

DZone, Inc. | www.dzone.com

By Shashank Tiwari

ABOUT BLAZEDS

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 B

la
ze

D
S

 w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#75

Getting Started with BlazeDS
CONTENTS INCLUDE:
n	 About BlazeDS
n	 What Exactly is BlazeDS?
n	 Installing BlazeDS
n	 Configuring BlazeDS
n	 Pull-based Communication
n	 Communicating in Real Time and more...

Adobe BlazeDS is an open source software that facilitates
effective integration of Flex and Java. It enables remote
procedure calls and message exchanges between the two
platforms thereby helping couple together rich and engaging
Flash platform based interfaces and robust enterprise servers.
Being open source, BlazeDS is freely available and can be
downloaded from
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/.

This Refcard provides a quick overview of BlazeDS. It attempts
to illustrate some of the most important features of the
software and therefore acts as a starting point for developers
who are interested in the subject. More details, with exhaustive
sets of examples, are available in the book Professional
BlazeDS (Wiley/Wrox, 2009).

WHAT EXACTLY IS BLAZEDS?

Although it’s mentioned upfront that BlazeDS helps connect
Flash platform applications to Java, it’s important to define it a
bit further. Therefore both its behavioral and structural aspects
are tersely listed in this section.

Behavioral Definition
BlazeDS enables and facilitates:
 • Invocation of remote Java methods from a Flex
 application.
 • Translation of Java objects returned from a server, in
 response to the remote method call, to corresponding
 AS3 objects.
 • Translation of AS3 objects sent by a Flex application to
 corresponding Java objects for passing them in as method
 call arguments.
 • Communication between a Flash Player instance and
 a Java server over a TCP/IP-based application-level binary
 protocol.

 • Near real-time message passing between a Flex
 application and a Java server.

 • Management of the communication channels between
 Flex and Java.

 • Management of connection types between Flex and Java.

 • Provision for adapters for communication with server-
 side Java artifacts like JMS queues, and persistence layers
 like Hibernate and JPA. (Some of these are in-built, and
 some can be obtained from open source projects or can
 be custom built.)

 • Pushing data from the server to the client on the server’s
 initiative and not as a response to a request.

Structural Definition
BlazeDS is a:
 • Java web application that leverages the Java Servlets
 specification.
 • Web application that runs within a Java Servlet container
 or a Java application server, for example Apache Tomcat,
 JBoss AS, IBM Websphere or BEA (now Oracle) Weblogic.
 • Set of services that can be managed using JMX agents.
 • Remoting and messaging program that can be extended
 by using its Java API.
 • Program that intercepts all communication between a
 Flash Player and a Java server.
 • Configurable web application that can be clustered and
 used in cases that desire a higher than normal
 performance. (The in-built data push mechanism has a few
 limitations as far as high throughput and high volume
 goes but there are ways to get around this shortcoming.)

With the definition of BlazeDS firmly in place, it’s worthwhile
to explore Flex client and Java server integration in the larger
context of combining the two platforms. Look at the next two
figures for some insight into the context.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with BlazeDS

INSTALLING BLAZEDS

Installing BlazeDS is as simple or as complex as deploying a
web application in a Java servlet container. BlazeDS works
seamlessly in most mainstream open source and commercial
Java servlet containers, including JBoss, Jetty, Tomcat, Oracle
Weblogic and IBM Websphere.

You can get both compiled and source versions of the software.
In addition, one of the binary versions comes in the form
of a turnkey distribution that includes a configured copy of
the Apache Tomcat Servlet container within the bundle. For
beginners, it’s convenient, appropriate and advisable to get the
latest release version of the binary turnkey distribution.

CONFIGURING BLAZEDS

Simply put, at the heart of BlazeDS is a Servlet that
bootstraps the infrastructure that intercepts all calls between
a Flex client and the BlazeDS instance. This Servlet, called
MessageBrokerServlet, uses artifacts like channels, endpoints,
and adapters to enable proxy, remoting, and messaging
services. A default configuration file, called services-config.
xml, which lies in the WEB-INF/flex folder of the BlazeDS
installation, defines these artifacts and their relationships in the
context of the MessageBrokerServlet.

Channels and endpoints connect a Flex client to a BlazeDS
server. They are the primary components that enable
communication between these two entities. Endpoints reside
at the BlazeDS end. Flex clients use channels to connect to
these endpoints.

The BlazeDS endpoints are Servlet-based endpoints. Each
endpoint defines a type and format of communication.
For example, endpoints exist for simple AMF data exchange,
polling AMF, and AMF data streaming.

Analogously, the Flex client defines a set of channels that
vary depending on the type and format of communication.
For example, the HTTPChannel facilitates communication
over non-binary AMF format, AMFX (AMF in XML), and
the AMFChannel enables standard binary AMF-based
communication.

Matching endpoints and channels are paired, and that’s when
a Flex client and BlazeDS server talk to each other. The binding

of channels and endpoints to their implementation classes and
their pairing is done in the services-config.xml configuration
file.

In addition to the endpoints, BlazeDS includes adapters that
provide the critical compatibility between the core BlazeDS
Servlet that talks to Flex and a server-side resource such as a
JMS resource, a persistent data store, or an Object-Relational
mapping layer. Adapters are also configured in services-config.
xml.

The configuration file services-config.xml, in BlazeDS, is
logically split into four configuration files.

The top level and the first of these four is services-config.xml
itself. The other three are as follows:
 • remoting-config.xml
 • proxy-config.xml
 • messaging-config.xml

Remoting-config, proxy-config and messaging-config contain
configuration pertaining to remote procedure calls, proxy
services and message services respectively.

Explaining every bit of the configuration is beyond the scope
of this Refcard and is therefore not included. Only a couple
of quick examples are shown to give you a flavor the typical
configuration elements. Detailed explanations are available
in the book entitled Professional BlazeDS (Wiley/Wrox, 2009),
which I spoke about earlier.

A channel can be configured as follows:

<channel-definition id=”my-amf” class=”mx.messaging.channels.
AMFChannel”>
<endpoint
url=”http://{server.name}:{server.port}/{contex.root}/messagebroker/
amf”
class=”flex.messaging.endpoints.AMFEndpoint”/>
</channel-definition>

An adapter can be configured as follows:

<adapters>
<adapter-definition id=”java-object”
class=”flex.messaging.services.remoting.adapters.JavaAdapter”
default=”true”/>
</adapters>

With these brief configuration examples in place, let’s
explore BlazeDS’s pull-based (or request-response based)
communication abilities. The following sections include a few
more in context configuration illustrations.

PULL-BASED COMMUNICATION

Off the shelf, the Flex framework includes three methods of
pull-based communication and data interchange with external
data sources:
 • HTTP request-response
 • Web services
 • Remote procedure calls involving objects
A possible remoting configuration could be as follows:

<service id=”aRemotingService”
class=”flex.messaging.services.RemotingService”>
<adapters>
<adapter-definition id=”java-object”
class=”flex.messaging.services.remoting.adapters.JavaAdapter”
default=”true”/>
</adapters>
<default-channels>
<channel ref=”myAMFChannel”/>
</default-channels>
<destination id=”myPOJODestination”>
<properties>
<source>myPackage. MyPOJO</source>
<scope>session</scope>
</properties>
</destination>
</service>

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with BlazeDS

Using BlazeDS’s remoting you are enabled with automatic
translation between the Java and ActionScript3(AS3) data
types, marshalling, un-marshalling, serialization and de-
serialization across the endpoints and channels.

BlazeDS’s remoting capabilities provide fast and efficient data
transmission between a Flex client and a Java server with the
help of the binary Action Message Format (AMF) protocol
and the built-in endpoints, channels and adapters to support
it. Adapters make it possible to hook-up specific server side
entities. The JavaAdapter included in the configuration
example, is a built-in adapter for plain Java objects, which are
also sometimes referred to as POJOs.

For accessing managed entities like Spring Beans or
Enterprise Java Beans (EJBs), you can use the JavaAdapter
as the translator but you also need a custom factory to help
you access these objects, as managed objects reside in a
namespace separate from the one that BlazeDS uses to
instantiate its own objects.

Besides, remoting BlazeDS can also act as a proxy server and
help access data from domains that are not explicitly trusted
via a crossdomain.xml security definition. Among others, the
BlazeDS proxy capabilities have three important use cases
including:

 • Access control to proxy destinations
 • Logging of all proxy traffic
 • Handling of HTTP errors

COMMUNICATING IN REAL-TIME

Data pushing in a web application context implies the server
sending data to a browser-based client without the client
necessarily requesting it.

Long polling can provide near real-time data push by waiting
till the response from the server is ready to be dispatched. It’s
not scalable though, as it blocks connections.

Direct connectivity over Real Time Messaging Protocol
(RTMP) provides a better scalable connectivity over long
polling but RTMP is not available with BlazeDS yet! The RTMP
specification was proprietary until the beginning of this year
and has most recently been opened up to public. Its inclusion
into future versions of BlazeDS is anticipated.

Usage of Java NIO provides for scalable connections
as blocking connections are replaced by non-blocking
asynchronous counterparts. BlazeDS does not include Java
NIO implementations for its communication channels but it’s
not very difficult to include one. The open source dsadapters
project (http://code.google.com/p/dsadapters/) aims to
provide extensions to BlazeDS that include java NIO based
channels, specialized factories, filters and advanced adapters,
a lot of which will be available in the near future.

Messaging systems involve two typical messaging domains:
point-to-point and publish-subscribe. BlazeDS can logically
support both messaging domains. It has first-class support for
publish-subscribe messaging domain.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with BlazeDS

BlazeDS based message services leverage two types of built-in
adapters, namely:

 • JMSAdapters

 • ActionScriptAdapters

The JMSAdapter connects with JMS server side messaging
systems. The ActionScriptAdapter helps route messages
between Flex clients via the server. Therefore JMSAdapter
comes handy when Flex clients are wired up to send and
receive messages to and from enterprise systems that use JMS,
whereas ActionScriptAdapter is useful for building systems
like chat applications to help communicate between two Flex
clients.

For effective near real-time messaging use one of the following
channels:

AMFChannel/Endpoint with Polling
The client sends a recurring request to the server at a pre-
defined frequency. Polling is very resource and network
intensive.

AMFChannel/Endpoint with Long Polling
The channel issues polls to the server to fetch data but if no
data is available it waits until data arrives for the client or the
configured server wait interval elapses. For high frequency
updates this configuration has the overhead of a poll roundtrip
for every pushed message and therefore messages can be
queued between polls. The Servlet API, prior to its current
version 3, utilizes blocking I/O in which case long polling soon
exhausts connections as multiple concurrent clients utilize the
channel.

Streaming AMFChannel/Endpoint
This channel opens an HTTP connection between the
server and client, over which the server sends an unending
response of messsages. This channel avoids the overhead of
polling and keeps the connection open for the entire scope
of communication between the client and the server. Like
AMFChannel with long polling, the constraints of blocking
Servlet I/O can exhaust connections as multiple concurrent
clients utilize the channel.

JPA AND HIBERNATE WITH FLEX

Object Relational Mapping (ORM) and persistence frameworks
like JPA and Hibernate facilitate effective handling of relational
data sources with Java applications. Extending the scope
of these frameworks to include interactions with Flex clients
allows seamless persistence management.

Off-the-shelf BlazeDS has no special features to support JPA
and Hibernate. However a number of open source projects
provide adapters to combine JPA and Hibernate with Flex.
Gilead (http://noon.gilead.free.fr/gilead/) and dphibernate
(http://code.google.com/p/dphibernate/) are two such open
source adapters. The dsadapters project (http://code.google.
com/p/dsadapters/) is also in the process of releasing a robust
open source JPA/Hibernate adapter.

BlazeDS is capable of serializing and transforming Java-based

objects to their AS3 counterparts so that may make you
wonder why wiring up JPA and Hibernate entities and their
collections needs any special handling. The reason for this
special need arises because of the way BlazeDS serializes data
across the wire.

BlazeDS has a set of endpoints where a Flex application
channel sends requests up to BlazeDS that resides within
a Servlet container or an application server. Responses
from BlazeDS follow the route back up from the endpoint
to the channel. On endpoints that support translation and
serialization between AS3 and Java (or even web services), a
serialization filter is defined to intercept calls to the endpoint.
When an incoming or outgoing message hits the filter,
serialization and deserialization occur. During serialization, the
serializer eagerly fetches all the JPA and Hibernate persistent
objects and sends them across the wire. The JPA and
Hibernate proxies are replaced with the data that they stand
in place of. This breaks the lazy loading semantics, rendering
the idea of proxies useless. Therefore, any Hibernate adapter
needs to preserve the proxy characteristics while keeping
the standard behavior of the essential serialization and de-
serialization mechanism between Flex and Java intact.

A common design pattern used to solve this problem is what
I like to call the ‘‘Clone and Merge Transfer Pattern.”

INTEGRATING WITH SPRING FRAMEWORK

The Spring BlazeDS integration project, also called Spring
Flex, is a joint effort between SpringSource and Adobe to
create a version of BlazeDS that works seamlessly with the
Spring Framework. Prior to the existence of this project
developers relied on custom factories to integrate Spring and
BlazeDS.

BlazeDS is a Java Servlet based web application, so it
integrates and works with the Spring framework facility that
addresses the web layer. The core Spring framework web layer
implements an MVC framework and is called Spring MVC.
Spring BlazeDS integrates smoothly with Spring MVC.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with BlazeDS

MAKING BLAZEDS APPLICATIONS SCALABLE

In web scale applications scalability is an important criteria for
success. BlazeDS instances can be clustered and the following
techniques can be applied to make applications scale better:

Clustering
Clustered instances of BlazeDS share data and messages
across instances. Therefore, message producers connected
to a clustered server instance can send messages to message
consumers connected to a different server within the same
cluster. Besides sharing state information and routing
information through the clustered servers, clustering provides
for channel failover support. Clustered of BlazeDS instances is
powered by JGroups.

Data compression
BlazeDS is a Java Servlets based web application. As data
from a BlazeDS server leaves for the Flex client, it can be
intercepted using the familiar Java Servlet filter mechanism.
Servlet filters can intercept requests to and responses from
a Java Servlet. In order to zip the data transferred from the
server to the client, a filter can be created to manipulate and
compress the outgoing response.

Data format optimization
AMF3 facilitates a very efficient way of binary transmission
of data between the server and the client. In addition, you
can choose to go with a text-based format that could be well
structured like XML or delimited like comma-separated or tab-
delimited text. JSON (JavaScript Object Notation) and AMFX,
where AMF is transmitted in XML, are also options.

Robust connection
Non-blocking channels allow for greater number of
connections to be served provided they are not all active at the
same time always. Life Cycle Data Services uses NIO channels
for connection scalability. You can include the same robustness
in BlazeDS as well.

EXTENDING BLAZEDS

BlazeDS exposes a public Java API. You can leverage that API
to customize the behavior of BlazeDS resources.

The flex.messaging.services.ServiceAdapter abstract class
sits at the root of the hierarchy. All built-in adapter classes
inherit from the ServiceAdapter abstract class. Abstract
classes not only define a contract like interfaces do but also
define behavior through partial method implementations. The
ServiceAdapter class states the base behavioral characteristics
of a BlazeDS adapter.

You can create custom BlazeDS adapters by extending
either the ServiceAdapter or one of its subclasses like the
JavaAdapter or the MessagingAdapter classes.

A MessageBroker component sits at the heart of BlazeDS. All
messages in BlazeDS are routed through the MessageBroker.
In standard BlazeDS deployments, the MessageBrokerServlet is
declared in WEB-INF/web.xml as follows:

<servlet>
<servlet-name>MessageBrokerServlet</servlet-name>
<servlet-class>flex.messaging.MessageBrokerServlet</servlet-class>
<init-param>
<param-name>services.configuration.file</param-name>
<param-value>/WEB-INF/flex/services-config.xml</param-value>
</init-param>
<init-param>
<param-name>flex.write.path</param-name>
<param-value>/WEB-INF/flex</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>MessageBrokerServlet</servlet-name>
<url-pattern>/messagebroker/*</url-pattern>
</servlet-mapping>

In Spring MVC, all incoming requests are handled by a Front
controller Servlet, called the DispatcherServlet. This means
you must have a way that all requests coming from the Flex
client and intended to be handled by the BlazeDS instance are
routed by the DispatcherServlet to the MessageBroker. This is
exactly what the Spring BlazeDS project implements.

In addition, the Spring BlazeDS project also defines an XML
Schema and associated infrastructure so that BlazeDS artifacts
can be configured within Spring configuration files as Spring
managed objects.

As an example a default BlazeDS message broker configuration
can then be like so:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
xmlns:flex=”http://www.springframework.org/schema/flex”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd”>
<flex:message-broker/>
</beans>

More about the possible configurations can be learned online
at http://www.springsource.org/spring-flex

With the help of this project it becomes easy to configure
Spring Beans as server side remoting counterparts of Flex
clients.

For example a service class configured as a Spring Bean as
follows:

<bean id=”myService” class=”myPackage.MyService” />

Can easily be used as a remoting destination simply by
specifying a configuration as follows:

<flex:remoting-destination ref=”myService” />

There is plenty more, including use of annotations, possible
for configuring Spring Beans as remoting destinations and you
may want to learn more online from the Spring BlazeDS project
site mentioned earlier in this paragraph.

Besides, remoting the Spring messaging and security benefits
also get extended to Flex applications. In a Spring BlazeDS
server, three types of message service components can interact
with the Flex message service. The messaging service in Flex
itself is agnostic to the messaging protocol used on the server
side. Therefore, multiple server-side messaging alternatives
easily work with Flex messaging. The three alternative server-

side message services in Spring BlazeDS are:

 • Native built-in BlazeDS AMF messaging
 • JMS messaging using the Spring-spec JMS
 components
 • Spring BlazeDS messaging integration

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Blaze DS
Domain Driven Design
Virtualization
Java Performance Tuning
Expression Web
Spring Web Flow
BPEL

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with BlazeDS

RECOMMENDED BOOKABOUT THE AUTHORS

ISBN-13: 978-1-934238-90-5
ISBN-10: 1-934238-90-2

9 781934 238905

50795

Shashank Tiwari is a Managing Partner & CTO at Treasury of
Ideas, a technology driven innovation and value optimization company.
As an experienced software developer and architect, he is adept
in a multitude of technologies. He is an internationally recognized
speaker, author and mentor. As an expert group member on a number
of JCP (Java Community Process) specifications he has been actively
participating in shaping the future of Java. He is also an Adobe Flex
Champion and a common voice in the RIA community. Currently, he
passionately builds rich high performance scalable applications and
advises many on RIA and SOA adoption. His clients range from large
financial service corporations to brilliant startups, whom he helps

translate cutting edge ideas into reality. He is also actively engaged in training and mentoring
developers and architects in leading edge technology. He is the author of a number of books
and articles, including Advanced Flex 3 (Apress, 2008) and Professional BlazeDS (Wiley, 2009).
He lives with his wife and two sons in New York. More information about him can be accessed
at his website (www.shanky.org).

This informative resource provides you with detailed examples and
walkthroughs that explain the best practices for creating RIAs using
BlazeDS. You’ll begin with the essentials of BlazeDS and then more
on to more advanced topics. Along the way, you’ll learn the real-world
concerns that surround enterprise-based Java and Flex applications.

Service orientation
Service oriented architecture (SOA) patterns that apply well
when creating Flex and BlazeDS applications are:
 • Concurrent contracts
 • Cross-domain utility layer
 • Functional decomposition
 • Rules centralization
 • State repository

Caching
If the accessed data is not changing during the course of its
reuse it always makes sense to cache it. Caching is a time-
tested way of increasing performance by avoiding data fetches
across the network and using pre-fetched local data instead.

Resource Pooling
Many of these external systems and libraries, such as
messaging infrastructure, database connections and stateless
business services, lend themselves to pooling. When resources

With no upfront costs and a great set of features BlazeDS is
a compelling piece of software for most serious Rich Internet
Application (RIA) stacks that involve Flex and Java.

CONCLUSION

are pooled, they are shared over multiple clients. BlazeDS has
acces to all resource pooling strategies that any Java EE web
application running in an application server has.

Workload distribution
Distributing work optimally between a client and its server
is an important challenge when architecting RIA. BlazeDS
remoting services optimally combine a Flex client and a Java
server and allow a developer to distribute workload across the
wire in ways without necessarily imposing the overheads that
loose coupling like XML based interactions over HTTP and
web services do.

BUY NOW
books.dzone.com/books/blazeds

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/blazeds

