

DZone, Inc. | www.dzone.com

By Aslam Khan

ABOUT DOMAIN DRIVEN DESIGN

D
o

m
ai

n
-D

ri
ve

n
 D

e
si

g
n

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#76

Getting Started with
Domain-Driven Design

CONTENTS INCLUDE:
n	 About Domain Driven Design
n	 Representing the Model
n	 Ubiquitous Language
n	 Strategic Design
n	 Modeling the Domain
n	 Hot tips and more...

This is a quick reference for the key concepts, techniques and
patterns described in detail in Eric Evans’ book Domain Driven
Design: Tackling Complexity in the Heart of Software and
Jimmy Nilsson’s book Applying Domain-Driven Design and
Patterns with Examples in C# .NET. In some cases, it has made
sense to use the wording from these books directly, and I thank
Eric Evans and Jimmy Nilsson for giving permission for such
usage.

While it is useful to present the patterns themselves, many
subtleties of DDD are lost in just the description of the
patterns. These patterns are your tools, and not the rules.
They are a language for design and useful for communicating
ideas and models amongst the team. More importantly,
remember that DDD is about making pragmatic decisions. Try
not to “force” a pattern into the model, and, if you do “break”
a pattern, be sure to understand the reasons and communicate
that reasoning too.

Often, it is said that DDD is object orientation done right but
DDD is a lot more than just object orientation. DDD also deals
with the challenges of understanding a problem space and the
even bigger challenge of communicating that understanding.

Importantly, DDD also encourages the inclusion of other areas
such as Test-Driven Development (TDD), usage of patterns,
and continuous refactoring.

REPRESENTING THE MODEL

Domain-Driven Design is all about design and creating highly
expressive models. DDD also aims to create models that
are understandable by everyone involved in the software
development, not just software developers.
Since non-technical people also work with these models, it
is convenient if the models can be represented in different
ways. Typically, a model of a domain can be depicted as a UML
sketch, as code, and in the language of the domain.

Using Language
A person that is looking at attending a training course
searches for courses based on topic, cost and the course
schedule. When a course is booked, a registration is issued
which the person can cancel or accept at a later date.

Using Code
class Person {
 public Registration bookCourse(Course c) { … }
}

abstract class Registration {
 public abstract void accept();
 public abstract void cancel();
}

UBIQUITOUS LANGUAGE

The consistent use of unambiguous language is essential in
understanding and communicating insights discovered in the
domain. In DDD, it is less about the nouns and verbs and
more about the concepts. It is the intention of the concept,
it’s significance and value that is important to understand and
convey. How that intention is implemented is valuable, but for
every intention, there are many implementations. Everyone
must use the language everywhere and at every opportunity to
understand and share these concepts and intentions. When
you work with a ubiquitous language, the collaboration with
domain experts is more creative and valuable for everyone.

Get over 70 DZone Refcardz
FREE from Refcardz.com!

bookCourse(Course):Registration

Person

ReservedRegistration

is made which must be

accepted later
accept()

reject()

Registration

accept()

reject()

Reserved

Registration

accept()

reject()

Accepted

Registration

Using a UML Sketch

class ReservedRegistration extends Registration { … }
class AcceptedRegistration extends Registration { … }

interface CourseRepository {
 public List<Course> find(…);
}

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Domain-Driven Design

Reveal the Intention not the Implementation
Watch out for technical and business obstructions in
the language that may obscure vital concepts hidden or
assumed by domain experts. Often these terms deal with
implementations, and not the domain concepts. DDD does
not exclude the implementation, but it values the intention of
the model higher.

Consider the following conversation:
When a person books a course, and the course is full, then the person has
a status of “waiting”. If there was space available, then the person’s details
must be sent via our message bus for processing by the payment gateway.

Here are some potential obstructions for the above
conversation. These terms don’t add value but they are
excellent clues to dig deeper into the domain.

person has a status Status seems to be a flag or field. Perhaps the domain expert
is familiar with some other system, maybe a spreadsheet, and is
suggesting this implementation.

sent via our message bus This is a technical implementation. The fact that it is sent via a
message bus is of no consequence in the domain.

processing This is ambiguous and obscure. What happens during processing?

payment gateway Another implementation. It is more important that there is some
form of payment but the implementation of the payment is
insignificant at this point.

Aim for Deep Insights
Keep a watch out for implementations and dig around for the
real concepts and the intention of the concepts.

Let’s review the same conversation, paying attention to clues
that may be hidden in the conversation, behind some of the
implementations.

When a person books a course, and the course is full, then the person has
a status of “waiting”. If there was space available, then the person’s details
must be sent via our message bus for processing by the payment gateway.

Digging deeper, we find that the person booking the course
does not have a status. Instead, the outcome of a person
registering for the course is a registration. If the course is
full, then the person has a standby registration. All standby
registrations are managed on a waiting list.

Refactor the Language
Remember that the language is used to build a representation
of the model of the domain. So is the code. When the code is
refactored with new terminology then refactor your language
to incorporate the new term. Ensure that the concept
represented by the term is defined and that domain experts
agree with its intention and usage.

Let’s refactor the conversation to book a course.

When a person registers for a course, a reserved registration is issued. If
there is a seat available, and payment has been received, then the reserved
registration is accepted. If there are no seats available on the course, then
the reserved registration is placed on a waiting list as a standby registration.
The waiting list is managed on a first in basis.

Working with Concrete Examples
It is often easier to collaborate with domain experts using
concrete examples. Quite Often, it is convenient to describe
the domain examples using Behavior-Driven Development
(BDD) story and scenario templates.
(See http://dannorth.net/whats-in-a-story)

Let’s look at the same story from earlier using concrete
examples, rephrased using the BDD-templates.

Story: Register for a course
As a person looking for training
I want to book a course
So that I can learn and improve my skills.

In the story, a role is described (the “person looking for training”)
that wishes to achieve something (“to book a course”) so that
some benefit is gained (“learn and improve my skills”).

Now that we have the story, there are many scenarios for that
story. Let us consider the scenario of the course being full.

Scenario: Course is full
Given that the Python 101 course accommodates 10 seats
and there are already 10 people with confirmed registrations for Python 101
When I register for “Python 101”
Then there should be a standby registration for me for Python 101
and my standby registration should be on the waiting list.

The “Given” clauses describe the circumstances for the
scenario. The “When” clause is the event that occurs in the
scenario and the “Then” clauses describe the outcome that
should be expected after the event occurs.

STRATEGIC DESIGN

Project

Invoice

BilingItem

Activity

Period

Project Context
Billing Context

mapping?

Strategic design is about design in the large, and helps focus
on the many parts that make up the large model, and how
these parts relate to each other. This helps achieve just a little
bit of big design up front, enough to make progress without
falling into the “my model is cast in stone” trap.

In DDD, these smaller models reside in bounded contexts.
The manner in which these bounded contexts relate to each
other is known as context mapping.

Bounded Contexts
For each model, deliberately and explicitly define the context
in which it exists. There are no rules to creating a context,
but it is important that everyone understands the boundary
conditions of the context.

Contexts can be created from (but not limited to) the following:
 • how teams are organized
 • the structure and layout of the code base
 • usage within a specific part of the domain

Aim for consistency and unity inside the context and don’t
be distracted by how the model is used outside the context.
Other contexts will have different models with different
concepts. It is not uncommon for another context to use a
different dialect of the domain’s ubiquitous language.

Context Maps
Context mapping is a design process where the contact points
and translations between bounded contexts are explicitly
mapped out. Focus on mapping the existing landscape, and
deal with the actual transformations later.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Domain-Driven Design

Project

Invoice

BilingItem

Activity

Period

Project Context
Billing Context

Customer

Address

Customer Context

Hot
Tip

Be careful with shared kernels! They are difficult to
design and maintain and are most effective with
highly mature teams!

Customer/Supplier Development Teams
When one bounded context serves or feeds another bounded
context, then the downstream context has a dependency on
the upstream context. Knowing which context is upstream
and downstream makes the role of supplier (upstream) and
customer (downstream) explicit.

Project

Invoice

BilingItem

Activity

Period

Project Context
"Supplier"

Billing Context
"Customer"

uses agreed interfaces

The two teams should jointly develop the acceptance tests for
the interfaces and add these tests to the upstream bounded
context’s continuous integration. This will give customer
team confidence to continue development without fear of
incompatibility.

Conformist
When the team working with the downstream context has no
influence or opportunity to collaborate with the team working
on the upstream context, then there is little option but to
conform to the upstream context.

There may be many reasons for the upstream context
“dictating” interfaces to the downstream context, but
switching to a conformist pattern negates much pain. By
simply conforming to the upstream interfaces, the reduction in
complexity often outweighs the complexity of trying to change
an unchangeable interface.

Project

Invoice

BilingItem

Activity

Period

Upstream
Context

Downstream
Context

conforms to
existing interfaces

The quality of the downstream model, in general, follows that
of the upstream model. If the upstream model is good, then
the downstream model is good also. However, if the upstream
model is poor, then the downstream will also be poor.
Regardless, the upstream model will not be tailored to suit the
downstream needs, so it won’t be a perfect fit.

Hot
Tip

The conformist pattern calls for a lot of pragmatism!
The quality of the upstream model, along with the
fit of the upstream model may be “good enough”.
That suggests you would not want a context where
you were working on the core domain to be in a
conformist relationship.

Account

Transaction

Accounting
System

Account
Service

anti-corruption layer

Transaction
Adaptor

Invoice

BilingItem

Billing Context Transaction
Service

Transaction
Translator

Account
Translator

Account
Adaptor

Accounting
Facade

Hot
Tip

Anti-corruption Layer is a great pattern for dealing
with legacy systems or with code bases that will be
phased out

Hot
Tip

Use continuous integration within a single bounded
context to smoothen splinters that arise from
different understanding. Frequent code merges,
automated tests and applying the ubiquitous
language will highlight fragmentation inside the
bounded context quickly.

Patterns for Context Mapping
There are several patterns that can be applied during context
mapping. Some of these context mapping patterns are
explained below.

Shared Kernel
This is a bounded context that is a subset of the domain
that different teams agree to share. It requires really good
communication and collaboration between the teams.
Remember that it is not a common library for everything.

Anti-corruption Layer
When contexts exist in different systems and attempts to
establish a relationship result in the “bleeding” of one model
into the other model, then the intention of both will be lost in
the mangled combination of the models from the two contexts.
In this case, it is better to keep the two contexts well apart and
introduce an isolating layer in-between that is responsible for
translating in both directions. This anti-corruption layer allows
clients to work in terms of their own models.

Separate Ways
Critically analyze the mappings between bounded contexts. If
there are no indispensable functional relationships, then keep
the context separate. The rationale is that integration is costly
and can yield very low returns.

This pattern eliminates significant complexity since it allows
developers (and even the business managers) to find highly
focused solutions in a very limited area of scope.

Account

Transaction

Accounting
System

Invoice

BilingItem

Billing Context

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Domain-Driven Design

MODELING THE DOMAIN

Within the bounded contexts, effort is focused on building
really expressive models; models that reveal the intention more
than the implementation. When this is achieved, concepts in
the domain surface naturally and the models are flexible and
are simpler to refactor.

The DDD patterns are more of an application of patterns from
GoF, Fowler and others specifically in the area of modeling
subject domains.

The most common patterns are described below.

Dealing with Structure
Entities
Entities are classes where the instances are globally identifiable
and keep the same identity for life. There can be change of
state in other properties, but the identity never changes.

Client Invoice

Discount

Address *

Telephone

Client Invoice

Discount

Address *

Telephone

Hot
Tip

Value Objects have simple life cycles and can
greatly simplify your model. They also are great for
introducing type safety at compile time for statically
typed languages, and since the methods on value
objects should be side effect free, they add a bit of
functional programming flavor too.

Day

Person

Work Item

Role Project

Activity

Follow these simple rules for aggregates.
 • The root has global identity and the others have local identity
 • The root checks that all invariants are satisfied
 • Entities outside the aggregate only hold references to the root
 • Deletes remove everything in the aggregate
 • When an object changes, all invariants must be satisfied.

Hot
Tip

Remember that aggregates serve two purposes:
domain simplification, and technical improvements.
There can be inconsistencies between aggregates,
but all aggregates are eventually consistent with
each other.

Project

Role

Person

*

*

Project

Person

current project
introduce qualifier

Cardinality of Associations
The greater the cardinality of associations between classes,
the more complex the structure. Aim for lower cardinality by
adding qualifiers.

In this example, the Address can change many times but the
identity of the Client never changes, no matter how many other
properties change state.

Value Objects
Value objects are lightweight, immutable objects that have no
identity. While their values are more important, they are not
simple data transfer objects. Value objects are a good place to
put complex calculations, offloading heavy computational logic
from entities. They are much easier and safer to compose and
by offloading heavy computational logic from the entities, they
help entities focus on their role of life-cycle trackers.

In this example, when the address of the Client changes, then
a new Address value object is instantiated and assigned to the
Client.

Project

Role

Person

*

*

Project

Role

Person

*introduce direction

Bi-directional associations also add complexity. Critically ask
questions of the model to determine if it is absolutely essential
to be able to navigate in both directions between two objects.

In this example, if we rarely need to ask a Person object for all
its projects, but we always ask a Project object for all people in
the roles of the project, then we can make the associations one
directional. Direction is about honoring object associations in
the model in memory. If we need to find all Project objects for
a Person object, we can use a query in a Repository (see below)
to find all Projects for the Person.

Services
Sometimes it is impossible to allocate behavior to any single
class, be it an entity or value object. These are cases of
pure functionality that act on multiple classes without one
single class taking responsibility for the behavior. In such
cases, a stateless class, called a service class, is introduced to
encapsulate this behavior.

Aggregates
As we add more to a model, the object graph can become
quite large and complex. Large object graphs make technical
implementations such as transaction boundaries, distribution
and concurrency very difficult. Aggregates are consistency
boundaries such that the classes inside the boundary are
“disconnected” from the rest of the object graph. Each
aggregate has one entity which acts as the “root” of the
aggregate.

When creating aggregates, ensure that the aggregate is still
treated as a unit that is meaningful in the domain. Also, test
the correctness of the aggregate boundary by applying the
“delete” test. In the delete test, critically check which objects
in the aggregate (and outside the aggregate) will also be
deleted, if the root was deleted.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Domain-Driven Design

Client Factory Object

"specify" "make"

Repositories
While factories manage the start of the life cycle, repositories
manage the middle and end of the life cycle. Repositories
might delegate persistence responsibilities to object-relational
mappers for retrieval of objects. Remember that repositories
work with aggregates too. So the objects retrieved should
honor the aggregate rules.

Object
Client Repository

"selection
criteria" "matching"

Object
Object

Object
Relational

Mapper

"delegate"

Dealing with Behavior
Specification Pattern
Use the specification pattern when there is a need to model
rules, validation and selection criteria. The specification
implementations test whether an object satisfies all the rules of
the specification. Consider the following class:

class Project {
 public boolean isOverdue() { … }
 public boolean isUnderbudget() { … }
}

The specification for overdue and underbudget projects can be
decoupled from the project and made the responsibility of the
other classes.

public interface ProjectSpecification {
 public boolean isSatisfiedBy(Project p);
}

public class ProjectIsOverdueSpecification implements
 ProjectSpecification {
 public boolean isSatisfiedBy(Project p) { … }
}

This makes the client code more readable and flexible too.

If (projectIsOverdueSpecification.isSatisfiedBy(theCurrentProject) { … }

Strategy Pattern
The strategy pattern, also known as the Policy Pattern is used
to make algorithms interchangeable. In this pattern, the
varying “part” is factored out.

Consider the following example, which determines the
success of a project, based on two calculations: (1) a project is
successful if it finishes on time, or (2) a project is successful if it
does not exceed its budget.

public class Project {
 boolean isSuccessfulByTime();
 boolean isSuccessfulByBudget();
}

By applying the strategy pattern we can encapsulate the
specific calculations in policy implementation classes that
contain the algorithm for the two different calculations.

interface ProjectSuccessPolicy {
 Boolean isSuccessful(Project p);
}

class SuccessByTime implements ProjectSuccessPolicy { … }
class SuccessByBudget implements ProjectSuccessPolicy { … }

Refactoring the original Project class to use the policy,
we encapsulate the criteria for success in the policy
implementations and not the Project class itself.

class Project {
 boolean isSuccessful(ProjectSuccessPolicy policy) {
 return policy.isSuccessful(this);
 }
}

Composite Pattern
This is a direct application of the GoF pattern within the
domain being modeled. The important point to remember
is that the client code should only deal with the abstract type
representing the composite element. Consider the following
class.

public class Project {
 private List<Milestone> milestones;
 private List<Task> tasks;
 private List<Subproject> subprojects;
}

A Subproject is a project with Milestones and Tasks. A
Milestone is a Task with a due date but no duration. Applying
a composite pattern, we can introduce a new type Activity with
different implementations.

interface Activity {
 public Date due();
}

public class Subproject implements Activity {
 private List<Activity> activities;
 public Date due() { … }
}

public class Milestone implements Activity {
 public Date due() { … }
}

public class Task implements Activity {
 public Date due() { ... }
 public int duration() { … }
}

Now the model for the Project is much simpler.

public class Project {
 private List<Activity> activities;
}

A UML representation of this model is shown below.

Project

SubprojectMilestone Task

Activity **

Dealing with Life Cycles
Factories
Factories manage the beginning of the life cycle of some
aggregates. This is an application of the GoF factory or builder
patterns. Care must be taken that the rules of the aggregate
are honored, especially invariants within the aggregate.
Use factories pragmatically. Remember that factories are
sometimes very useful, but not essential.

APPLICATION ARCHITECTURE

When the focus of design is on creating domain models that
are rich in behavior, then the architecture in which the domain
participates must contribute to keeping the model free of
infrastructure too. Typically, a layered architecture can be used
to isolate the domain from other parts of the system.

http://www.dzone.com
http://www.refcardz.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Spring Web Flow
BPEL
Netbeans 6.8 Update
Continous Integration
Google App Engine
Vaadin
JPA2.0

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Domain-Driven Design

RECOMMENDED BOOKABOUT THE AUTHORS

ISBN-13: 978-1-934238-91-2
ISBN-10: 1-934238-91-0

9 781934 238912

50795

Each layer is aware of only those layers below it. As such, a
layer at a lower level cannot make a call (i.e. send a message)
to a layer above it. Also, each layer is very cohesive and classes
that are located in a particular layer pay strict attention to
honoring the purpose and responsibility of the layer.

User Interface Responsible for constructing the user interface and managing the interaction
with the domain model. Typical implementation pattern is model-view-
controller.

Application Thin layer that allows the view to collaborate with the domain. Warning: it
is an easy “dumping ground” for displaced domain behavior and can be a
magnet for “transaction script” style code.

Domain An extremely behavior-rich and expressive model of the domain. Note
that repositories and factories are part of the domain. However, the object-
relational mapper to which the repositories might delegate are part of the
infrastructure, below this layer.

Infrastructure Deals with technology specific decisions and focuses more on
implementations and less on intentions. Note that domain instances can be
created in this layer, but, typically, it is the repository that interacts with this
layer, to obtain references to these objects.

Aslam Khan is an architect and coach working out of South Africa. He is
part of factor10; a team of software architects that help teams write software
better. With more than 18 years experience, he has learned that design is more
valuable than technology, and pragmatic decisions are more valuable than rules.
He takes the position that architects should be able to build what they draw
and that the only truthful implementation of an architecture is the code that
gets executed. He is particularly passionate about creating simple solutions
for complex problems, and part of that passion pushes him to try to explain
architecture and software development as simply as possible. Aslam believes
that good code can only be produced when there is a good balance between
social and technical skills of everyone on a team.

Blog: http://aslamkhan.net
Company: http://www.factor10.com

User Interface

Application

Domain

Infrastructure

Aim to design your layers with interfaces and try to use these
interfaces for “communication” between layers. Also, let
the code using the domain layer control the transaction
boundaries.

With this book in hand, object-oriented developers,
system analysts, and designers will have the
guidance they need to organize and focus their work,
create rich and useful domain models, and leverage
those models into quality, long-lasting software
implementations.

BUY NOW
books.dzone.com/books/domain-driven-design

RECENTLY ADDED PATTERNS

Big Ball of Mud This is a strategic design pattern to deal with existing systems consisting
of multiple conceptual models mixed together, and held together
with haphazard, or accidental, dependent logic. In such cases, draw
a boundary around the mess and do not attempt to try sophisticated
modeling within this context. Be wary of this context sprawling into other
contexts.

The original pattern was written by Brian Foote and Joseph Yoder and is
available at http://www.laputan.org/mud/mud.html

Domain Events Sometimes domain experts want to track the actual events that cause
changes in the domain. Domain events are not to be confused with
system events that are part of the software itself. It may be the case that
domain events have corresponding system events that are used to carry
information about the event into the system, but a domain event is a fully-
fledged part of the domain model.

Model these events as domain objects such that the state of entities can
be deduced from sets of domain events. Event objects are normally
immutable since they model something in the past. In general, these
objects contain a timestamp, description of the event and, if needed,
some identity for the domain event itself.

In distributed systems, domain events are particularly useful since they
can occur asynchronously at any node. The state of entities can also be
inferred from the events currently known to a node, without having to rely
on the complete set of information from the entire system.

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/domain-driven-design

