new.field1,’’)), ‘A’) ||
 setweight(to_tsvector(‘pg_catalog.english’,
 coalesce(NEW.field2,’’)), ‘B’);
 RETURN NEW;
END
$$ LANGUAGE plpgsql;
CREATE TRIGGER mytable_trigiu BEFORE INSERT OR UPDATE
ON mytable FOR EACH ROW EXECUTE PROCEDURE mytable_ft_trigger();

Return sets and use of out params

CREATE OR REPLACE FUNCTION
 fn_sqltestmulti(param_subject varchar,
 OUT test_id integer,
 OUT test_stuff text)
 RETURNS SETOF record
 AS
$$
 SELECT test_id, test_stuff
 FROM testtable
 WHERE test_stuff LIKE $1;
$$
 LANGUAGE ‘sql’ STABLE;
--example
SELECT * FROM fn_sqltestmulti(‘%stuff%’);

Create an aggregate function

CREATE AGGREGATE sum(text) (
 SFUNC=textcat,
 STYPE=text,
 INITCOND=’’
);
SELECT item, sum(category || ‘ ‘) as categories
FROM item_cat GROUP BY item;

The wife and husband team of Leo Hsu and Regina Obe founded
Paragon Corporation in 1997 specializing in database technology.
Paragon Corporation works with numerous organizations to design,
develop and maintain database and web applications. In 2002, Leo
and Regina started to dabble in the growing field of spatial analysis
and have become active participants in the on-going development
of PostGIS which is a spatial extension of PostgreSQL. Regina is a
member of the PostGIS core development team and Project Steering
Committee.

Through Paragon Corporation, Leo and Regina have helped many
clients using PostgreSQL, SQL Server and MySQL. Paragon Corporation takes on database
projects in a wide range of industries and advocates database-driven development.

Leo and Regina met at MIT and both graduated with engineering degrees. Leo went on to
obtain a master’s degree from Stanford University in Engineering of Economic Systems.

They maintain two sites: http://www.postgresonline.com -- provides tips and tricks for using
PostgreSQL and http://www.bostongis.com - provides tips and tricks for using PostGIS, SQL
Server 2008 Spatial and other open source and open GIS tools.

Email contact: lr@pcorp.us

URL: http://www.paragoncorporation.com

PostGIS in Action is the first book devoted entirely to PostGIS.
It will help both new and experienced users write spatial queries
to solve real-world problems. For those with experience in more
traditional relational databases, this book provides a background
in vector-based GIS so you can quickly move to analyzing,
viewing, and mapping data. Advanced users will learn how to
optimize queries for maximum speed, simplify geometries for
greater efficiency, and create custom functions suited specifically
to their applications. It also discusses the new features available
in PostgreSQL 8.4 and provides tutorials on using additional
open source GIS tools in conjunction with PostGIS.

Pre-order Now
http://www.manning.com/obe/

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
mailto: lr@pcorp.us
http://www.manning.com/obe/

