

DZone, Inc. | www.dzone.com

By Michael Slinn

ABOUT LIVECYCLE DS

Li
ve

C
yc

le
 D

at
a

S
e

rv
ic

e
s

E
S

w
w

w
.d

zo
n

e.
co

m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#73

Getting Started with
LiveCycle Data Services ES

CONTENTS INCLUDE:
n	 About LiveCycle DS
n	 Installation
n	 Channels and Endpoints
n	 Java to ActionScript Type Mapping
n	 ActionScript to Java Type Mapping
n	 Eclipse Projects and more...

Adobe® LiveCycle® Data Services ES (LCDS) is a high-
performance, scalable, and flexible framework that streamlines
the development of Rich Internet Applications (RIAs) using the
Flash Platform.

LCDS facilitates the creation of client-server applications and
supports a rich set of features to create real-time and near real-
time solutions, included support for occasionally connected
AIR clients. LCDS provides numerous options for remote
procedure calls, proxy support, lazy loading and server push,
including publish/subscribe messaging, data synchronization,
data paging and conflict resolution.

LCDS supports Java EE web applications. Versions are available
for Windows, Linux, AIX, HP_UX and Solaris. LCDS v2.6.1 is not
officially supported under Mac O/S X, however the v3.0 beta
does provide support for Mac.

This Refcard briefly mentions the major features, discusses a
few key concepts and shows how to get started with LCDS. The
book entitled “Flex Data Services, Hibernate and Eclipse”
contains much more information, complete code examples,
and the LCDS version of the free software tool mentioned in
this Refcard.

server must be configured in a compatible manner. Adobe
provides samples of five XML files that are parsed by Flex
Builder and the server-side Data Services runtime at startup.
You must modify some or all of these files in order to configure
the data services transport for each project. The configuration
files define client channels (“pipes”), server endpoints (the URL
and properties) and destinations.

A client channel formats and translates messages into a
network-specific form and delivers them to an endpoint on the
server; channels define message formats, network protocols
and network behaviors. An endpoint unmarshals messages
in a protocol-specific manner. A destination is the server-side
object or service that the endpoint connects to. Destinations
are defined by channels and adapters; adapters connect
directly with the server object or service. The LCDS message
broker routes requests arriving at endpoints to the appropriate
service destination.

The following diagram illustrates how client channels, server
endpoints and destinations are related.

Installation
You can download the current version of LCDS from
http://www.adobe.com/products/livecycle/dataservices/. You
need to sign in with your Adobe ID to get the download. IDs
are free, so register if you need one. The download page
displays a serial number which you need to save in order to
install the product.

Unlike BlazeDS, LCDS has an installation script. By default,
LCDS installs into C:\Program Files\Adobe\lcds on Windows.

Channels and Endpoints
Data moves between client and server in a manner prescribed
by the data services configuration. Both the client and the

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.adobe.com/products/livecycle/dataservices/

DZone, Inc. | www.dzone.com

2
LiveCycle Data Services ES

The message broker uses the last token of the URL to route the
incoming request to the appropriate service for handling. The
preceding diagram shows two endpoints, with routing tokens
amf and amfstreaming. Endpoints are URLs that are responded
to by the LCDS message broker.

An example of a server endpoint is
http://localhost:8080/test/messagebroker/amf. The message
broker uses the last token of the URL to route the incoming
request to the appropriate service for handling. The preceding
diagram shows two endpoints, with routing tokens amf and
amfstreaming. The message broker is normally configured
to pass requests arriving at these endpoints to services
that handle remote procedure calls (RPCs) and streaming,
respectively.

LCDS scales to orders of magnitude more clients per CPU
than BlazeDS because it offers NIO-based server endpoints in
addition to the servlet-based endpoints that BlazeDS offers.
You can take a web application developed using BlazeDS and
get much greater throughput simply by installing LCDS in
place of BlazeDS, and editing services-config.xml to use NIO
endpoints.

At a minimum, client channels must have an id, a class and
an endpoint. The id allows the channel to be referenced. The
class defines the scope of the channel’s potential behavior.
The endpoint defines the URL for a remote client to access
the channel. Channels have default properties, which can be
overridden. The available properties vary for each class of
channel. The client-side channel classes are all defined in the
mx.messaging.channels ActionScript package. The server-side
endpoint classes are all defined in the
flex.messaging.endpoints Java package.

The following server-side endpoints are all implemented
using servlet-based blocking I/O, requiring one thread per
connection. This table has many entries – defining a channel
gets really confusing when all the options are considered.
The free Flex Data Services Channel Designer described next,
is intended to clarify the options and write the XML for the
channels that your application needs.

Servlet-based endpoints and their client channels

Binary AMF data AMFChannel / AMFEndpoint

Used for RPC when default properties are not overridden; used for
messaging and data management service when polling properties are
configured. Transmits data in the binary AMF format. Usually uses the http
protocol.

SecureAMFChannel / SecureAMFEndpoint

Secure subclasses of AMFChannel / AMFEndpoint. Uses the https
protocol.

StreamingAMFChannel / StreamingAMFEndpoint

Uses the HTTP 1.1 ‘chunked’ server push model instead of polling for data
from the server. An internal HTTP connection to the server is held open
so the server can stream data to the client with little overhead. Cannot be
compressed or proxied.

SecureStreamingAMFChannel / SecureStreamingAMFEndpoint

Subclasses of StreamingAMFChannel / StreamingAMFEndpoint
which use the https protocol.

Plain Text data
(AMFX - an XML
Format)

HTTPChannel / HTTPEndpoint

Like AMFChannel, but transmits data in plain text. Not recommended for
production sites.

SecureHTTPChannel / SecureHTTPEndpoint

Like HTTPChannel / AMFEndpoint but uses https protocol.

Plain Text data
(AMFX - an XML
Format)

StreamingHTTPChannel / StreamingHTTPEndpoint

Like StreamingAMFChannel / StreamingAMFEndpoint but
transmits data in plain text instead of the binary AMF format. Not
recommended for production sites.

SecureStreamingHTTPChannel /
SecureStreamingHTTPEndpoint

Like SecureStreamingAMFChannel /
SecureStreamingAMFEndpoint, but transmits data in plain text.

All of the above servlet-based endpoints have Java NIO-based
counterparts, as shown in the next table. The RTMP protocol
is also NIO-based. All of the NIO-based server endpoints
support many threads per connection because they do not
use blocking I/O calls. Unlike HTTP-based protocols, RTMP
is full-duplex, requiring half as many channels for two-way
traffic. RTMP also immediately informs the server of client
disconnects, allowing the server to release resources without
waiting for the client to time out. BlazeDS does not support
NIO-based server endpoints, just LCDS.

Notice that server endpoints might be implemented using
NIO or blocking I/O, however the client channel is the same
regardless of the type of server endpoint – with the exception
that RTMP channels must use matching RTMP endpoints.

NIO-based server-side endpoints and their client channels

Binary AMF data AMFChannel / NIOAMFEndpoint

Used for RPC when default properties are not overridden; used for
messaging and data management service when properties are configured.
Transmits data in the binary AMF format. Usually uses the http protocol.

SecureAMFChannel / SecureNIOAMFEndpoint

Secure subclasses of AMFChannel / NIOAMFEndpoint. Uses the https
protocol.

StreamingAMFChannel / StreamingNIOAMFEndpoint

Uses the HTTP 1.1 ‘chunked’ server push model instead of polling for data
from the server. An internal HTTP connection to the server is held open
so the server can stream data to the client with little overhead. Cannot be
compressed or proxied.

SecureStreamingAMFChannel /
SecureStreamingNIOAMFEndpoint

Subclass of StreamingAMFChannel which uses the https protocol.

RTMPChannel / RTMPEndpoint

Used for messaging; does not route well. Uses the rtmp protocol, which
provides best support for real-time applications.

SecureRTMPChannel / SecureRTMPEndpoint

Used for secure messaging; does not route well. Uses the rtmps protocol.

Plain Text data
(AMFX - an XML
Format)

HTTPChannel / NIOHTTPEndpoint

Like AMFChannel / NIOAMFEndpoint, but transmits data in plain
text. Not recommended for production sites.

SecureHTTPChannel / SecureNIOHTTPEndpoint

Like HTTPChannel but uses https protocol.

StreamingHTTPChannel / StreamingNIOHTTPEndpoint

Like StreamingAMFChannel but transmits data in plain text instead of
the binary AMF format. Not recommended for production sites.

SecureStreamingHTTPChannel /
SecureStreamingNIOHTTPEndpoint

Like SecureStreamingAMFChannel /
SecureStreamingNIOAMFEndpoint, but transmits data in plain text.

Channel Sets
Channel definitions are combined into channel sets, and these
are assigned to destinations; default channel sets can also be
defined for each service class and the overall web application.
The service classes common to BlazeDS and LCDS are
RemotingService, MessageService and HTTPProxyService.
LCDS adds the DataService. Channel sets provide for graceful
and transparent fallback should a channel not be available for
a specific client. Each time a client connects to a destination
on a server, the destination’s channels are tried, in the order

http://www.dzone.com
http://www.refcardz.com
http://localhost:8080/test/messagebroker/amf
http://www.adobe.com/products/livecycle/dataservices/

DZone, Inc. | www.dzone.com

3
LiveCycle Data Services ES

listed in the channels element. Should the first channel specify
a protocol or endpoint that is not available, or fails during
usage, the other channels are tried in sequence.

If the destination specifies a channels element, only those
channels are tried when a client connects to that destination.
Service classes can each have their own default channel set,
defined by the service’s default-channels element; if specified,
those channels are tried in sequence if the service has not
specified a channels element. An application-level default
channel set may be specified in the top-level default-channels
element, and its channels are tried in sequence if the service
class and the destination do not specify default-channels or
channels elements, respectively.

For example, messaging applications need an ongoing dialog,
such as provided by polling and streaming protocols. All of the
channel types described in the previous section could work, if
they were suitably configured. For the sake of this example,
let us assume that a messaging application needs a secure
transport. One might opt to support the following channel
set. This ChannelSet falls back from a secure RTMP channel
to a secure NIO streaming channel, then a secure streaming
AMF channel, then to a secure AMF channel with polling
enabled to work around network components such as web
server connectors, HTTP proxies, or reverse proxies that could
buffer chunked responses incorrectly. Recall that a channel
also defines an associated server endpoint; the table shows the
channel and endpoint classes for each channel in the channel
set.

SecureRTMPChannel /
SecureRTMPEndpoint

Provides best performance; guarantees the order of
messages; scales well. RTMP is bidirectional, so half
as many channels are required compared to HTTP-
based channels. RTMP also immediately notifies the
server when a client disconnects, so resources can be
released. Firewalls or proxies might block RTMP.

SecureStreamingAMFChannel /
SecureStreamingNIOAMFEndpoint

Good performance; scales well; difficult to configure if
you want to use the same port as HTTP. Nonstandard
ports might cause firewall or proxies to block it.

SecureStreamingAMFChannel /
SecureStreamingAMFEndpoint

Routes well; good performance; does not scale well.

SecureAMFChannel /
SecureAMFEndpoint configured for
piggybacking

Routes well; moderate performance; does not scale
well.

Channel Designer
LCDS provides sample channel and endpoint definitions for
common configurations in
{LCDS}/resources/config/services-config.xml.

The free Flex Data Services Channel Designer provided with
the book is a handy tool for visually designing client channels
and server endpoints. The Channel Designer is intended to
clarify the options and write the XML for the channels that your
application needs.

Java to ActionScript Type Mapping
Data exchanged between Flex client and Java server must be
converted between the ActionScript representation and the
Java representation. Regardless of the transport protocol used,
the same rules are used for the data conversion. The following
two tables describe the general rules for the conversions.

Java Type ActionScript (AMF3/AMFX)

java.lang.String String

java.lang.Boolean Boolean

java.lang.Integer
java.lang.Short
java.lang.Byte

int

java.lang.Double
java.lang.Long
java.lang.Float

Number

java.util.Calendar
java.util.Date

Date

java.lang.Character
java.lang.Character[]

String

java.lang.Byte[] ByteArray

java.util.Collection ArrayCollection

java.lang.Object[] Array

java.util.Map
java.util.Dictionary

Object

java.lang.Object Typed Object

null null

ActionScript to Java Type Mappings
ActionScript type
(AMF3)

Java Interface Supported Java type binding

Array (dense) java.util.List java.util.Collection,
Object[] (native array)
If the type is an interface, it is
mapped to the following interface
implementations
 • List becomes ArrayList
 • SortedSet becomes TreeSet
 • Set becomes HashSet
 • Collection becomes
 ArrayList
A new instance of a custom Collection
implementation is bound to that type.

Array (sparse) java.util.Map java.util.Collection,
native array

String containing
“true” or “false”

java.lang.Boolean Boolean, boolean, String

flash.utils.ByteArray byte []

flash.utils.
IExternalizable

java.
io.Externalizable

Date
java.util.Date
(formatted for Coordinated
Universal Time (UTC))

java.util.Date, java.
util.Calendar, java.sql.
Timestamp, java.sql.Time,
java.sql.Date

int/uint java.lang.Integer java.lang.Byte, java.
lang.Double, java.lang.
Float, java.lang.Long,
java.lang.Short, java.
math.BigDecimal, String,
primitive types of byte,
double, float, long, and
short

null null primitives

Number java.lang.Double java.lang.Byte, java.lang.
Double, java.lang.Float,
java.lang.Long, java.
lang.Short, java.math.
BigDecimal, String, 0 (zero) if
null is sent, primitive types of byte,
double, float, long, and short

Object (generic) java.util.Map If a Map interface is specified, Flex
Data Services creates a new java.
util.HashMap for java.util.Map and
a new java.util.TreeMap for java.util.
SortedMap.

String java.lang.String java.lang.String, java.
lang.Boolean, java.lang.
Number

typed Object typed Object when you use
[RemoteClass]

typed Object

undefined null null for Object, default values for
primitives

XML org.w3c.dom.Document org.w3c.dom.Document

http://www.dzone.com
http://www.refcardz.com
http://www.adobe.com/products/livecycle/dataservices/

DZone, Inc. | www.dzone.com

4
LiveCycle Data Services ES

 9. Ensure that Publish module contexts to separate XML
 files is selected.

(Optional) If you are not using dynamically defined channels
and destinations and are instead defining them in the WEB-
INF/flex XML files:

 1. Copy {LCDS}/resources/config/* to WebContent/WEB-INF/flex
 and edit as required. You may also want to include these
 files so that you can customize the LCDS configuration.

 2. Add a Flex Compiler argument pointing at the XML file.
 To do this, open the Properties / Flex Compiler dialog
 and add the following to Additional compiler
 arguments:

-services ../WebContent/WEB-INF/flex/services-config.xml

Sample Project
I made a Flex Builder project using the source code for the
Data Management Service (DMS) Test Drive sample program
provided with LCDS, and added all the dependencies.
You should be able to import this project into Eclipse
Ganymede SR2 with the Flex Builder Plugin and compile it
without any editing. To import the DMS Test Drive Eclipse
project:

 1. Start Eclipse

 2. Select File / Import… / General / Existing Projects into
 Workspace

 3. Browse to the directory where you unzipped the Test
 Drive project into.

 4. Press TAB and notice that the project is now listed and
 selected.

 5. Click on the Finish button.

The LCDS libraries were not written using Java generics. I
converted as much of the Java source code as possible to
use generics. Subclasses of the LCDS types could not be
genericized, so I added the @SuppressWarnings(“unchecked”)
annotation where required. I also added @Override where
required. No other changes were made to Adobe’s source
code other than cleaning up some formatting issues and
removing unused cruft. I simplified the data services
configuration files in WebContent/WEB-INF/flex so that
undefined references for the other sample programs delivered
with LCDS were removed.

Before you can run the project, the web application must
be associated with a Tomcat instance. To do that, open the
Servers panel at the bottom of the Java EE perspective and
right-click on a Tomcat instance. Select the Add and Remove
Projects… menu item, then press the Add All >> button.

Next you need to start the HSQLDB database. For Windows,
double-click on {LCDS}/sampledb/startdb.bat; for Linux and
Mac, double-click on {LCDS}/sampledb/startdb.sh.

You can now start the web application by clicking on the server
instance and then clicking on bug icon at the right side of the
Servers panel. By default, the web application is automatically
built and deployed prior to starting Tomcat. Point your
browser to http://localhost:8080/dmsTestdrive/dmsTestdrive.
html in two different web browser windows. Here is what you
should see:

Eclipse Projects
Eclipse WST is used to develop LCDS server-side projects. You
can create integrated Flex / Java Eclipse projects or separate
Flex and Java projects. Integrated projects are much easier to
work with. Use the Flex Builder plugin with Eclipse Ganymede
SR2 for best results. This project also requires Tomcat 6 to
be installed. You can use the version of Tomcat provided with
LCDS, but that has been tweaked to make the demo programs
work. Just so there is no magic, download a fresh copy of
Tomcat 6 core – we will refer to the directory that you place
Tomcat into as {CATALINA_HOME}.

The following diagram shows how client-side Flex ActionScript
and MXML source code are built into a SWF with an HTML
wrapper, and then deployed to a Tomcat instance. The server-
side Java code is compiled into a staging area called WebContent,
which is also deployed to the Tomcat instance.

With an integrated Flex/Java project you can debug both client
and server simultaneously. It is cool to see the client and server
debug stacks next to each other.

You can start make a combined Flex / Java Eclipse project as
follows:

 1. In Eclipse, press Control / Command N to open the New
 Wizard.

 2. Open the Flex Builder folder, select Flex Project and press
 the Next > button.

 3. Give your project a name and change the Application
 server type to J2EE. Uncheck Use remote object access
 service. Leave the other options at their default settings.
 Press the Next > button.

 4. Select Apache Tomcat 6.0 as the value for the Target
 runtime. Change the Context root to a single short word.
 Leave the other options at their default settings. Press the
 Finish button.

 5. Copy {LCDS}/tomcat/webapps/lcds/WEB-INF/web.xml to
 WebContent/WEB-INF.

 6.Copy {LCDS}/resources/lib/* to WebContent/WEB-INF/lib

 7. Ensure that Publish module contexts to separate XML
 files is selected.

 8. Select the Servers tab at the bottom of the screen and
 double-click on the server you just created.

http://www.dzone.com
http://www.refcardz.com
http://localhost:8080/dmsTestdrive/dmsTestdrive
http://www.adobe.com/products/livecycle/dataservices/

DZone, Inc. | www.dzone.com

5
LiveCycle Data Services ES

that implements CRUD operations. Several default properties
are implied, including auto-sync-enabled (set true), which
automatically propagates changes between client and server in
both directions.

The public methods found in ProductAssembler.java are:

public Collection fill(List fillArgs);
public Object getItem(Map identity);
public void createItem(Object item);
public void updateItem(Object newVersion, Object prevVersion,
List changes);
public void deleteItem(Object item);

LCDS creates ActionScript equivalents for each of the public
methods in ProductAssembler. When called from ActionScript,
the fill() method populates a client-side Flex ArrayCollection
with data items from the server. The server-side fill() method
calls ProductService.getProduct(), which runs a JDBC query
and the result is returned to the client. ProductService
references ConnectionHelper to make the JDBC connections,
and throws DAOException if a problem occurs. The other
methods in ProductAssembler.java are not used by this simple
application, because it does not fully implement all CRUD
functionality.

Shifting our attention to the Flex client for a moment, the
following line in dmsTestdrive.mxml specifies that the inventory
destination should be used by a DataService called ds to
transport CRUD data by the following line:

<mx:DataService id=”ds” destination=”inventory” />

The next line defines an ArrayCollection called products to
act as a client-side data buffer for the data streaming between
client and server:

<mx:ArrayCollection id=”products” />

The next line defines an anonymous ActionScript variable of
type Product. The variable is anonymous because its value is
unimportant. The side effect of this line is that the ActionScript
to Java mapping of the Product classes defined in Product.as
and Product.java is incorporated into the Flex program:

<local:Product />

The data streaming between client and server is of type
Product. On the client, Product is defined as follows:

package {
 [Managed]
 [RemoteClass(alias=”flex.samples.product.Product”)]
 public class Product {
 public var productId:int;
 public var name:String;
 public var description:String;
 public var image:String;
 public var category:String;
 public var price:Number;
 public var qtyInStock:int;
 }
}

LiveCycle DS supports the concept of managed classes for
projects that must transmit complex trees of hierarchical data
between subscribed clients and a server. The [Managed] class-
level annotation signifies that the entire object graph should
not be retransmitted to all subscribers when a property of a
subordinate object in the graph changes value. Instead, the
responsibility for keeping the remote object in sync is the
responsibility of the subordinate class. In this case, all of the
public properties are primitives, so [Managed] is not really
doing anything in this regard. The annotation is required for

If you have problems, increase LCDS logging verbosity by
editing WebContent/WEB-INF/flex/services-config.xml and
changing the level from “Warn” to “Debug” in the following
line, then restart the server:

<target class=”flex.messaging.log.ConsoleTarget” level=”Warn”>

If you really need more logging verbosity, add the following
filter pattern and restart the server:

<pattern>*</pattern>

Click on the Get Data button in each browser window.
Double-click on a cell in one browser, change a value and
notice that the value is propagated to the application running
in the other browser. Because this simple application has no
form validation, an error will be thrown if you enter a non-
numeric value into a cell.

How the program works
The LCDS configuration is usually the best place to start
when you want to understand how a program built with LCDS
works. WebContent/WEB-INF/flex/services-config.xml defines
a channel called my-rtmp, and within the channel definition,
an endpoint that uses the RTMP protocol to push messages
between client and server:

<channel-definition id=”my-rtmp” class=”mx.messaging.channels.
RTMPChannel”>
 <endpoint url=”rtmp://{server.name}:2037” class=”flex.
messaging.endpoints.RTMPEndpoint”/>
 <properties>
 <idle-timeout-minutes>20</idle-timeout-minutes>
 </properties>
</channel-definition>

The data-management-config.xml file contains the following
definition for the default channels by which the client and
server communicate using data management services:

<default-channels>
 <channel ref=”my-rtmp” />
</default-channels>

The same configuration file also defines a destination called
inventory.

<destination id=”inventory”>
 <properties>
 <use-transactions>false</use-transactions>
 <source>flex.samples.product.ProductAssembler</source>
 <scope>application</scope>
 <metadata>
 <identity property=”productId”/>
 </metadata>
 <network>
 <paging enabled=”false” pageSize=”10” />
 </network>
 </properties>
</destination>

The destination’s source property identifies the server-side class

http://www.dzone.com
http://www.refcardz.com
http://www.adobe.com/products/livecycle/dataservices/

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Agile Adoption Part 3
Blaze DS
FlexMonkey
Virtualization
Domain Driven Design
Java Performance Tuning
GlassFish ESB

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
LiveCycle Data Services ES

RECOMMENDED BOOKABOUT THE AUTHORS

ISBN-13: 978-1-934238-88-2
ISBN-10: 1-934238-88-0

9 781934 238882

50795

Mike Slinn is a software contractor specializing in Adobe Flex and Java.
With over three decades of hands-on experience, Mike focuses on value
creation, including technology, methodology and business drivers. He
has provided litigation support for contractual and patent disputes and
US Federal court has recognized him as a software expert. A graduate
of Carleton University in Ottawa, Canada, Mike received a B. Eng. in
Electronics in 1979 and became P. Eng. in B.C. in 1983. Mike has lived in
Silicon Valley since 1996, and now resides in Half Moon Bay, CA with his
wife and their ever-demanding parrot.

Data Management Services to manage the data.
The [RemoteClass] class-level annotation provides strong
typing information for serialization and deserialization
operations. Without the annotation, LCDS does not have
knowledge of the public properties of the class, and the
update() method would throw an error. The mapped Java class
has the same public properties as the equivalent ActionScript
class.

There is one more important line in dmsTestdrive.mxml, which
defines the Flex client’s button as follows:

<mx:Button label=”Get Data” click=”ds.fill(products)” />

The click handler, defined inline in ActionScript, causes the
client-side version of the fill() method to be invoked when
the user clicks on the button. The ArrayCollection called
products is passed to the fill() method so it can be used as
a data transfer buffer. This method call is forwarded to the
server, where it is executed by the Java version of the fill()
method, defined in ProductAssembler. When the server returns
the data to the Flex client, the DataGrid is automatically
updated by the ArrayCollection because of data binding,
denoted by curly braces:

<mx:DataGrid dataProvider=”{products}” editable=”true”
width=”100%” height=”100%”>

You can see this in action by placing breakpoints on update()
method in ProductService.java.

Licensing
LCDS is available under several licenses, including a free
license. The software provided is the same for all licenses.
The LCDS Trial Developer License is a non-expiring trial
for development on one or more CPUs. This version lets
developers create RIAs with rich data services capabilities. If
your application requires more than one CPU with two cores
for production deployment, or if you want licenses for Q/A and
staging, contact your Adobe sales representative or channel
partner to purchase the appropriate runtime license.
The LCDS Single-CPU License lets you run an application in a
commercial, production environment on a single machine with
one CPU with up to two cores. This version is ideal for use in
small to medium-scale production applications and proof-of-
concept projects.

Q/A and staging server licenses are available separately and
are not free.

Flex Data Services, Hibernate and Eclipse is intended for
experienced architects and programmers who would like
to design and implement non-trivial applications using the
Adobe Flash Platform using a Java EE back end. This book
explains how to design, build and test the Flex Data Services
and the server-side Java stack of an application built with the
Adobe Flash Platform.

Resources
Flex Data Services Channel Designer LCDS Developer Guide
Flex Builder Plugin LCDS ASDoc
LCDS Home Page LCDS Javadoc
LCDS Download Adobe® Flash® Platform

BUY NOW
http://www.slinnbooks.com/books/serverSide/index.shtml

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.adobe.com/flashplatform/
http://www.slinnbooks.com/FDSCD/
http://livedocs.adobe.com/livecycle/8.2/programLC/programmer/lcds/
http://www.adobe.com/cfusion/entitlement/index.cfm?e=flexbuilder3
http://livedocs.adobe.com/livecycle/8.2/programLC/common/langref/index.html
http://www.adobe.com/products/livecycle/dataservices/
LCDS Javadoc: http://livedocs.adobe.com/livecycle/es/sdkHelp/programmer/lcdsjavadoc/
https://www.adobe.com/cfusion/entitlement/index.cfm?e=lcds26_td
http://www.adobe.com/flashplatform/
http://www.slinnbooks.com/books/serverSide/index.shtml
http://www.adobe.com/products/livecycle/dataservices/

