

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#80
N

e
tB

e
an

s
P

la
tf

o
rm

 7

CONTENTS INCLUDE:
n	 About NetBeans Platform
n	 Getting Started
n	 Main Features
n	 NetBeans Platform Modules
n	 NetBeans Platform APIs
n	 �Reusable Swing Components

and more...

ABOUT NETBEANS PLATFORM

The NetBeans Platform is a generic framework for commercial
and open-source desktop Swing applications.

It provides the “plumbing” (such as the code for managing
windows, connecting actions to menu items, and updating
applications at runtime) that you would otherwise need to write
yourself. The NetBeans Platform provides all of these out of
the box on top of a reliable, flexible, and well tested modular
architecture.

In this Refcard, you are introduced to the key concerns of the
NetBeans Platform, so that you can save years of work when
developing robust and extensible applications.

GETTING STARTED

To get started with the NetBeans Platform:

Tool How to Get Started

NetBeans IDE Download the “Java SE” distribution of NetBeans IDE, which is
the smallest NetBeans IDE distribution providing the NetBeans
Platform Toolkit, consisting of NetBeans Platform templates &
samples, via either the Ant or Maven build systems.

Command-line Maven Use the Maven archetypes for NetBeans Platform development.
GroupId: org.codehaus.mojo.archetypes
ArtifactId:
 netbeans-platform-app-archetype
 nbm-archetype

Command-line Ant Download the NetBeans Platform ZIP file, which includes
a build harness. The build harness includes a long list of
Ant targets for compiling, running, testing, and packaging
NetBeans Platform applications.

Other IDEs Use command-line Maven to set up a Maven-based NetBeans
Platform application and then open the POM file into any IDE
that supports Maven, e.g., IntelliJ IDEA or Eclipse.

Hot
Tip

Join the NetBeans Platform mailing list
dev@platform.netbeans.org, where you can discuss
problems and share ideas with other developers using the
NetBeans Platform as the basis of their software!

MAIN FEATURES

The following are the main features of the NetBeans Platform,
showing you the benefits of using it rather than your homegrown
Swing framework.

Tool How to Get Started

Module System Since your application can use either standard NetBeans Platform
modules or OSGi bundles, you’ll be able to integrate third-party
modules or develop your own. The modular nature of a NetBeans
Platform application gives you the power to meet complex
requirements by combining several small, simple, and easily tested
modules. Powerful versioning support helps give you confidence that
your modules will work together, while strict control over the public APIs
your modules expose will help you create a more flexible application
that’s easier to maintain.

Lifecycle
Management

Just as application servers such as GlassFish provide lifecycle services
to web applications, the NetBeans runtime container provide lifecycle
services to Swing applications. Application servers understand how to
compose web modules, EJB modules, and so on, into a single web
application, just as the NetBeans runtime container understands how to
compose NetBeans modules into a single Swing application.

Pluggability End users of the application benefit from pluggable applications
because these enable them to install modules into their running
applications. NetBeans modules can be installed, uninstalled,
activated, and deactivated at runtime, thanks to the runtime container.

Service
Infrastructure

The NetBeans Platform provides an infrastructure for registering and
retrieving service implementations, enabling you to minimize direct
dependencies between individual modules and enabling a loosely
coupled architecture (high cohesion and low coupling).

File System Unified API providing stream-oriented access to flat and hierarchical
structures, such as disk-based files on local or remote servers,
memory-based files, and even XML documents.

Window System Most serious applications need more than one window. Coding
good interaction between multiple windows is not a trivial task. The
NetBeans window system lets you maximize/minimize, dock/undock,
and drag-and-drop windows, without you providing any code at all.

Standardized UI
Toolkit

Swing is the standard UI toolkit and is the basis of all NetBeans
Platform applications. Related benefits include the ability to change
the look and feel easily, the portability of Swing across all operating
systems, and the easy incorporation of many free and commercial
third-party Swing components.

Generic
Presentation
Layer

With the NetBeans Platform, you're not constrained by one of the
typical pain points in Swing: the JTree model is completely different
to the JList model, even though they present the same data.
Switching between them means rewriting the model. The NetBeans
Nodes API provides a generic model for presenting your data. The
NetBeans Explorer & Property Sheet API provides several advanced
Swing components for displaying nodes.

Advanced Swing
Components

In addition to a window system, the NetBeans Platform provides
many other UI-related components, such as a property sheet, a
palette, complex Swing components for presenting data, a Plugin
Manager, and an Output window.

JavaHelp
Integration

The JavaHelp API is an integral part of the NetBeans Platform. You
can create help sets in each of your modules, and the NetBeans
Platform will automatically resolve them into a single helpset. You
can also bind help topics to UI components to create a context-
sensitive help system for your application.

brought to you by...

NetBeans Platform 7
A Framework for Building Pluggable

Enterprise Applications
By Heiko Böck, Anton Epple, Miloš Šilhánek,

Andreas Stefik, Geertjan Wielenga, and Tom Wheeler

Applies to
NetBeans

Platform 7.0,
7.0.1, & 7.1

Refcard Update!

2 NetBeans Platform 7

DZone, Inc. | www.dzone.com

NETBEANS PLATFORM MODULES

The NetBeans Platform consists of a large set of modules. You
do not need all of them. In fact, you only need six. None of these
6 provide any UI at all, meaning that you can create server or
console applications on the NetBeans Platform, since UI is not
mandatory in any way at all.

Complete list of NetBeans Platform modules:

Module Description

boot.jar
core.jar
org-openide-filesystems.jar
org-openide-modules.jar
org-openide-util.jar
org-openide-util-lookup.jar

Provides the runtime container, consisting
of the startup sequence, the module
system, the filesystem, the service
infrastructure, and utility classes.

org-netbeans-core.jar
org-netbeans-core-execution.jar
org-netbeans-core-ui.jar
org-netbeans-core-windows

(Optional) Provides the basic UI
components provided by the NetBeans
Platform, together with related
infrastructure.

org-netbeans-core-netigso.jar
org-netbeans-core-osgi.jar
org-netbeans-libs-felix.jar
org-netbeans-libs-osgi.jar

(Optional) Provides integration with the
OSGI containers Felix and Equinox.

org-netbeans-core-output2.jar
org-openide-io.jar

(Optional) Provides an Output window for
displaying processing messages. It also
exposes an API that you can use to write
to the window and change text colors.

org-netbeans-core-multiview.jar (Optional) Provides a framework for multi-
tab windows, such as used by the Matisse
GUI Builder in NetBeans IDE.

org-openide-windows.jar (Optional) Provides the API for accessing
the window system.

org-netbeans-modules-autoupdate-services.jar
org-netbeans-modules-autoupdate-ui.jar

(Optional) Provides the Plugin Manager
together with the functionality for
accessing and processing update centers
where NetBeans modules are stored.

org-netbeans-modules-favorites.jar (Optional) Provides a customizable
window, which can be used as a
filechooser, enabling the user to select
and open folders and files.

org-openide-actions.jar (Optional) Provides a number of
configurable system actions, such as
“Cut”, “Copy”, and “Paste”.

org-openide-loaders.jar (Optional) Provides the API for connecting
data loaders to specific MIME types.

org-openide-nodes.jar
org-openide-explorer.jar

(Optional) Provides the API for modeling
business objects and displaying them
to the user.

org-netbeans-modules-javahelp.jar (Optional) Provides the JavaHelp runtime
library and enables JavaHelp sets from
different modules to be merged into a
single helpset.

org-netbeans-modules-mimelookup.jar
org-netbeans-modules-editor-mimelookup.jar

(Optional) Provides an API for discovery
and creation of MIME-specific settings
and services.

org-netbeans-modules-masterfs.jar (Optional) Provides a central wrapper file
system for your application.

org-netbeans-modules-options-api.jar (Optional) Provides an Options window
for user customizations and an API for
extending it.

org-netbeans-api-progress.jar
org-openide-execution.jar

(Optional) Provides support for
asynchronous long-running tasks and
integration for long-running tasks with
the NetBeans Platform’s progress bar.

org-netbeans-modules-queries.jar (Optional) Provides an API for getting
information about files and an SPI for
creating your own queries.

org-netbeans-modules-sendopts.jar (Optional) Provides an API and SPI
for registering your own handlers for
accessing the command line.

org-netbeans-modules-settings.jar (Optional) Provides an API for saving
module-specific settings in a user-
defined format.

org-openide-awt.jar (Optional) Provides many helper classes
for displaying UI-elements such as
notifications.

org-openide-dialogs.jar (Optional) Provides an API for displaying
standard and customized dialogs.

org-openide-text.jar (Optional) Provides an extension to the
java.swing text API.

org-netbeans-api-visual.jar (Optional) Provides a widget library
for modeling and displaying visual
representations of data.

org-netbeans-spi-quicksearch.jar (Optional) Provides the infrastructure
for integrating items into the Quick
Search field.

org-netbeans-swing-plaf.jar
org-netbeans-swing-tabcontrol
org-jdesktop-layout.jar

(Optional) Provides the look and feel and
the display of tabs and a wrapper for the
Swing Layout Extensions library.

NETBEANS PLATFORM APIs

The NetBeans Platform provides a large set of APIs. You do not
need to know or use all of them, just those that make sense in
your specific context. Below are the main API groupings,
together with the most important information related to the
grouping, such as their most important configuration attributes
and API classes.

Module System
A module is a JAR file with special attributes in its manifest file.
This is a typical NetBeans module manifest file:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.1
Created-By: 11.3-b02 (Sun Microsystems Inc.)
OpenIDE-Module-Public-Packages: -
OpenIDE-Module-Module-Dependencies: org.openide.util > 7.31.1.1
OpenIDE-Module-Java-Dependencies: Java > 1.5
OpenIDE-Module-Implementation-Version: 091216
AutoUpdate-Show-In-Client: true
OpenIDE-Module: org.demo.hello
OpenIDE-Module-Layer: org/demo/hello/layer.xml
OpenIDE-Module-Localizing-Bundle: org/demo/hello/Bundle.properties
OpenIDE-Module-Specification-Version: 1.0
OpenIDE-Module-Requires: org.openide.modules.ModuleFormat1

These are the most important NetBeans-related manifest attributes:

Attribute Defines

OpenIDE-Module Identifier of a module, provides a unique
name. The only required entry in the
manifest.

OpenIDE-Module-Layer (Optional) Location and name of the
module’s layer file.

OpenIDE-Public-Packages (Optional) By default, all packages in
a module are hidden from all other
modules. Via this attribute, you expose
packages to external modules.

OpenIDE-Module-Friends (Optional) By default, all modules in
the application can access all public
packages. Via this attribute, you can
limit access to public packages to
specific modules.

OpenIDE-Module-Localizing-Bundle (Optional) The location and name of
a properties file used as the module’s
localizing bundle.

OpenIDE-Module-Module-Dependencies
OpenIDE-Module-Java-Packages-Dependencies
OpenIDE-Module-Java-Dependencies

(Optional) Modules can request general
or specific versions of other modules,
Java packages, or Java itself.

OpenIDE-Module-Provides
OpenIDE-Module-Requires

(Optional) Modules can specify
dependencies without naming the
exact module to depend on. A module
may “provide” one or more “tokens”,
strings in the format of a Java package
or class name.

OpenIDE-Module-Specification-Version
OpenIDE-Module-Implementation-Version

(Optional) Modules can indicate two
types pieces of versioning.

AutoUpdate-Show-In-Client (Optional) Whether the module is
shown in the Plugin Manager.

Hot
Tip

For details on these and other attributes, see:
http://bits.netbeans.org/dev/javadoc/org-openide-modules

3 NetBeans Platform 7

DZone, Inc. | www.dzone.com

Window System
The window system handles the display of JPanel-like
components and integrates them with the NetBeans Platform.
The main classes are listed below.

Type Description

TopComponent A JPanel that provides a new window in your application. The
window comes with many features for free, i.e., without any
coding, such as maximize/minimize and dock/undock.

Mode A container in which TopComponents are docked. You do not need
to subclass this class to use it. Instead, it is configured in an XML file.

TopComponentGroup A group of windows, which should behave in consort. For
example, windows within a group can be opened or closed
together. As with Modes, these are defined in an XML file, not
by subclassing TopComponentGroup.

WindowManager Controls all the windows, modes, and window groups. You
can request the WindowManager for its windows, modes, and
groups. You can also cast it to a JFrame and then set the title
bar and anything else that you would do with JFrames.

A mode (that is, a window position) is defined in an XML file,
which is contributed to the central registry via entries in the
layer.xml file.

The NetBeans Platform provides a set of default modes, the most
important of which are as follows:

Type Description

editor main area of application (not necessarily an actual editor)

explorer left vertical area, e.g., for Projects window

properties right vertical area, e.g., for Properties window

navigator left lower vertical area, e.g., for Navigator window

output horizontal area at base of application

palette right vertical area, e.g., for items to drag onto a window

leftSlidingSide minimized state in left sidebar

rightSlidingSide minimized state in right sidebar

bottomSlidingSide minimized state in bottom status area

TopComponents are registered in the system as follows:

@TopComponent.Description(preferredID = “DemoTopComponent”,
iconBase=”SET/PATH/TO/ICON/HERE”,
persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = “editor”, openAtStartup = true)
@TopComponent.OpenActionRegistration(displayName = “#CTL_DemoAction”,
preferredID = “DemoTopComponent”)
public final class DemoTopComponent extends TopComponent {
 //
}

At compile time, the annotations above are converted to entries
in a generated layer file, in the “build” folder.

The WindowManager handles the display of the windows in the
application’s main frame. It is the most important class when you
need to manipulate the window system:

How do I... Description

Find a specific
TopComponent?

WindowManager.getDefault().findTopComponent(“id”)

Find a specific mode? WindowManager.getDefault().findMode(“id”)

Once you have found a mode, you can use Mode.dockInto(tc) to
programmatically dock a TopComponent into a specific mode.

Find a specific
TopComponent Group?

WindowManager.getDefault().findTopComponentGroup(“id”)

Ensure that the
application is fully
started up?

WindowManager.getDefault().invokeWhenUIReady(MyRunnable())

Get the active
TopComponent?

WindowManager.getDefault().getRegistry().getActivated()

Get a set of opened
TopComponents?

WindowManager.getDefault().getRegistry().getOpened()

Get the main frame of
the application

WindowManager.getDefault().getMainWindow()

Lookup
Lookup is a data structure for loosely coupled communication.
It is similar to but more powerful than the ServiceLoader class in
JDK 6 (for example, Lookup supports event notifications). This
enables you to load objects into the context of your application,
but also into the context of NetBeans UI components, such as
windows and nodes. These are the most important Lookups to
be aware of:

Type Description

Global lookup, provides
selection management

The Lookup that gives you access to the currently selected
UI component, most commonly the focused Node.
Lookup lkp = Utilities.actionsGlobalContext();

Local lookup, provides lookup
of NetBeans objects such as
TopComponents, Nodes, and
DataObjects.

The local context of a specific NetBeans Platform UI object.
//For Windows:
Lookup lkp = myTopComponent.getLookup();
//For Nodes:
Lookup lkp = myNode.getLookup();

Default lookup The application’s context, comparable to the JDK 6
ServiceLoader class, provided via the META-INF/services
folder.
Lookup lkp = Lookup.getDefault();

Hot
Tip

What’s a cookie? A cookie is a dynamically assigned
capability, e.g., to save an object , lookup its SaveCookie
and call save() on it.

These are typical tasks related to Lookup and how to code them:

How do I... Description

Register a service? Annotate a service provider with the @ServiceProvider class
annotation, at compile time the META-INF/services folder is
created, registering the implementation.

Find the default service
implementation?

MyService s = Lookup.getDefault().lookup(MyService.class)

Find all service
implementations?

Collection<? extends MyService> coll = Lookup.
getDefault().lookupAll(MyService.class)

Listen to changes in a
Lookup?

Tip: Keep a reference to the
result object, otherwise it
will be garbage collected.

Lookup.Result lkpResult = theLookup.
lookupResult(MyObject.class);
lkpResult.addLookupListener(
 new LookupListener() {
 @Override
 public void resultChanged(LookupEvent e)(
 Result res = (Result) e.getSource();
 Collection<? extends MyObject>
 coll = res.allInstance();
 //iterate through the collection
 }
);

lkpResult.allInstances(); // need first call

Create a Lookup for an
object?

//Lookup for single object:
Lookup lkp = Lookups.singleton(myObject);

//Lookup for multiple objects:
Lookup lkp = Lookups.fixed(myObject, other);

//Lookup for dynamic content:
InstanceContent ic = new InstanceContent();
Lookup lkp = new AbstractLookup(ic);
ic.add(myObject);

Merge Lookups? Lookup commonlkp = new ProxyLookup(
dataObjectLookup, nodeLookup,
dynamicLookup);

Provide a Lookup for my
TopComponent?

//In the constructor of TopComponent:
associateLookup(myLookup);

Provide a Lookup for a
subclass of Node?

new AbstractNode(myKids, myLookup);
new BeanNode(myDomainObj, myKids, myLookup);
new DataNode(myDataObject, myKids,
myLookup);

Provide a Lookup for any
other component?

I implement Lookup.provider.

For all the details, see:
http://wiki.netbeans.org/NetBeansDeveloperFAQ#Lookup

Hot
Tip

Follow the 4-part beginner’s tutorial on Lookup here:
http://platform.netbeans.org/tutorials/nbm-selection-1.html

4 NetBeans Platform 7

DZone, Inc. | www.dzone.com

Central Registry (System FileSystem)
The central registry is organized as a virtual file system accessible
by all the modules in a NetBeans Platform application. NetBeans
Platform APIs, such as the Window System API, make available
extension points enabling you to declaratively register your
components. A module’s contributions to the system are
provided by specialized XML files, called “layer files”, normally
named “layer.xml”.

Below are the most important extension points provided out
of the box by the NetBeans APIs, represented by folders in a layer file:

Actions, Menu, Toolbars, OptionsDialog, Services, Shortcuts, TaskList,
and Windows2.

The NetBeans Platform helps you to register items correctly in
the file system by letting you annotate your classes instead of
requiring you to manually type XML tags in the layer.xml file by
hand. The current list of annotations are listed below:

@ActionID, @ActionReference, @ActionReferences, @ActionRegistration,
@AntBasedProjectRegistration, @CompositeCategoryProvider.Registration,
@ConvertAsJavaBean, @ConvertAsProperties, @EditorActionRegistration,
@LookupMerger.Registration, @LookupProvider.Registration,
@MimeLocation, @MimeRegistration, @MimeRegistrations,
@NbBundle.Messages, @NodeFactory.Registration,
@OptionsPanelController.ContainerRegistration,
@OptionsPanelController.SubRegistration,
@OptionsPanelController.TopLevelRegistration,
@ProjectServiceProvider, @ServiceProvider, @ServiceProviders,
@ServicesTabNodeRegistration, @TopComponent.OpenActionRegistration,
@TopComponent.Registration

The registry makes use of the FileSystem API to access the
registered data.

FileSystem API
The FileSystem API provides stream-oriented access to flat and
hierarchical structures, such as disk-based files on local or remote
servers, memory-based files, and even XML documents.

Items within the folders in the layer.xml file are not java.io.Files,
but org.openide.filesystems.FileObjects. The differences between
them are as follows:

java.io.File org.openide.filesystems.FileObject

Create with a constructor Get from the FileSystem.

Can represent something that
doesn’t exist, such as new
File(“some/place/that/doesnt/exist”)

Represents something that already exists.

Cannot listen to changes FileChangeListener listens to changes to FileObject,
as well as anything beneath the FileObject.

Represents a file on disk Not necessarily a file on disk, could be in a
database, FTP server, virtual, or anywhere else.

No attributes Can have attributes, which are key-value pairs
associated with a FileObject.

Converting between common data types:

How do I... Description

Get a java.io.File for a FileObject? FileUtil.toFile(FileObject fo)

Get a FileObject for a File? FileUtil.toFileObject(File f)

Get a DataObject for a FileObject? DataObject.find (FileObject fo)

Get a FileObject for a
DataObject?

theDataObject.getPrimaryFile()

Get a Node for a DataObject? theDataObject.getNodeDelegate()

Get a DataObject for a Node? DataObject dob = n.getLookup().lookup (DataObject.class);
if (dob != null) {
 //do something
}

Get a reference to the central
registry?

//Get the root:
FileUtil.getConfigRoot()
//Get a specific folder:
FileUtil.getConfigFile(“path/to/my/folder”)

The NetBeans Platform provides custom URLs:

jar For representing entries inside JARs and ZIPs, including the root directory entry.

nbres A resource loaded from a NetBeans module, e.g.
nbres:/org/netbeans/modules/foo/resources/foo.dtd.

nbresloc Same, but transparently localized and branded according to the usual
conventions, e.g. nbresloc:/org/netbeans/modules/foo/resources/foo.
html loads the same as nbres:/org/netbeans/modules/foo/resources/
foo_nb_ja.html.

nbinst Loads installation files using InstalledFileLocator in installation directories,
e.g. nbinst:///modules/ext/some-lib.jar may load the same thing as file:/
opt/netbeans/ide/modules/ext/some-lib.jar.

nbfs Refers to a file object in the System FileSystem (XML layers). For example,
nbfs:/SystemFileSystem/Templates/Other/html.html refers to an HTML file
template installed in the IDE.

For all the details, see:
http://bits.netbeans.org/dev/javadoc/org-openide-filesystems

Actions
Actions are functions invoked when the user presses a menu item,
toolbar button, or keyboard shortcut.

When porting your existing application to the NetBeans Platform,
you do not need to change the code in your standard JDK
actions (AbstractAction, ActionListener, etc).

Instead, you need to register them via class-level annotations
which, when the module is compiled, will result in entries
generated in the module’s layer file.

Below is shown how an action is registered:

@ActionID(category = “File”,
id = “org.demo.project.actions.DemoAction”)
@ActionRegistration(iconBase = “org/demo/resources/icon.png”,
displayName = “#CTL_DemoAction”)
@ActionReferences({
 @ActionReference(path = “Menu/File”, position = 0),
 @ActionReference(path = “Toolbars/File”, position = 0),
 @ActionReference(path = “Shortcuts”, name = “D-SPACE”)
})
@Messages(“CTL_DemoAction=Demo”)
public final class DemoAction implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
}

The entries generated into the layer file from the annotation
above are used by the NetBeans Platform to construct the
application’s actions, menus, toolbars, and keyboard shortcuts.

When needing to change a component in the menu bar or
toolbar, extend AbstractAction and implement Presenter:

@ActionID(category = “Build”, id = “org.demo.module1.DemoAction”)
@ActionRegistration(iconBase = “org/demo/module1/icon.png”,
displayName = “#CTL_DemoAction”)
@ActionReferences({
 @ActionReference(path = “Menu/File”, position = 0),
 @ActionReference(path = “Toolbars/File”, position = 0),
 @ActionReference(path = “Shortcuts”, name = “D-M”)
})
public final class DemoAction extends AbstractAction implements
Presenter.Toolbar
{
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
 public Component getToolbarPresenter() {
 // TODO define the component to be displayed
 }
}

For all the details, see:
http://bits.netbeans.org/dev/javadoc/org-openide-awt

5 NetBeans Platform 7

DZone, Inc. | www.dzone.com

Nodes, Explorer Views & Property Sheets
A Node is a generic model for a business object, which it
visualizes within an Explorer View. Each Node can have visual
attributes, such as a display name, icon, properties, and actions.

The list of Nodes is below, which you can use as-is or extend as needed:

Type Description

Node Base class for representing business objects to the user.

AbstractNode The usual base class you would use for your Node implementations.

DataNode Specialized Node class for wrapping a file and displaying it as a Node
to the user.

BeanNode Specialized Node class that wraps a JavaBean and presents it to the
user as a Node. It also provides simplistic access to property sheets.

FilterNode Specialized Node class that decorates an existing Node by adding/
removing features to/from it.

A Node is a container for its own child nodes. Factory classes:

Type Description

ChildFactory Factory for creating child Nodes. Optionally, these can be created
 asynhronously, that is, when the user expands the Node.

Children.Keys Older version of ChildFactory. You should be able to replace any
 implementation of Children.Keys with ChildFactory.

Less Used: Children.Array, Children.Map, and Children.SortedArray.

Explorer views are Swing components that display Node hierarchies.

Type Description

BeanTreeView JTree for displaying Nodes.

OutlineView JTree for displaying nodes, with a JTable for displaying the related
node properties.

PropertySheetView Property sheet displaying the properties of a node.

PropertyPanel A generic GUI component for displaying and editing a single
JavaBeans property.

Less Used: IconView, ListView, ChoiceView, ContextTreeView,
MenuView, and TableView.

The NetBeans Platform provides default property editors for:

Boolean, Color, Dimension, Font, Insets, Integer, Point, Rectangle,
File, Class, String, URL, Date, Properties, ListModel, and TableModel.

For all the details, see:
http://bits.netbeans.org/dev/javadoc/org-openide-explorer/org/
openide/explorer/doc-files/propertyViewCustomization.html

Visual Library
The Visual Library provides predefined widgets with predefined actions,
layouts, and borders. The list of predefined widgets is as follows:

Type Description

Scene Provides the root element of the hierarchy of displayed widgets.

LayerWidget Provides a transparent surface, like a JGlassPane.

ComponentWidget Provides a placeholder widget for AWT/Swing components.

ImageWidget Provides images to the scene.

LabelWidget Provides a label as a widget.

IconNodeWidget Provides an image and a label.

ConnectionWidget Provides connections between widgets, with anchors, control
points, and end points.

ConvolveWidget Provides coil/twist effect, i.e., a convolve filter to a child element.

LevelOfDetailsWidget Provides a container for widgets, with visibility and zoom features.

ScrollWidget/
SwingScrollWidget

Provides a scrollable area, with/ without JScrollBar as scroll bars.

SeparatorWidget Provides a space with thickness and orientation.

For all the details, see:
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual

Dialogs
The NetBeans Dialogs API provides a number of standard
dialogs for displaying standard messages for information,
questions (such as “Are you sure?”, when saving), input, and
error messages to the user.

Each dialog comes with a standard appearance, buttons, and icons.

Type Description

Information Dialog NotifyDescriptor d = new NotifyDescriptor.Message(“Text”);

Question Dialog NotifyDescriptor d = new NotifyDescriptor.Confirmation(“Title”, “Text”);

Input Dialog ’NotifyDescriptor d = new NotifyDescriptor.InputLine(“Title”, “Text”);

Add the Dialogs API to your module and then use the table
above to create dialogs as follows (in the example below, we
display an information dialog):

NotifyDescriptor d = new NotifyDescriptor.Message(“Text”);
DialogDisplayer.getDefault().notify(d);

For all the details, see:
http://bits.netbeans.org/dev/javadoc/org-openide-dialogs

Hot
Tip

The Dialogs API also provides a group of Wizard classes for
multipage dialogs.

Other Useful NetBeans APIs
Type Description

org.apache.tools.ant.module.api.
support.ActionUtils

Used for running Ant targets.

org.openide.awt.HtmlBrowser.
URLDisplayer

Displays URLs, opens browsers, distinguishes
embedded vs. external browsers.

org.openide.awt.StatusDisplayer Lets you control the status line, i.e, you can write into it
or change it.

org.openide.util.ImageUtilities Provides useful static methods for manipulation with
images/icons, results are cached.

org.openide.util.RequestProcessor Performs asynchronous threads in a dedicated thread pool.

org.openide.windows.IOProvider Lets you create new tabs in the Output window and write
into them.

Hot
Tip

Explore the Utilites API (org.openide.util.jar) for many
useful classes that all NetBeans Platform applications
can use.

REUSABLE SWING COMPONENTS

In addition to the NetBeans APIs, many UI components can be
used as-is, simply by including the related JAR (or JARs) in your
application. Normally, they also provide an API for accessing
and changing their default behavior.

Component Palette, Database Explorer, Debugger, Diff Viewer, Editors
(Properties, Java, XML, HTML, SQL, and more), External Browser, File
Browser (Favorites Window), JavaHelp Window, Navigator Window, Options
Window, Output Window, Progress Bar, Properties Window, Plugin Manager,
Project System, Quick Search Field, Task List, Terminal Window, UndoRedo
Manager, Validation System, and Versioning Systems (CVS, Subversion,
Mercurial).

BRANDING

Everything in the NetBeans Platform can be customized to fit
your specific business requirements. For example:

Icons, Look & Feel, Splash Screen, Strings (Menu Items, Title Bar, etc.)

Right-click an application in the Projects window, choose
Branding, and use the Branding Editor.

6 NetBeans Platform 7

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 2.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

NETBEANS PLATFORM GOTCHAS

The following are frequently asked questions:

FAQ Answers

What’s the difference
between a ‘NetBeans
Platform Application’ and a
‘Module Suite’?

The former gives you a subset of the NetBeans Platform, the
latter a subset of NetBeans IDE. Use the former when building
on the NetBeans Platform, the latter when building
on NetBeans IDE.

Why is my explorer view
not synchronized with the
Properties window?

Because you have not exposed the Node, with its
Properties, to the Lookup. For example, add this line to the
TopComponent constructor:
associateLookup(ExplorerUtils.createLookup(em,
getActionMap());

I created a palette but it
isn’t showing when I open
the related TopComponent.

Because your TopComponent is not registered in the ‘editor’
mode, where the palette is available.

NETBEANS PLATFORM ON-LINE

Technical information on the NetBeans Platform is available
on-line in many different forms. The most important of these
are listed below:

Site URL

Homepage platform.netbeans.org

NetBeans API javadoc http://bits.netbeans.org/dev/javadoc/

Tutorials platform.netbeans.org/tutorials

Blogs planetnetbeans.org

FAQ http://wiki.netbeans.org/NetBeansDeveloperFAQ

Mailing List dev@platform.netbeans.org

Screencast http://platform.netbeans.org/tutorials/nbm-10-top-apis.html

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

The Definitive Guide to NetBeans™ Platform is a thorough
and definitive introduction to the NetBeans Platform, cover-
ing all its major APIs in detail, with relevant code examples
used throughout.

BUY NOW
books.dzone.com/books/definitive-guide-netbeans

Rich Client Programming will help you get started with
NetBeans module development, master NetBeans’ key
APIs, and learn proven techniques for building reliable
desktop software.

BUY NOW
books.dzone.com/books/richclientprog

Heiko Böck is the author of the well-known “The Definitive Guide to
NetBeans Platform.”

Anton Epple (http://eppleton.sharedhost.de/) is a NetBeans Platform
consultant & trainer.

Miloš Šilhánek is a Java, NetBeans Platform, 3D and AI enthusiast and
Czech translator of Heiko Böck’s book.

Andreas Stefik is an Assistant Professor at Southern Illinois
University Edwardsville.

Tom Wheeler (http://www.tomwheeler.com) has worked with NetBeans
Platform nearly every day for the past five years and is a consultant, trainer
and member of the NetBeans Dream Team.

Geertjan Wielenga works on the NetBeans team and is co-author of “Rich
Client Programming: Plugging into the NetBeans Platform.”

This Refcard could not have been made without the technical insights provided by the following: David Beer, Tim Boudreau, Thibaut Colar, Tim Dudgeon, Jeremy Faden,
Laurent Forêt, Jesse Glick, Aleksandar Kochnev, Manikantan, Ernie Rael, Bernd Ruehlicke, Kris Scorup, Andrea Selva, Timothy Sparg, and Antonio Vieiro.

150

Continuous Delivery
CSS3
NoSQL
Android Application
Development

