

DZone, Inc. | www.dzone.com

By Christopher Bennage and Rob Eisenberg

W
in

d
o

w
s

P
re

se
n

ta
ti

o
n

 F
o

u
n

d
at

io
n

 w
w

w
.d

zo
n

e.
co

m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#72

Getting Started with
Windows Presentation Foundation

CONTENTS INCLUDE:
n	 XAML
n	 Markup Extensions
n	 Controls
n	 Panels
n	 Data Binding
n	 Events and more...

ABOUT WPF

Windows Presentation Foundation or WPF is a next generation
UI framework for creating desktop applications on the
Windows Platform. It brings together a number of features
and concepts such as a declarative language for constructing
interfaces, rich media support, scalable vector graphics,
timeline-based animations, sophisticated data binding, and
much more.

WPF is a very large topic. The intent of this Refcard is to help
you understand the basics of WPF. After we’re done you
should be able to look at the source of a WPF application
and understand what you are seeing. However, in order to
effectively use WPF, you will need to continue to learn more
though additional and more extensive resources.

XAML

XAML, or eXtensible Application Markup Language, is the
lingua franca of both WPF and Silverlight. It is an XML dialect
that was designed to represent hierarchical object graphs in
a fashion that is both human-readable and easy to parse. In
WPF, XAML is used to represent the composition of the user
interface, its style, animations and almost any declarative
aspect of the user experience. Let’s see an example:

<Window x:Class=”XamlSamples.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xamlpresentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1”
 Height=”300”
 Width=”300”>
 <Grid x:Name=”layoutRoot”>
 </Grid>
</Window>

If you create a new WPF project in Visual Studio, the XAML
listed will be generated for you. It shows some common
features of the markup language. The first thing you should
notice is the use of XML namespaces, denoted by xmlns.
These namespaces tell the XAML parser where to find the
elements declared in the markup. The first declaration makes
WPF the default namespace. This allows the majority of
elements to be declared without explicit namespaces. The
second namespace is that of the XAML parser itself, which
enables some special cases, such as naming elements. x:Name
is an example of this. Notice that the root node is Window and it
has attributes of Title, Height and Width. In XAML, elements
correspond to instances of objects that will be created, and
attributes specify what the instances’ properties should be set
to. The XAML translates to the following code:

var layoutRoot = new Grid();
var window = new Window
{
 Title = “Window1”,
 Width = 300,
 Height = 300,
 Content = layoutRoot
};

This sample also demonstrates an important concept in WPF:
the Content Model. Notice that Window in the XAML has a Grid
as its child element, but it translates to setting the Content
property on the Window in code. Most WPF elements declare
a default content property so that XAML creation is made
more intuitive. Let’s discover some more features of XAML by
putting some elements in our Grid:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <Button Grid.Row=”0”
 Content=”Grid Row 0”/>
 <Button Grid.Row=”1”
 Content=”Grid Row 1”/>
</Grid>

Knowing that elements map to instances and attributes

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor

DZone, Inc. | www.dzone.com

2
Windows Presentation Foundation

map to properties, you may be wondering how you would
set a property with a complex value; one that could not be
expressed as an attribute. This is accomplished by using
Property Element Syntax, demonstrated by the Grid.
RowDefinitions element. A Grid is a Panel composed of
children arranged in columns and rows. To declare the rows in
a Grid, you set its RowDefinitions property, which is a collection
of RowDefinition objects. In XAML, you can turn any property
into an element using the syntax TypeName.PropertyName,
as we have done with Grid.RowDefinitions. By combining
Property Attribute Syntax and Property Element Syntax with
the conventions of the Content Model you can represent almost
any object hierarchy. Additionally, there is another common
markup usage demonstrated: Attached Properties. You can
see them on the Button declarations. WPF enables containing
elements to attach information to their children using the
pattern ParentType.AttachedProperty. In this case, the Grid.
Row properties tell the parent Grid where to place each Button.

Often, a designer likes to declare colors, brushes and styles for
consistent use throughout an application. These can be stored
in a ResourceDictionary. In this example, we have declared
a SolidColorBrush which we would like to later use as our
button’s background. The StaticResourceExtension class is
the perfect tool for the task. We use it by enclosing the words
“StaticResource” in braces, followed by the Key of the resource
we want to reference. There are several things common to all
markup extensions that we should note:

 1. Markup extensions are enclosed in braces.
 2. XAML allows us to drop the word “Extension” from the declaration,
 even though it is part of the class name.

 3. Most extensions have a default value, which will be passed into the
 extension’s constructor. In this example that value is the resource key,

 “myBrush.”

Any read/write property on the extension class can also be
set in XAML. These properties can even be set using other
extensions! Here’s a typical databinding sample:

<TextBox Text=”{Binding Source={StaticResource myDataSource},
 Path=FirstName, UpdateSourceTrigger=PropertyChanged}”
/>

Notice that we set the Source property of the BindingExtension
using another MarkupExtension, StaticResourceExtension. We
then set two additional properties on the BindingExtension.

Table 1 shows several of the most common built-in extensions
along with their purpose:

Extension Description

{StaticResource} Injects a previously defined resource into markup.

{DynamicResource} Creates a dynamically updatable link to a resource.

{Binding} Enables databinding.

{TemplateBinding} Simplifies binding inside a ControlTemplate.

{x:Static} References static variables.

{x:Type} References instances of a Type object.

{x:Null} Represents a Null value.

In addition to what XAML provides out-of-the-box, you can
create your own markup extensions. All you have to do is
derive your class from MarkupExtension. For example:

public class HelloExtension : MarkupExtension
{
 private readonly string _name;

 public HelloExtension(string name)
 {
 _name = name;
 }

 public override object ProvideValue(IServiceProvider
serviceProvider)
 {
 return “Hello “ + _name + “! Nice to meet you.”;
 }
}

And you use it in code like so:

<Window x:Class=”MarkupExtensionSamples.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xamlpresentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:MarkupExtensionSamples”
 Title=”Window1”
 Height=”300”
 Width=”300”>
 <TextBox Text=”{local:Hello Fauntleroy }” />
</Window>

Whenever you create custom extensions, or any class not
defined by the framework, you must remember to add its
namespace before you use it in XAML. A common convention
is to use the name “local” for classes defined in the project.

Controls
WPF ships with a number of the standard controls that you
would expect. Here’s a short list of the most common:
 •Label
 •Button
 •TextBox
 •ListBox
 •ComboBox
 •CheckBox
 •Slider

MARKUP EXTENSIONS

Despite the flexibility of the XAML syntax, there are still many
scenarios that are tricky to accomplish with standard XML. To
address this issue, XAML offers Markup Extensions. Here’s a
typical example:

<Window x:Class=”MarkupExtensionSamples.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xamlpresentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1”
 Height=”300”
 Width=”300”>
 <Window.Resources>
 <SolidColorBrush x:Key=”myBrush”Color=”Red” />
 </Window.Resources>
 <Grid>
 <Button Background=”{StaticResource myBrush}”
 Margin=”10”
 Content=”Background from StaticResource”/>
 </Grid>
</Window>

http://www.dzone.com
http://www.refcardz.com
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor

DZone, Inc. | www.dzone.com

3
Windows Presentation Foundation

These controls all look and behave according to traditional
desktop UI metaphors. However, the nature of controls in
WPF is very different from traditional UI frameworks. You can
completely redefine the look of a control in WPF without
altering its behavior. You can do this using Control Templates.

The most common scenario for manipulating a control
template is changing the way a button looks. All controls have
a Template property. Let’s examine the following XAML:

<Button Content=”Click Me”>
 <Button.Template>
 <ControlTemplate TargetType=”Button”>
 <StackPanel Orientation=”Horizontal”
 Margin=”4”>
 <Ellipse Width=”16”
 Height=”16”
 Fill=”Blue”
 Margin=”0 0 4 0” />
 <Border Background=”LightBLue”
 CornerRadius=”4”
 Padding=”4”>
 <ContentPresenter />
 </Border>
 </StackPanel>
 </ControlTemplate>
 </Button.Template>
</Button>

Using the Property Element Syntax, we set the button’s
template to an instance of ControlTemplate. The TargetType
is necessary to tell the control template what sort of control
it will be applied to. Control templates require this because
they typically exist independent of the controls themselves.
The content of a control template can be just about anything.
This demonstrates the compositional nature of WPF. A control
template can be composed of any other WPF elements, even
another Button control.

Below is an example of how this XAML will render compared to
a plain button.

There are additional elements that are used to compose an
interface in WPF which technically are not controls. Some
examples from the XAML are StackPanel, Ellipse, Border, and
ContentPresenter.

StackPanel is part of a family of elements called panels that
assist us with layout. We’ll talk about them in the next section.

Ellipse and its siblings are shapes. Shapes are a convenient
set of classes for drawing basic shapes within the UI.

Border is an element that you will encounter frequently. It is
used to decorate other elements with a border. It is also the
quick way to put rounder corners around an element.

ContentPresenter is a special element that is used when you
are constructing control templates. It is a placeholder for the
actual content of the control. For example, we set the Content
property of our Button to “Click Me”. This content was injected
into our template where we placed the ContentPresenter.
It’s also interesting to note, that if we had omitted the
ContentPresenter then our control template would simply have
ignored the content.

Control templates are especially powerful when they are used
in combination with WPF’s styles and resources.

Missing Controls
There are a number of controls that you might expect to be
present in WPF that are not. The most obvious examples
are DataGrid, DatePicker, Calendar, and charting controls.
Microsoft has chosen to release these controls separately from
the .NET platform itself. They are available as part of the WPF
Toolkit on CodePlex (http://www.codeplex.com/wpf). You’ll
also find the official Ribbon control on CodePlex. Look for
most of these controls to join the platform in version 4.0.

Lookless Controls
Two of the most important controls in WPF are the
ContentControl and the ItemsControl. These controls do not
have any defined look. They rely on a concept called Data
Templates. Data templates are similar to control templates,
except that instead of targeting a specific control, they target a
specific type.

With a ContentControl, you can set the Content property to an
instance of any class. Then you can define a data template that
is specific to that class. Say that we have a simple class like this
one:

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
}

We can define a data template is our resources:

<DataTemplate x:Key=”personTemplate”>
 <StackPanel>
 <TextBlock Text=”{Binding FirstName}” />
 <TextBlock Text=”{Binding LastName}” />
 <TextBlock Text=”{Binding Age}” />
 </StackPanel >

You can also define an instance of Person in the resources:

<ContentControl Content=”{Binding Source={StaticResource myPerson}}”
 ContentTemplate=”{StaticResource personTemplate}” />

You might be wondering why this is valuable. Why not simply
create a user control that has the same content as the data
template? The ContentControl has no inherent behavior
beyond rending its content. With a user control, you could at
least add behavior specific to the Person class. We’ll come
back to this question.

Another way to associate the data template is to provide a
DataType. Here’s same template using this approach:

<DataTemplate DataType=”{x:Type local:Person}”>
 <StackPanel>
 <TextBlock Text=”{Binding FirstName}” />
 <TextBlock Text=”{Binding LastName}” />
 <TextBlock Text=”{Binding Age}” />
 </ StackPanel>
</DataTemplate>

Depending on where this data template was stored, you could
now do the following:

<ContentControl Content=”{Binding Source={StaticResource myPerson}}” />

We’ll discuss DataContext in the section on Data Binding.

The ItemsControl is very similar to ContentControl, except
that it binds to a collection of objects using the ItemsSource
property. In fact, if we bound it to a collection of Person
instances, the same data template would be applied.

<ItemsControl ItemsSource=”{Binding Source={StaticResource
myPersonCollection}}” />

http://www.dzone.com
http://www.refcardz.com
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor

DZone, Inc. | www.dzone.com

4
Windows Presentation Foundation

Of course, you can also explicitly designate the template:

<ItemsControl ItemsSource=”{Binding Source={StaticResource
myPersonCollection}}”
 ItemTemplate=”{StaticResource personTemplate}” />

These two controls combined with data templates are very
powerful. They are an essential part of Separated Presentation
patterns such as MVVM or Presentation Model.

PANELS

You’ve already seen a couple of panels, namely the
StackPanel and Grid. Panels are UI elements that provide
layout functionality. They are used to layout windows, user
controls, and even the standard controls that ship with WPF.
If you examine the control templates for the default controls
themes, you will find these panels everywhere. Table 2 lists the
commonly used panels.

Panel Description

Canvas Allows you to place elements at specific coordinates. Typically, you will use one
of the other panels unless you have a specific need to place elements exactly.

DockPanel This is a versatile panel that allows you to “dock” elements to any of the four
sides. It is commonly used to layout the “shell” of an application: dock the
menu bar to the top, dock the status bar to the bottom, dock the explorer panel
to the left-hand side.

Grid Similar to a table in HTML. You define a number of rows and columns that are
used to arrange the elements.
This is not to be confused with any data grid controls. This panel is used only for
laying out other elements.

StackPanel As its name implies, this panel simply stacks elements one on top of the other.
You can also tell it to use a horizontal orientation in order to “stack” elements
sideways.

WrapPanel This panel is similar to StackPanel with a horizontal orientation except that its
child elements wrap to a new row automatically when all of the horizontal space
has been used.

You’ll frequently need to nest panels of various types in order
to achieve the exact layout that you desire.

The child elements of a Canvas, DockPanel, or Grid use
attached properties to interact with their parent.

For example, to place a red circle inside of a Canvas at 100,200:

<Canvas Width=”800”
 Height=”600”>
 <Ellipse Width=”32”
 Height=”32”
 Fill=”Red”
 Canvas.Top=”100”
 Canvas.Left=”200” />
</Canvas>

DockPanel uses the attached property DockPanel.Dock. The
values are Left, Top, Right, and Bottom.

Grid uses two attached properties: Grid.Column and Grid.Row.
The values of the properties are the index of the column and
row where you want the child element to appear.

Data binding allows you to declaratively establish a
relationship between an element of the UI and some other bit
of data. A clear understanding of the way data binding works
in WPF will revolutionize the way you design your applications.
We’ll start by examining a simple example of data binding.

<StackPanel>
 <TextBox x:Name=”mySource” />
 <TextBox Text=”{Binding ElementName=mySource, Path=Text}” />
</StackPanel>

DATA BINDING

Hot
Tip

Since Path is the default property for the Binding
extension, we can (and frequently do) omit the
“Path=”. Our example binding would then look like
this:
<TextBlock Text=”{Binding FirstName}” />

In this example, we have two text boxes. We gave the name
mySource to the first text box so that we can reference it in the
binding. The binding itself is a value that we are setting to the
Text property of the second text box. We’re using the markup
extension Binding to define it. This is not the only way to
declare bindings, but it is the most common.

We need to tell our binding where to locate its source data.
We do this using the property ElementName to reference the
source element. Next, we need to identify what property on
mySource we’d like to use. The Path property on the binding
allows just that. We can use it to draw a link from the source
to the actual bit of data we want to bind. In this example, the
path is very simple.

Data Context
UI elements are not the only possibilities for a data source in
WPF. Frequently, you’ll need to bind some business object or
view model. Nearly every element in WPF has a property called
DataContext. As its name implies, it provides an object that is
the context for data bindings. Take a simple example derived
from the data template we discussed earlier:

<TextBlock Text=”{Binding Path=FirstName}” />

Because we are not explicitly providing a source, the binding
assumes that it should use the DataContext of the TextBlock as
the source for the binding.

One wonderful characteristic of DataContext, is that it is
automatically inherited from an element’s parent. We can set
the DataContext once for an entire window (or some other
graph of UI elements) and the data context is propagated
down to all of the child elements contained in that window.

There are a number of ways to set the data context, however
the most direct looks like this:

this.DataContext = new Person();

If we place this code in the constructor for our window, then all
of the elements in our window will have a person instance as
their data context.

Different Sources for Bindings
There are three different types of bindings available in WPF.
You’ve already seen several examples of the most common,
which is simply called Binding.

With basic binding there are four ways to specify the data
source for the binding.

 • Simply allow the binding to use the DataContext.
 • Designate another element in the UI with ElementName.
 • Explicitly provide the source using the Source property.
 This is useful for accessing data that is part of a static
 class. For example, if we wanted to bind the number of
 fonts currently installed we could do this:

http://www.dzone.com
http://www.refcardz.com
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor

DZone, Inc. | www.dzone.com

5
Windows Presentation Foundation

Hot
Tip

Data bindings do not raise exceptions. If the path
doesn’t exist or if the source is null, your application
will continue to run, but the bindings will not do
anything. Keep an eye on the output window if
you are having problems. The most common is
“BindingExpression path error: ‘X’ property not found
on ‘Y’.

Value Converters
Sometimes the data source that you want to use doesn’t exactly
match the type of the target. One common example is binding
when you need to bind a boolean to the visibility of an element
in the UI.

<Border Visibility=”{Binding IsTrueOrFalse}” />

This binding will simply fail silently. The solution to this is to use
a value converter. Fortunately, there is a converter built into the
framework for this exact scenario. To use it, we’ll need to create
an instance in the resources. Here’s an example:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/
presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <Window.Resources>
 <BooleanToVisibilityConverter x:Key=”booleanToVisibility” />
 </Window.Resources>
 <Border Visibility=”{Binding IsTrueOrFalse, Converter={StaticResource
booleanToVisibility}}” />
</Window >

We set the Converter property on the binding to point to
the instance of our converter that we keyed in the window’s
resources.

Creating your own value converters is very easy. Simply create
a class that implements IValueConverter. There are two
simple methods involved, and frequently you’ll only need to
implement one.

Other Types of Bindings
There are two other types of bindings that are more rare, but
very useful in certain scenarios.

 • MultiBinding
 • PriorityBinding

MultiBinding allows you to specify multiple bindings for
a single target. However, you will need to implement
IMultiValueConverter in order to consolidate these bindings
down into a single value.

PriorityBinding also allows you to specify multiple bindings,

EVENTS AND COMMANDS

WPF and XAML provide a rich framework for declarative UI
design. But how do you respond to user interactions within
the interface? This is accomplished through Events and
Commands. Let’s see the standard approach for responding to
a Button.Click event.

<Button Content=”Click Me!”
 Click=”Button_Click” />

private void Button_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(“Click!”);
}

Events are special types of properties in .NET, so we can
use XAML’s Property Attribute convention to set them in
markup. The code-behind file (.xaml.cs extension) contains
the actual method body that is wired to the event. In this case,
clicking the Button will cause a MessageBox to be shown. Of
particular note are the event handler arguments. The first
argument, sender, is the Button itself. The second argument,
e, is a special type of EventArgs used by all WPF’s events. This
argument contains additional contextual information provided
by WPF’s routed event mechanism.

Routed Events
In WPF, all events travel a path. Bubbling events travel from
the source node up to the root element in the UI hierarchy.
Tunnelling events travel from the root node down to the
source. Events bubble by default, but often have a tunneling
counterpart designated by the word “Preview.” For example:
MouseLeftButtonUp and PreviewMouseLeftButtonUp. The
RoutedEventArgs has properties that can help in determining
the source of the event. You can also prevent further bubbling
or tunneling by setting the Handled property of the args to true.

Commands
Wiring events is not the only way to handle user interaction.
You can also use Commands. Button has a Command property.

public class MessageBoxCommand : ICommand
{
 public void Execute(object parameter)
 {
 MessageBox.Show(parameter.ToString());
 }

 public bool CanExecute(object parameter)
 {
 return parameter != null;
 }

 public event EventHandler CanExecuteChanged
 {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }
}
<Button Content=”Click Me!”
 CommandParameter=”Hello from a command!”>
 <Button.Command>
 <local:MessageBoxCommand />
 </Button.Command>
</Button>

<TextBlock Text=”{Binding Source={x:Static Fonts.SystemFontFamilies},
Path=Count}” />

 • Finally, you can specify a RelativeSource. Use this when the
 source of data is the same element as the target. For
 example, perhaps we want the ToolTip on a ListBox to
 report the number of items that are current in the ListBox.
 We could do this:

ToolTip=”{Binding RelativeSource={x:Static RelativeSource.Self},
Path=Items.Count}”

but instead of being consolidated, only a single binding from
the collection is used. The bindings are listed in order of their
priority. The rule for determining which binding to use is:
choose the highest priority binding that has resolved a value.
This is very useful when you are binding to values that take a
significant amount of time to return.

Check the official documentation for more information on how
and when to use these bindings.

http://www.dzone.com
http://www.refcardz.com
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Windows Presentation Foundation

Buttons (along with all descendents of ButtonBase) and Menus
are the two most common implementers of ICommandSource.
This interface allows you to specify code to execute when
the ICommandSource is triggered using the ICommand.Execute
method. Additionally, you can supply code to tell WPF under
what conditions execution is possible using the ICommand.
CanExecute method. The ICommandSource will typically wire
itself to the ICommand.CanExecuteChanged event and update
its IsEnabled property whenever things change. It is typically
sufficient to allow WPF’s CommandManager to handle the event.
Also, notice that the Execute and CanExecute methods have
a single parameter which can be supplied by setting the
CommandParameter on the ICommandSource.

Routed Commands
Like events, WPF’s commands can route. This enables one
part of the UI to trigger a command while another part
actually handles the execution. To create your own routed
commands, you must inherit from RoutedCommand. To handle a
RoutedCommand, you must add a handler to the CommandBindings
collection of the node you wish to capture the command from.
A CommandBinding provides hooks for simple event handlers

that allow you to respond to the command.

Gestures
Everything that inherits from UIElement has an InputBindings
collection. An InputBinding, such as a KeyBinding or
MouseBinding allows you to connect arbitrary user interaction
directly to a Command. This allows you to trigger code execution
based on complex Gestures not easily achievable through
standard events.

Built-In Commands
WPF has a host of pre-defined routed commands that you
may find useful in building your own applications. Their static
instances are hosted on utility classes named according to their
usage category. Table 3 explains the built-in commands.

ApplicationCommands New, Open, Close, Print, Undo, Redo, etc.

ComponentCommands ScrollPageUp, ScrollPageDown, MoveLeft, etc.

MediaCommands Play, Pause, Stop, FastForward, etc.

NavigationCommands NextPage, PreviousPage, Search, Zoom, etc.

EditingCommands AlignCenter, IncreaseIndentation, etc.

RECOMMENDED BOOKABOUT THE AUTHORS

BUY NOW
books.dzone.com/books/wpf

Rob Eisenberg is a .NET architect and developer working out of
Tallahassee, FL. where he is a partner with Christopher Bennage at Blue
Spire Consulting. Rob publishes technical articles regularly at devlicio.
us and has spoken at regional events and to companies concerning .NET
technologies and Agile software practices. He is coauthor of Sam’s Teach
Yourself WPF in 24 Hours and is the architect and lead developer of the
Caliburn Application Framework for WPF and Silverlight.

Christopher Bennage likes to make things. He’s particularly fond of
computers, WPF, and Silverlight, as well as the glorious and mysterious
field of UX. You can follow him on twitter @bennage or through his blog on
devlicio.us. He promises not to bite.

Using a straightforward, step-by-step
approach, each lesson builds on a
real-world foundation forged in both
technology and business matters,
allowing you to learn the essentials of
WPF from the ground up.

ISBN-13: 978-1-934238-86-8
ISBN-10: 1-934238-86-4

9 781934 238868

50795

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/wpf
http://books.dzone.com/books/soa-patterns
http://www.actiprosoftware.com/Go/Refcard/Default.aspx?Source=Sponsor

