

DZone, Inc. | www.dzone.com

By Gemba Systems

About Improving Software Quality

A
g

ile
 A

d
o

p
ti

o
n

:
Im

p
ro

vi
n

g
 S

o
ft

w
ar

e
 Q

u
al

it
y

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#74

Agile Adoption:
Improving Software Quality

CONTENTS INCLUDE:
n	 About Improving Software Quality
n	 Strategies for Improving Quality
n	 The Practices
n	 How to adopt Agile Practices successfully
n	 What Next?
n	 References and more...

Faster, better, cheaper. That’s what we must do to survive.
The Time to Market Refcard addresses faster, the Reduce Cost
Refcard addresses cheaper, and this Refcard addresses better.
This is about improving the quality of your software; that means
reducing bugs and improving design.

The vast majority of software projects suffer from a steady
degradation of design quality and it becomes more and more
difficult to maintain the software with the same level of quality.
As the software ages it calcifies and becomes harder and
harder to maintain. In some cases it becomes too expensive
to maintain and so it the software is put to rest and rewritten.
In others, the software is released with a steadily increasing
number of defects. Both of these common situations are
deeply unsatisfying, but there is another way.

Many of the practices from the Agile world stop the
degradation of software quality and turn the trend around. It
is not unheard of for teams to have maintained a zero-defect
status for months and years. Design and architecture have
become malleable; they now emerge and transform over time.
In fact, Gartner now recommends an emergent approach to
enterprise architecture
(http://www.gartner.com/it/page.jsp?id=1124112).

Figure 1 Practices that help improve the quality that your
software development team(s) builds.

You will be able to use this refcard to get a 50,000 ft view of
what will be involved to incrementally improve the quality of
your software.

Strategies for improving quality

The Agile community has been fertile ground for quality
improvements in software development.

There are four major strategies that can help you improve the
quality of your software:

Reduce Defects
Reducing defects is the first thing that comes to
mind when examining the quality of software. A
low defect count is often synonymous with high
quality software. Defects are also the most visible
sign of quality problems.

Improve Design
Design is the model that a development team
builds and maintains. High quality design makes
for an application that is easy to understand and
change as new requirements are discovered.

Traditionally, the team has one shot to get the design right and
then it degrades over time as it is patched over time. Agile
practices, however, give an alternative; using practices like test
driven development and refactoring teams are now able to
continuously improve the design of their system.

Theory Building
One way to look at software development is
‘theory building’. That is, programs are theories
– models of the world mapped onto software – in
the head of the individuals of the development
team. Great teams have a shared understanding

of how the software system represents the world. Therefore

Figure 1: Improve Quality Practices

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://pm.versionone.com/getatrial_getatshirt.html
http://pm.versionone.com/getatrial_getatshirt.html

DZone, Inc. | www.dzone.com

2
Agile Adoption: Improving Software Quality

they know where to modify the code when a requirement
change occurs, they know exactly where to go hunting for a
bug that has been found, and they communicate well with each
other about the world and the software.

Conversely, a team that does not have a shared ‘theory’
makes communication mistakes all the time. The customer
may say something that the business analyst misunderstands
because she has a different worldview. She may, in turn, have
a different understanding than the developers, so the software
ends up addressing a different problem or, after several trials,
errors and frustrations, the right problem but very awkwardly.
Software where the theory of the team does not match, or even
worse, the theory is now lost because the original software
team is long-gone, degrades in quality as design changes are
made that don’t fit with the theory, or even just as bad, cut &
paste work is done because the theory is not understood.
Building a shared theory of the world-to-software-mapping is a
human process that is best done face-to-face by trial and error
with ample time.

Build Less
It has been shown that we build many more
features than are actually used. In fact, we can
see in Figure 2 that most functionality we do
build is never used. So, one very effective way to
improve the quality of our software is to build less

of it. It makes it easier to understand, gives us more time to
focus on the important parts that are actually used, and almost
always has fewer defects.

The four strategies above: maintain the theory of the code,
build less, building less and improving the design are not
independent.

Maintaining the theory of the code makes it easier to modify
the design because of a greater understanding of the existing
design and also directly affects the number of defects and the
difficulty in fixing those defects once found. Improving the
design also makes it easier address defects by being inherently
easier to change. And building less code makes it easier to
understand and communicate the theory of the code and is
directly related to the number of defects in the system.

Figure 2: Functionality Usage, only about 20% of functionality we build is used
often or always. More than 60% of all functionality built in software is rarely or
never used! One way to improve the quality of software is to write less code
which makes it easier to understand and maintain. There are several Agile
practices that help you get to that point.

The Practices

19 %
Rarely
Used

45 %
Never
Used

16 %
Sometimes

Used

13 %
Often Used

7 %
Always
Used

Functionality Usage

Test Driven Development

Test Driven Development is an effective cluster of practices that brings
automated developer tests to the forefront of development and
subordinates the design to testability.

This form of development produces loosely-coupled designs which are
easy to maintain, greatly reduce defect counts, and enable building and
maintaining only what’s needed. Finally, well-written tests act as a type
of executable requirements that help keep the theory of the code from
decaying.

You are on a development team practicing automated developer tests,
refactoring, and simple design. That’s it, because this is one of those
things that is applicable to all types of development projects. The
context is especially a match if the technology used is new to a large part
of the team.

Test Driven Requirements

Test Driven Requirements call for the customer to provide requirements
in an unambiguous format – usually an acceptance test – at the
beginning of the iteration.

Test driven requirements drive the architecture of the system much like
test driven development drives the design. They also help developers
only build what is needed and maintain the theory of the code as up-to-
date executable requirements.

Test driven requirements needs a customer who is willing and able to
participate more fully as part of the development team. Your team will
also be willing to make difficult changes to the code to accommodate
for testing. Finally, you are willing to pay the steep price of the learning
curve for this practice (which is well worth it).

Definition

Definition

Definition

Definition Increase Quality Context

Figure 3: Strategy Dependencies

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/getatrial_getatshirt.html

DZone, Inc. | www.dzone.com

3
Agile Adoption: Improving Software Quality

Pair Programming

Two developers work together at the same computer to build a feature.
One developer is the driver, and the other is the navigator; the driver is
at the keyboard building the task-at-hand, and the navigator is thinking
forward to design implications and reviewing the work being done. Pair
programming is sometimes described as a continuous form of peer review.

This practice improves the design and reduces the defects because two
people working together to solve the same problem almost always do
a better job even if they are mismatched in experience and talent. Also,
because they build the software together, the theory of the code is
communicated to more than one person.

Your are on a development team where quality is near the top in business
values or you are going through a period of adopting some of the more
difficult practices such as test driven development. You have the ability to
trade off some development speed for quality.

The remaining practices also help improve the quality software
development. Because of the limited size of the Refcard, we
will only summarize them below.

Continuous Integration Continuous integration reduces the defects in a software system
by catching errors early and often and enabling a stop-and-fix
process. It leverages both automated acceptance tests and
automated developer tests to give frequent feedback to the
team and prompts removing these defects promptly.

Collective Code Ownership Collective code ownership means that members of a
development team have the right and responsibility to modify
any part of the code. They get more exposure to the entire
code base and are able to remove defects wherever they
are found and incrementally modify the design of the system
accordingly.

Evolutionary Design Evolutionary design is the simple design practice (below) done
continuously. Teams start off with a simple design and change
that design only when a new requirement cannot be met by the
existing design.

Iteration An iteration is a time-box where the team builds what is on
the backlog and is a potential release and therefore enables
building less and forces regularly removing defects to reach the
agreed upon done state.

Release Often Releasing your software to your end customers as often as you
can without inconveniencing them forces you to constantly have
your software in releasable quality and allows you to build in
smaller increments and get feedback before too much of an
investment is made.

Simple Design If a decision between coding a design for today’s requirements
and a general design to accommodate for tomorrow’s
requirements needs to be made, the former is a simple design.
Simple design meets the requirements for the current iteration
and no more. In fact, Gartner now recommends an emergent
approach to enterprise architecture
(http://www.gartner.com/it/page.jsp?id=1124112).

Stand Up Meeting Stand up meetings are daily meetings for the team to synch-up
and share progress and impediments daily. This helps keep
the entire team aware of what is being done and where in the
system.

Done State

The Done State practice is a definition that a team agrees upon to
precisely describe what must take place for a requirement to be
considered complete.

Defining and adhering to a done state directly affects the quality of
the software by reducing defects. A properly defined done state is as
close as possible to deployable software which means that defects are
removed to achieve the done state. There is no partial credit with done
state, either you are 100% done or you are 0% done; this mindset is
crucial to successfully implementing this practice.

You are on a development team performing iterations; this implies that
you need specific, measurable goals for requirements to be met at the
end. Alternatively, you may not be performing iterations and have a high
rate of defects. You can agree on a done state to be met for each and
every requirement and still gain the benefits of improved quality.

Automated Developer Tests

Automated developer tests are a set of tests that are written and
maintained by developers to reduce the cost of finding and fixing
defects—thereby improving code quality—and to enable the change of
the design as requirements are addressed incrementally.

Automated developer create a safety-net of tests that catch bugs early
and enable the incremental improvement of design. Beware, however,
that automated developer tests take time to build and require discipline.

You are on a development team that has decided to adopt iterations and
simple design and will need to evolve your design as new requirements
are taken into consideration. Or you are on a distributed team. The lack
of both face-to-face communication and constant feedback is causing an
increase in bugs and a slowdown in development.

Automated Acceptance Tests

Automated acceptance tests are tests written at the beginning of the
iteration that answer the question: “What will this requirement look
like when it is done?” This means that you start with failing tests at the
beginning of each iteration and a requirement is only done when that
test passes.

This practice builds a regression suite of tests in an incremental manner
and catches errors, miscommunications, and ambiguities very early
on. This, in turn, reduces the amount of work that is thrown away and
therefore enables building less. The tests also catch bugs and act as
a safety-net during change. Finally, by making the codebase testable,
you are implicitly reducing the coupling which often result in improved
design.

You are on a development project with an onsite customer who is willing
and able to participate more fully as part of the development team. Your
team is also willing to make difficult changes to any existing code. You
are willing to pay the price of a steep learning curve.

Refactoring

The practice of Refactoring code changes the structure (i.e., the design) of
the code while maintaining its behavior.

Incremental improvement of design is the name of the game with
refactoring; continuous refactoring keeps the design from degrading over
time, ensuring that the code is easy to understand, maintain, and change.

You are on a development team that is practicing automated developer
tests. You are currently working on a requirement that is not well-
supported by the current design. Or you may have just completed a
task (with its tests of course) and want to change the design for a cleaner
solution before checking in your code to the source repository.

Definition

Definition

Definition

Definition

Definition

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/getatrial_getatshirt.html

DZone, Inc. | www.dzone.com

4
Agile Adoption: Improving Software Quality

Does this
practice’s context

match reality?

Learn about
practice and

adopt

Evaluate
progress towards

business goal

Not satisfactory
Making progress

Get next practice
from top of list

Set new specific
business goal

Figure 4: Steps for Choosing and Implementing Practices

For improving quality, the set of practices that will give you the
most value are those nearest the top of Figure 1. Four of the
practices are independent: done state, automated developer
tests, automated acceptance tests, and pair programming.
Consider adopting pair programming as a support practice to
the other three practices, then take them on one or two at a
time. Next on your list (or maybe even concurrent) to consider
should be done state and automated developer tests, and then
finally automated acceptance test (probably the most difficult
of this set to adopt correctly).

The Mindset
Be Disciplined, Confront Issues, Respond Positively to Pain
The practices involved in improving the quality to market
are some of the most difficult to do from the body of Agile
practices. Things will get harder before they get easier. The
first rule is to expect the difficulty, be patient, and don’t
stop the practices just because they uncover significant
problems; be disciplined in your practice. Once you start
a practice give it a chance because you will slow down and
confront frustrations before speeding up. For example, pair
programming is frequently seen as a waste of resources and
uncomfortable to many developers who are used to (and enjoy)
working alone. Consider giving it a chance by agreeing as a
team to practice pair programming for a couple of months
before deciding whether it is worth adopting permanently.

Figure 5: Learning Curve

Figure 5 The J-curve is what to expect when adopting new
practices. First things will be hard and you will be less
productive; stay with it and it will improve.

Confront issues when they come up instead of stopping a
practice because it is ‘too painful’. Deal with pain differently
than you are used to; instead of discontinuing something
painful, examine it and find the source. Often Agile practices
will uncover problems that have always been there but have
not been felt. Feeling the pain is a chance to correct a
problem and improve towards your goal of increased quality.
A good example of this happens when teams start adopting
done states for the first time. There is no partial credit, either
you are 100% done or 0% done. A team that adopts this for
the first time frequently works on multiple features at a time
and at the end of the iteration they have not fully completed
any of the features. Therefore they are 0% done with all of
their tasks. This is discouraging and painful and a common
response is to stop doing the practice instead of examining
the pain and looking for alternatives to correct the problems in
the next iteration.

Get Good at Small Steps
Small steps are going to save your life with these practices
because many are completely new ways of doing things that
may slow you down and frustrate you as you are learning
them. Take one practice, do it well, and do it regularly. You
might consider pair programming along with any and all of
the practices to make it easier and keep you on-track. How
do you know you are doing a practice well? You get the value
that you originally hoped to get – i.e. the quality of your
software noticeably increases. You also have confronted pains
and learned from them. If a practice is completely easy and
comfortable from the get-go, or has not noticeably improved
the quality of your work then you probably are not done yet.

Be Prepared to “Suspend Your Disbelief”
Much of what you will be doing will not make immediate sense.
It will feel that you are doing things that are more trouble than
they are worth. For example – writing your tests first, before
writing your code in the automated developer tests practice
is non-intuitive. What can you possibly gain by doing things
backward? Those who have successfully adopted this practice
have “suspended their disbelief” and done it anyway. After
experientially learning the practice they then made their

How to adopt agile practices successfully

To successfully adopt Agile practices let’s start by answering
the question “which ones first?” Once we have a general
idea of how to choose the first practices there are other
considerations. Then, once you’ve chosen the first practices
that best fit your environment, you and your team(s) will need
to be aware of the mindset you’ll need to get the most out of
the practices you choose.

Choosing a Practice to Adopt
Choosing a practice comes down to finding the highest
value practice that will fit into your context. Figure 4 contains
practices that help improve the quality that your software
development team(s) builds. Figure 4 will also guide you in
determining which practices are most effective in increasing
the quality of your software and will also give you an
understanding of the dependencies. The other parts in this
section discuss other ideas that can help you refine your
choices. Armed with this information:

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/getatrial_getatshirt.html

DZone, Inc. | www.dzone.com

5
Agile Adoption: Improving Software Quality

Novice

Advanced beginner

Competent

Proficient

Expert No longer needs rules; works intuitively.

Sees big picture; can begin addressing problems
for the organization , not just the team.

Has experience with real problems;
no longer struggles with basic rules.

Can start using advice in context .

Needs step-by-step instructions .

Figure 6: Dreyfus Model

Figure 6 The Drefyus Model for skill acquisition. One starts
as a novice and through experience and learning advances
towards expertise.

What Next?

This Refcard is a quick introduction to Agile practices that can
help you improve the quality of your software by reducing
defects, improving design, sharing the theory of the code and
building less. It includes an introduction of how to choose the
practices for your organizational context. It is only a starting
point. If you choose to embark on an Agile adoption initiative,
your next step is to educate yourself and get as much help as
you can afford. Books and user groups are a beginning. If you
can, find an expert to join your team(s). Remember, if you are
new to Agile, then you are a novice or advanced beginner and
are not capable of making an informed decision about tailoring
practices to your context.

judgments about its utility and usually kept doing it because
they saw the value.

Know What You Don’t Know
The Dreyfus Model of Skill Acquisition, is a useful way to
look at how we learn skills – such as learning Agile practices
necessary to improve quality. It is not the only model of
learning, but it is consistent, has been effective, and works
well for our purposes. This model states that there are levels
that one goes through as they learn a skill and that your level
for different skills can and will be different. Depending on the
level you are at, you have different needs and abilities. An
understanding of this model is not crucial to learning a skill;
after all, we’ve been learning long before this model existed.
However, being aware of this model can help us and our
team(s) learn effectively.

So let’s take a closer look at the different skill levels in the
Dreyfus Model:

References

Astels, David. 2003. Test-driven development: a practical guide. Upper
Saddle River, NJ: Prentice Hall.

x x

Avery, Christopher, Teamwork is an Individual Skill, San Francisco:
Berrett-Koehler Publishers, Inc., 2001

x

Bain, Scott L., 2008, Emergent Design, Boston, MA: Pearson Education x x x x

Beck, Kent. 2003. Test-driven development by example. Boston, MA:
Pearson Education.

x x

Beck, K. and Andres, C., Extreme Programming Explained: Embrace
Change (second edition), Boston: Addison-Wesley, 2005

x x x x x x x x

Cockburn, A., Agile Software Development: The Cooperative Game
(2nd Edition), Addison-Wesley Professional, 2006.

x

Cohn, M., Agile Estimating and Planning, Prentice Hall, 2005. x x

Crispin, L. and Gregory, J., Agile Testing: A Practical Guide for Testers
and Agile Teams

x

Duvall, Paul, Matyas, Steve, and Glover, Andrew. (2006). Continuous
Integration: Improving Software Quality and Reducing Risk. Boston:
Addison-Wesley.

x x x x x

Elssamadisy, A., Agile Adoption Patterns: A Roadmap to Organizational
Success, Boston: Pearson Education, 2008

x x x x x x x x x x x x x x

How can the Dreyfus Model help in an organization that is
adopting agile methods? First, we must realize that this model
is per skill, so we are not competent in everything. Secondly,
if Agile is new to us, which it probably is, then we are novices
or advanced beginners; we need to search for rules and not
break them until we have enough experience under our belts.
Moreover, since everything really does depend on context,
and we are not qualified to deal with context as novices
and advanced beginners, we had better get access to some
people who are experts or at least proficient to help guide us
in choosing the right agile practices for our particular context.
Finally, we’d better find it in ourselves to be humble and
know what we don’t know to keep from derailing the possible
benefits of this new method. And we need to be patient with
ourselves and with our colleagues. Learning new skills will take
time, and that is OK.

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/getatrial_getatshirt.html

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Blaze DS
Domain Driven Design
Virtualization
Java Performance Tuning
Expression Web
Spring Web Flow
BPEL

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Agile Adoption: Improving Software Quality

RECOMMENDED BookABOUT the Authors

ISBN-13: 978-1-934238-89-9
ISBN-10: 1-934238-89-9

9 781934 238899

50795

Fowler, Martin. 1999. Refactoring: Improving the Design of Existing
Code. Boston: Addison-Wesley.

x x x x

Feathers, Michael. 2005. Working effectively with legacy code. Upper
Saddle River, NJ: Prentice Hall.

x x x x x

Jeffries, Ron. “Running Tested Features.”
http://www.xprogramming.com/xpmag/jatRtsMetric.htm.

x x x

Jeffries, Ron. 2004. Extreme programming adventures in C#. Redmond,
WA: Microsoft Press.

x x x x x x

Kerievsky, Joshua. “Don’t Just Break Software, Make Software.” http://
www.industriallogic.com/papers/storytest.pdf .

x x x

Larman, C., Agile and Iterative Development: A Manager’s Guide,
Boston: Addison-Wesley, 2004

x x x x

Larman, C., and Vodde, B., Scaling Lean and Agile Development,
Boston: Addison-Wesley, 2009

x x x x x x

Martin, Robert C., Clean Code: A Handbook of Agile Software
Craftsmanship, Upper Saddle River, NJ: Pearson Education. 2008.

x x x x x x x

Massol, Vincent. Junit in action. Greenwich, CT: Manning Publications.
2004.

x

Meszaros, XUnit Test Patterns: Refactoring Test Code, Boston: Addison-
Wesley, 2007.

x x

Mugridge, R., and W. Cunningham. Fit for Developing Software:
Framework for Integrated Tests. Upper Saddle River, NJ: Pearson
Education. 2005.

x x x x

Poppendieck, M., and Poppendieck, T., Implementing Lean Software
Development, Addison-Wesley Professional, 2006.

x x x x x x

Rainsberger, J.B. 2004. Junit recipes: Practical methods for programmer
testing. Greenwich, CT: Manning Publications.

x

Schwaber, K., and Beedle, M., Agile Software Development with Scrum,
Upper Saddle River, New Jersey: Prentice Hall, 2001.

x x x x x x

Gemba Systems is comprised of a group of seasoned practitioners who
are experts at Lean & Agile Development as well as crafting effective learning
experiences. Whether the method is Scrum, Extreme Programming, Lean
Development or others - Gemba Systems helps individuals and teams to learn and
adopt better product development practices. Gemba Systems has taught better
development techniques - including lean thinking, Scrum and Agile Methods - to
thousands of developers in dozens of companies around the globe. To learn more
visit http://us.gembasystems.com/

Agile Adoption Patterns will help you whether you’re
planning your first agile project, trying to improve your
next project, or evangelizing agility throughout your
organization. This actionable advice is designed to work
with any agile method, from XP and Scrum to Crystal
Clear and Lean. The practical insights will make you more
effective in any agile project role: as leader, developer,
architect, or customer.

BUY NOW
books.dzone.com/books/agile-adoption-patterns

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://pm.versionone.com/getatrial_getatshirt.html

