

DZone, Inc. | www.dzone.com

By Heiko Böck, Anton Epple, Miloš Šilhánek,
Andreas Stefik, Geertjan Wielenga, and Tom Wheeler

E
ss

e
n

ti
al

 N
e

tB
e

an
s

P
la

tf
o

rm

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#80

Essential NetBeans Platform
CONTENTS INCLUDE:
n	 About NetBeans Platform
n	 Getting Started
n	 Main Benefits
n	 NetBeans Platform Modules
n	 NetBeans Platform APIs
n	 NetBeans Platform Gotchas and more...

ABOUT NETBEANS PLATFORM

The NetBeans Platform is a generic framework for commercial
and open source desktop Swing applications. It provides the
“plumbing” that you would otherwise need to write yourself,
such as the code for managing windows, connecting actions
to menu items, and updating applications at runtime. The
NetBeans Platform provides all of these out of the box on top
of a reliable, flexible, and well-tested modular architecture.

In this refcard, you are introduced to the key concerns of the
NetBeans Platform, so that you can save years of work
when developing robust and extensible applications.

GETTING STARTED

To get started with the NetBeans Platform:

Approach How to Get Started

IDE Download NetBeans IDE, which includes NetBeans Platform development
tools such as templates, wizards, and complete NetBeans Platform samples
out of the box.

Maven Use the Maven archetypes for NetBeans Platform development:

NetBeans Platform archetype:
- GroupId: org.codehaus.mojo.archetypes
- ArtifactId: netbeans-platform-app-archetype
NetBeans Module archetype:
- GroupId: org.codehaus.mojo.archetypes
- ArtifactId: nbm-archetype

Ant Download the NetBeans Platform ZIP file, which includes a build harness.
The build harness includes a long list of Ant targets for compiling, running,
testing, and packaging NetBeans Platform applications.

Join the NetBeans Community mailing lists!

MAIN BENEFITS

The following are the main features of the NetBeans Platform,
showing you the benefits of using it rather than your homegrown
Swing framework.

Feature Description

Module System Modularity offers a solution to “JAR hell” by letting you organize code into
strictly separated and versioned modules. Only modules that have explicitly
declared dependencies on each other are able to use code from each other’s
exposed packages. This strict organization is of particular relevance to large
applications developed by engineers in distributed environments, during the
development as well as the maintenance of their shared codebase.

Lifecycle
Management

Just as application servers such as GlassFish provide lifecycle services to web
applications, the NetBeans runtime container provides services to Swing
applications. Application servers understand how to compose web modules,
EJB modules, and so on, into a single web application, just as the NetBeans
runtime container understands how to compose NetBeans modules into a
single Swing application.

Pluggability End users of the application benefit because they are able to install modules
into their running applications via an update center, since NetBeans modules
can be installed, uninstalled, activated, and deactivated at runtime.

Service
Infrastructure

The NetBeans Platform provides an infrastructure for registering and
retrieving service implementations, enabling you to minimize direct
dependencies between individual modules and enabling a loosely coupled
architecture with high cohesion and low coupling.

File System Unified API providing stream-oriented access to flat and hierarchical
structures, such as disk-based files on local or remote servers, memory-based
files and even XML documents.

Window System Most serious applications need more than one window. Coding good
interaction between multiple windows is not a trivial task. The NetBeans
window system lets you maximize/minimize, dock/undock, and drag-and-
drop windows, without you providing the code.

Standardized UI
Toolkit

Swing is the standard UI toolkit and is the basis of all NetBeans Platform
applications. A related benefit is that you can change look & feels very easily,
and add internationalization and Java 2D effects to your applications

Generic
Presentation
Layer

With the NetBeans Platform, you’re not constrained by one of the typical
pain points in Swing: the JTree model is completely different than the JList
model, even though they present the same data. Switching between them
means rewriting the model. The NetBeans Nodes API provides a generic
model for presenting your data. The NetBeans Explorer & Property Sheet
API provides several advanced Swing components for displaying Nodes.

Advanced Swing
Components

In addition to a window system, the NetBeans Platform provides many other
UI-related components, such as a property sheet, a palette, wizards, complex
Swing components for presenting data, a Plugin Manager, and an Output
window.

JavaHelp
Integration

The JavaHelp API is an integral part of the NetBeans Platform. You can
create help sets in each of your modules and the NetBeans Platform will
automatically resolve them into a single helpset. You can also bind help
topics to UI components to create a context-sensitive help system for your
application.

NETBEANS PLATFORM MODULES

The NetBeans Platform consists of a large set of modules. You
do not need all of them. In fact, you only need 5. You also do
not need to have a user interface, meaning that you can create
server/console applications on the NetBeans Platform.

The complete list of NetBeans Platform modules is provided
below. Items in red are mandatory, items in green are optional.

Module Description

boot.jar
core.jar
org-openide-filesystems.jar
org-openide-modules.jar
org-openide-util.jar

Provides the runtime container.

org-netbeans-core.jar
org-netbeans-core-execution.jar
org-netbeans-core-ui.jar
org-netbeans-core-windows.jar

Provides the basic UI components provided by
the NetBeans Platform, together with related
infrastructure.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://platform.netbeans.org?cid=928528
http://platform.netbeans.org?cid=928528

DZone, Inc. | www.dzone.com

2
Essential NetBeans Platform

org-netbeans-core-output2.jar
org-openide-io.jar

Provides an Output window for displaying
processing messages. It also exposes an API
that you can use to write to the window and
change text colors.

org-netbeans-core-multiview.jar Provides a framework for multi-tab windows,
such as used by the Matisse GUI Builder in
NetBeans IDE.

org-openide-windows.jar Provides the API for accessing the window
system.

org-netbeans-modules-autoupdate-services.jar
org-netbeans-modules-autoupdate-ui.jar

Provides the Plugin Manager together with
the functionality for accessing and processing
update centers where NetBeans modules are
stored.

org-netbeans-modules-favorites.jar Provides a customizable window which can
be used as a filechooser, enabling the user to
select and open folders and files.

org-openide-actions.jar Provides a number of configurable system
actions, such as “Cut”, “Copy”, and “Paste”.

org-openide-loaders.jar Provides an API that lets an application
recognize file types.

org-openide-nodes.jar
org-openide-explorer.jar
org-netbeans-swing-outline.jar

Provides the API for modeling business objects
and displaying them to the user.

org-netbeans-modules-javahelp.jar Provides the JavaHelp runtime library and
enables JavaHelp sets from different modules
to be merged into a single helpset.

org-netbeans-modules-mimelookup.jar
org-netbeans-modules-editor-mimelookup.jar

Provides an API for discovery and creation of
settings specific to file types.

org-netbeans-modules-masterfs.jar Provides a central wrapper file system for your
application.

org-netbeans-modules-options-api.jar Provides an Options window for user
customizations and an API for extending it.

org-netbeans-api-progress.jar
org-openide-execution.jar
org-netbeans-modules-progress-ui.jar

Provides support for asynchronous long
running tasks and integration for long running
tasks with the NetBeans Platform’s progress bar.

org-netbeans-modules-queries.jar Provides an API for getting information about
files and an SPI for creating your own queries.

org-netbeans-modules-sendopts.jar Provides an API and SPI for registering your
own handlers for accessing the command line.

org-netbeans-modules-settings.jar Provides an API for saving module-specific
settings in a user-defined format.

org-openide-awt.jar Provides many helper classes for displaying UI
elements such as notifications.

org-openide-dialogs.jar Provides an API for displaying standard and
customized dialogs.

org-openide-text.jar Provides an extension to the javax.swing,text
API.

org-netbeans-api-visual.jar Provides a widget & graph library for modeling
and displaying visual representations of data.

org-netbeans-spi-quicksearch.jar Provides the infrastructure for integrating items
into the Quick Search field.

org-netbeans-swing-plaf.jar
org-netbeans-swing-tabcontrol
org-jdesktop-layout.jar

Provides the look and feel and the display
of tabs and a wrapper for the Swing Layout
Extensions library.

Some of the items in the list above can be used outside of
the NetBeans Platform. In these cases, you can put the JAR
on the classpath of a standard Swing application and use the
related functionality there: org-openide-filesystems.jar (to use
the virtual filesystem), org-openide-util.jar (to use the Lookup
class), org-openide-nodes.jar & org-openide-explorer.jar (to
use Nodes and explorer views), org-netbeans-swing-outline.
jar (to use a Swing treetable component), org-netbeans-api-
visual.jar (to use the widget library).

NETBEANS PLATFORM APIs

The NetBeans Platform provides a large set of APIs. You do not
need to know or use all of them, just those that make sense
in your specific context. Below are the main API groupings,
together with the most important information related to the
grouping, such as their most important configuration attributes
and API classes.

Module System
A module is a JAR file with special attributes in its manifest file.
This is a typical NetBeans Platform manifest file:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.1
Created-By: 11.3-b02 (Sun Microsystems Inc.)
OpenIDE-Module-Public-Packages: -
OpenIDE-Module-Module-Dependencies: org.openide.util > 7.31.1.1
OpenIDE-Module-Java-Dependencies: Java > 1.5
OpenIDE-Module-Implementation-Version: 091216
AutoUpdate-Show-In-Client: true
OpenIDE-Module: org.demo.hello
OpenIDE-Module-Layer: org/demo/hello/layer.xml
OpenIDE-Module-Localizing-Bundle: org/demo/hello/Bundle.properties
OpenIDE-Module-Specification-Version: 1.0
OpenIDE-Module-Requires: org.openide.modules.ModuleFormat1

These are the most important NetBeans-related manifest
attributes.

Type Description

OpenIDE-Module The identifier of a module, providing a unique
name used for recognition by the module system.
This is the only required entry in a manifest file
for a module.

OpenIDE-Module-Layer The location and name of the module’s layer.
xml file, if any.

OpenIDE-Module-Public-Packages By default, all packages in a module are hidden
from all other modules. Via this attribute, you
expose packages to external modules.

OpenIDE-Module-Localizing-Bundle The location and name of a properties file
providing a display name and the like.

OpenIDE-Module-Module-Dependencies
OpenIDE-Module-Java-Dependencies

Modules can request general or specific versions
of other modules (|OpenIDE-Module-Module-
Dependencies|), Java packages (|OpenIDE-
Module-Package-Dependencies|), or Java itself
(|OpenIDE-Module-Java-Dependencies|).

OpenIDE-Module-Provides
OpenIDE-Module-Requires

Modules can specify dependencies without
naming the exact module to depend on. A
module may /provide/ one or more /tokens/.
These are strings of conventional meaning, in the
format of a Java package or class name.

OpenIDE-Module-Specification-Version
OpenIDE-Module-Implementation-Version

In line with the Java Versioning Specification,
modules can indicate two pieces of version
information about themselves using the
|OpenIDE-Module-Specification-Version| and the
|OpenIDE-Module-Implementation-Version| tags.

AutoUpdate-Show-In-Client This attribute determines whether the mod-
ule is shown in the Plugin Manager.

For details on these and other attributes, see
http://bits.netbeans.org/6.8/javadoc/org-openide-modules.

Window System
The window system handles the display of JPanel-like
components and integrates them with the NetBeans Platform.
The main classes are listed below.

Type Description

TopComponent A JPanel that provides a new window in your application. The window
comes with many features for free, such as maximize/minimize and
dock/undock.

Mode A container in which TopComponents are docked. You do not need to
subclass this class to use it. Instead, it is configured in an XML file.

TopComponentGroup A group of windows, which should behave in concert. For example,
windows within a group can be opened or closed together. As
with Modes, these are defined in an XML file, not by subclassing
TopComponentGroup.

WindowManager Controls all the windows, modes, and window groups. You can request
the WindowManager for its windows, modes, and groups. You can also
cast it to a JFrame and then set the title bar and anything else that you
would do with JFrames.

A mode, that is, a window position, is defined in an XML file,
which is contributed to the System FileSystem via registration

Hot
Tip

To influence the lifecycle of a module, extend
org.openide.modules.ModuleInstall, and register it in
the manifest under the OpenIDE-Module-Install key.

http://www.dzone.com
http://www.refcardz.com
http://platform.netbeans.org?cid=928528
http://bits.netbeans.org/6.8/javadoc/org-openide-modules

DZone, Inc. | www.dzone.com

3
Essential NetBeans Platform

Hot
Tip

Hide the existing modes and create your own, if the
existing ones are really not sufficient for you.

entries in the layer.xml file. The NetBeans Platform provides
a set of default modes, the most important of which are as
follows:

Type Description

editor main area of application (not necessarily an actual editor)

explorer left vertical area, such as for a Projects window

properties right vertical area, typically for a Properties window

navigator left lower vertical area

output horizontal area at base of application

palette right vertical area for items to drag into a visual pane

leftSlidingSide minimized state in left sidebar

rightSlidingSide minimized state in right sidebar

bottomSlidingSide minimized state in bottom status area

A TopComponent is registered in a mode as follows, note
especially the lines in bold below:

<folder name=”Windows2”>
 <folder name=”Components”>
 <file name=”MyTopComponent.settings” url=”MyTopComponentSettings.xml”/>
 </folder>
 <folder name=”Modes”>
 <folder name=”editor”>
 <file name=”MyTopComponent.wstcref” url=”MyTopComponentWstcref.xml”/>
 </folder>
 </folder>
</folder>

The XML files referred to above are small settings files that
NetBeans IDE can generate for you.

Though the default modes should be sufficient for most
business scenarios, you might like to adjust them. In that case,
you are creating your own mode definitions. A mode definition
must follow the related DTD, which is as follows:
http://netbeans.org/dtds/mode-properties2_1.dtd

The window manager handles the display of the windows in
the application’s main frame. Aside from being able to access
its main Frame, you can also query it for information, as listed
below:

How do I... Description

Find a specific
TopComponent?

WindowManager.getDefault().findTopComponent(“id”)

Find a specific mode? WindowManager.getDefault().findMode(“id”)

Once you have found a mode, you can use Mode.dockInto(tc)
to programmatically dock a TopComponent into a specific
mode.

Find a specific
TopComponentGroup?

WindowManager.getDefault().findTopComponent
Group(“id”)

Ensure that the application is
fully started up?

WindowManager.getDefault().invokeWhenUIReady(Runnable)

Get the active
TopComponent?

WindowManager.getDefault().getRegistry().
getActivated()

Get a set of opened
TopComponents?

WindowManager.getDefault().getRegistry().getOpened()

Get the main frame of the
application

WindowManager.getDefault().getMainWindow()

Lookup
Lookup is a data structure for loosely coupled communication.
It is similar to but more powerful than the ServiceLoader
class in JDK 6 (for example, Lookup supports event
notifications) enabling you to load objects into the context

of your application, but also into the context of NetBeans UI
components, such as windows and Nodes.

These are the most important Lookups to be aware of:

Type Description

Global lookup, provides
selection management

The Lookup that gives you access to the currently selected UI
component, most commonly the focused Node.

Lookup lkp = Utilities.actionsGlobalContext();

Local lookup, provides
lookup of NetBeans objects
such as windows and
Nodes

The local context of a specific NetBeans Platform UI object.
//For Windows components:

Lookup lkp = myTopComponent,getLookup();

//For Nodes:

Lookup lkp = myNode.getLookup();

Default lookup The application’s context, comparable to the JDK 6 ServiceLoader
class, provided via the META-INF/services folder.

Lookup lkp = Lookup.getDefault();

These are typical tasks related to Lookup and how to code them:

How do I... Description

Register a service? Annotate a service provider with the
@ServiceProvider class annotation, at compile time the META-
INF/services folder is created, registering the implementation.

Find the default service
implementation?

MyService svc = Lookup.getDefault().lookup(MyService.class)

Find all service
implementations?

Collection<? extends MyService> coll = Lookup.getDefault().
lookupAll(MyService.class)

Listen to changes in a Lookup?

Tip: Keep a reference to the
result object, otherwise it will
be garbage collected.

Lookup.Result lkpResult = theLookup.lookupResult(MyObject.
class);
lkpResult.addLookupListener(
 new LookupListener() {
 @Override
 public void resultChanged(LookupEvent e)(
 Result res = (Result) e.getSource();
 Collection<? extends MyObject>
 coll = res.allInstance();
 //iterate through the collection
 }
);

lkpResult.allInstances(); // first call is needed

Create a Lookup for an object? //Lookup for single object:
Lookup lkp = Lookups.singleton(myObject);

//Lookup for multiple objects:
Lookup lkp = Lookups.fixed(myObject, other);

//Lookup for dynamic content:
InstanceContent ic = new InstanceContent();
Lookup lkp = new AbstractLookup(ic);
ic.add(myObject);

Merge Lookups? Lookup commonlkp = new ProxyLookup(dataObjectLookup,
nodeLookup, dynamicLookup);

Provide a Lookup for my
TopComponent?

//In the constructor of TopComponent:
associateLookup(myLookup);

Provide a Lookup for a subclass
of AbstractNode?

new AbstractNode(myKids, myLookup);

Central Registry (System FileSystem)
The central registry is organized as a virtual file system
accessible by all the modules in a NetBeans Platform
application. NetBeans Platform APIs, such as the Window
System API, make available extension points enabling you
to declaratively register your components. A module’s
contributions to the system are provided by specialized XML
files, called “layer files”, normally named “layer.xml”.

Below are the most important extension points provided out
of the box by the NetBeans APIs, represented by folders in a
layer file:

Actions, Menu, Toolbars, Navigator/Panels, OptionsDialog, Services,
Shortcuts, TaskList, and Windows2.

The NetBeans Platform helps you to register items correctly
in the file system by letting you, in some cases, annotate your
classes instead of requiring you to manually type XML tags
in the layer.xml file by hand. The current set of annotations
impacting the layer.xml is listed below:

http://www.dzone.com
http://www.refcardz.com
http://platform.netbeans.org?cid=928528
http://netbeans.org/dtds/mode-properties2_1.dtd

DZone, Inc. | www.dzone.com

4
Essential NetBeans Platform

@AntBasedProjectRegistration, @CompositeCategoryProvider.Registration,
@EditorActionRegistration,@LookupMerger.Registration, @LookupProvider.
Registration, @NodeFactory.Registration, @OptionsPanelController.
ContainerRegistration, @OptionsPanelController.SubRegistration,
@OptionsPanelController.TopLevelRegistration, @ProjectServiceProvider,
@ServiceProvider, @ServicesTabNodeRegistration

The registry makes use of the FileSystem API to access the
registered data.

FileSystem API
The FileSystem API provides stream-oriented access to flat
and hierarchical structures, such as disk-based files on local or
remote servers, memory-based files and even XML documents.

Items within the folders in the layer.xml file are not java.io.Files,
but org.openide.filesystems.FileObjects. The differences
between them are as follows:

java.io.File org.openide.filesystems.FileObject

Create with a constructor Get from the FileSystem

Can represent something that
doesn’t exist, such as new
File(“some/place/that/doesnt/
exist”)

Typically represents something that exists

Cannot listen to changes FileChangeListener listens to changes to FileObject, as well
as anything beneath the FileObject

Represents a file on disk Not necessarily a file on disk, could be in a database, FTP
server, virtual, or anywhere else

No attributes Can have attributes, which are key-value pairs associated
with a FileObject

Converting between common data types:

How do I get... Description

a java.io.File for a FileObject? FileUtil.toFile(FileObject fo)

a FileObject for a File? FileUtil.toFileObject(File f)

a DataObject for a FileObject? DataObject.find (theFileObject)

a FileObject for a DataObject? theDataObject.getPrimaryFile()

a Node for a DataObject? theDataObject.getNodeDelegate()

a DataObject for a Node? DataObject dob = (DataObject) theNode.
getLookup().lookup (DataObject.class);
if (dob != null) {
 //do something
}

a reference to the System FileSystem? //Get the root:
FileUtil.getConfigRoot()
//Get a specific folder:
FileUtil.getConfigFile(“path/to/my/folder”)

The NetBeans Platform provides a number of custom URLs for
accessing things.

jar For representing entries inside JARs and ZIPs, including the root directory entry

nbres A resource loaded from a NetBeans module, e.g.
nbres:/org/netbeans/modules/foo/resources/foo.dtd

nbresloc Same, but transparently localized and branded according to the usual conventions,
e.g. nbresloc:/org/netbeans/modules/foo/resources/foo.html may actually load the
same thing as nbres:/org/netbeans/modules/foo/resources/foonbja.html.

nbinst Loads installation files using InstalledFileLocator in installation directories, e.g.
nbinst:///modules/ext/some-lib.jar may load the same thing as file:/opt/netbeans/
ide4/modules/ext/some-lib.jar.

nbfs Refers to a file object in the System FileSystem (XML layers). For example, nbfs:/
SystemFileSystem/Templates/Other/html.html refers to an HTML file template
installed in the IDE

Actions
Actions are pieces of code that are invoked when the user
presses a menu item, toolbar button, or keyboard shortcut.

Type Description

Actions.alwaysEnabled An action that is always enabled. Typically, use this for “File > Open”
actions, for example.

Actions.context An action that is bound to a context. If an action should only be
enabled under certain conditions, use this action.

Actions.callback An action with an assigned key used to find a delegate in the
ActionMap of the active component.

When porting your existing application to the NetBeans
Platform, you do not need to change your standard JDK

actions (AbstractAction, ActionListener, etc) in any way.
Instead, you need to bind them to one of the classes listed
above, using the layer.xml file to do so.

Actions.alwaysEnabled:
<file name=”your-pkg-action-id.instance”>
 <attr name=”instanceCreate”
 methodvalue=”org.openide.awt.Actions.alwaysEnabled”/>
 <attr name=”delegate”
 methodvalue=”your.pkg.YourAction.factoryMethod”/>
 <attr name=”displayName” bundlevalue=”your.pkg.Bundle#key”/>
 <attr name=”iconBase” stringvalue=”your/pkg/YourImage.png”/>
 <!-- if desired: <attr name=”noIconInMenu” boolvalue=”false”/>
 <!-- if desired: <attr name=”asynchronous” boolvalue=”true”/>
</file>

Actions.context:
<file name=”action-pkg-ClassName.instance”>
 <attr name=”instanceCreate”
 methodvalue=”org.openide.awt.Actions.context”/>
 <attr name=”type” stringvalue=”org.netbeans.api.actions.Openable”/>
 <attr name=”selectionType” stringvalue=”ANY”/> (or EXACTLY_ONE)
 <attr name=”delegate” newvalue=”action.pkg.YourAction”/>
 <attr name=”key” stringvalue=”KeyInActionMap”/>
 <attr name=”surviveFocusChange” boolvalue=”false”/>
 <attr name=”displayName” bundlevalue=”your.pkg.Bundle#key”/>
 <attr name=”iconBase” stringvalue=”your/pkg/YourImage.png”/>
 <!-- if desired: <attr name=”noIconInMenu” boolvalue=”false”/>
 <!-- if desired: <attr name=”asynchronous” boolvalue=”true”/>
</file>

Actions.callback:
<file name=”action-pkg-ClassName.instance”>
 <attr name=”instanceCreate”
 methodvalue=”org.openide.awt.Actions.callback”/>
 <attr name=”key” stringvalue=”KeyInActionMap”/>
 <attr name=”surviveFocusChange” boolvalue=”false”/>
 <attr name=”fallback” newvalue=”action.pkg.DefaultAction”/>
 <attr name=”displayName” bundlevalue=”your.pkg.Bundle#key”/>
 <attr name=”iconBase” stringvalue=”your/pkg/YourImage.png”/>
 <!-- if desired: <attr name=”noIconInMenu” boolvalue=”false”/>
 <!-- if desired: <attr name=”asynchronous” boolvalue=”true”/>
</file>

For all the details, see http://bits.netbeans.org/6.8/javadoc/
org-openide-awt/org/openide/awt/Actions.html
An action is registered in the layer.xml file in the “Actions”
folder, within a folder reflecting its place in the action pool.

<folder name=”Actions”>
 <folder name=”Window”>
 <file name=”your-pkg-action-id.instance”>
 ...
 </file>
 </folder>
</folder>

Depending on your business requirements, once you have
actions registered in the layer.xml file, you need to bind them
to menu items, toolbar buttons, and keyboard shortcuts.
Menu Items
<folder name=”Menu”>
 <folder name=”Window”>
 <file name=”your-pkg-action-id.shadow”>
 <attr name=”originalFile” stringvalue=”Actions/Window/
 your-pkg-action-id.instance”/>
 <attr name=”position” intvalue=”50”/>
 </file>
 </folder>
</folder>

Toolbar Buttons
<folder name=”Toolbars”>
 <folder name=”Window”>
 <file name=”your-pkg-action-id.shadow”>
 <attr name=”originalFile” stringvalue=”Actions/Window/
 your-pkg-action-id.instance”/>
 <attr name=”position” intvalue=”50”/>
 </file>
 </folder>
</folder>

http://www.dzone.com
http://www.refcardz.com
http://platform.netbeans.org?cid=928528
http://bits.netbeans.org/6.8/javadoc/org-awt/org/openide/awt/Actions.html
http://bits.netbeans.org/6.8/javadoc/org-awt/org/openide/awt/Actions.html

DZone, Inc. | www.dzone.com

5
Essential NetBeans Platform

Shortcuts
<folder name=”Shortcuts”>
 <file name=”M.shadow”>
 <attr name=”originalFile”
 stringvalue=”Actions/Edit/org-netbeans-modules-
 some-MyAction.instance”/>
 </file>
 <file name=”D-M.shadow”>
 <attr name=”originalFile”
 stringvalue=”Actions/Edit/org-netbeans-modules
 some-CtrlMyAction.instance”/>
 </file>
 <file name=”O-M.shadow”>
 <attr name=”originalFile”
 stringvalue=”Actions/Edit/org-netbeans-modules
 some-AltMyAction.instance”/>
 </file>
</folder>

As key code, use KeyEvent.VK_keycode without VK_
prefix, as described in Javadoc of org.openide.util.Utilities
stringToKey() and keyToString() methods.

Nodes
A Node is a generic model for a business object, which it
visualizes within an Explorer View. Each Node can have visual
attributes, such as a display name, icon, and actions. The list of
Nodes is below, which you can use as is or extend as needed:

Type Description

Node Base class for representing business objects to the user.

AbstractNode The usual base class for Node implementations.

DataNode Specialized Node class for wrapping a file and displaying it as a Node to the
user.

BeanNode Specialized Node class that wraps a JavaBean and presents it to the user as a
Node. It also provides simplistic access to property sheets.

FilterNode Specialized Node class that decorates an existing Node by adding/removing
features to/from it.

A Node is a container for its own child Nodes. These classes
create child Nodes:

ChildFactory Factory for creating child Nodes. Optionally, these can be created
asynhronously, that is, when the user expands the Node.

Children.Keys Older version of ChildFactory. You should be able to replace any
implementation of Children.Keys with ChildFactory.

Children.Array, Children.Map, Children.SortedArray,

Children.SortedMap: These classes are less frequently used
and are no longer well supported.

Explorer Views
Explorer views are Swing components that display Node
hierarchies.

BeanTreeView JTree for displaying Nodes.

OutlineView JTree for displaying Nodes, with a JTable for displaying the related
Node properties.

PropertySheetView Property sheet displaying the properties of a Node.

IconView, ListView, ChoiceView, ContextTreeView,

MenuView, TableView: These classes are less frequently used
and are no longer well supported.

For all the details, see http://bits.netbeans.org/6.8/javadoc/
org-openide-explorer.

Visual Library
The NetBeans visual library is a generic widget and graph
library, providing a collection of predefined widgets that
integrate well with other NetBeans Platform objects, such as
Nodes and windows. Below is the list of widgets provided by
this library.

Type Description

Scene Provides the root element of the hierarchy of displayed widgets.

LayerWidget Provides a transparent surface, comparable to a JGlassPane.

ComponentWidget Provides a placeholder widget for AWT/Swing components.

ImageWidget Provides images to the scene.

LabelWidget Provides a label as a widget.

IconNodeWidget Provides an image and a label.

ConnectionWidget Provides connections between widgets, with anchors, control poins,
and end points.

ConvolveWidget Provides coil/twist effect, i.e., a convolve filter to a child element.

LevelOfDetailsWidget Provides a container for widgets, with visibility and zoom features.

ScrollWidget/
SwingScrollWidget

Provides a scrollable area, with/ without JScrollBar as scroll bars.

SeparatorWidget Provides a space with thickness and orientation.

For all the details, see http://bits.netbeans.org/6.8/javadoc/
org-netbeans-api-visual.

Dialogs
The NetBeans Dialogs API provides a number of standard
dialogs for displaying standard messages for information,
questions (such as “Are you sure?”, when saving), input, and
error messages to the user. Each dialog comes with a standard
appearance, buttons, and icons.

Type Description

Information Dialog NotifyDescriptor d = new NotifyDescriptor.Message(“Text”);

Question Dialog NotifyDescriptor d = new NotifyDescriptor.Confirmation(“Title”, “Text”);

Input Dialog NotifyDescriptor d = new NotifyDescriptor.InputLine(“Title”, “Text”);

Add the Dialogs API to your module and then use the table
above to create dialogs as follows (in the example below, we
display an information dialog):

NotifyDescriptor d = new NotifyDescriptor.Message(“Text”);
DialogDisplayer.getDefault().notify(d);

For all the details, see http://bits.netbeans.org/6.8/javadoc/
org-openide-dialogs.

Other Useful NetBeans APIs

Type Description

org.apache.tools.ant.
module.api.support.
ActionUtils

Used for running Ant targets.

org.openide.util.
ImageUtilities

Provides useful static methods for manipulation with images/icons,
results are cached.

org.openide.awt.Html-
Browser.URLDisplayer

Displays URLs, opens browsers, distinguishes embedded vs. external
browsers.

org.netbeans.api.
progress.ProgressHandle

Integrates visualization of long running tasks with the NetBeans
Platform progress bar.

org.openide.util.
RequestProcessor

Performs asynchronous threads in a dedicated thread pool.

org.openide.awt.
UndoRedo

Listens to editing changes and activates the “Undo” and “Redo”
buttons.

Hot
Tip

The Dialogs API also provides a group of Wizard
classes for multipage dialogs!

Hot
Tip

Explore the Utilities API (org.openide.util.jar) for
many useful classes that all NetBeans Platform
applications can use.

http://www.dzone.com
http://www.refcardz.com
http://platform.netbeans.org?cid=928528
http://bits.netbeans.org/6.8/javadoc/org-openide-explorer
http://bits.netbeans.org/6.8/javadoc/org-openide-explorer
http://bits.netbeans.org/6.8/javadoc/org-netbeans-api-visual
http://bits.netbeans.org/6.8/javadoc/org-netbeans-api-visual
http://bits.netbeans.org/6.8/javadoc/org-openide-dialogs
http://bits.netbeans.org/6.8/javadoc/org-openide-dialogs

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Blaze DS
Domain Driven Design
Virtualization
Java Performance Tuning
Expression Web
Spring Web Flow
Continous Integration

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Essential NetBeans Platform

RECOMMENDED BOOKSABOUT THE AUTHORS

ISBN-13: 978-1-934238-94-3
ISBN-10: 1-934238-94-5

9 781934 238943

50795

NETBEANS PLATFORM GOTCHAS NETBEANS PLATFORM ON-LINE

Technical information on the NetBeans Platform is available
on-line in many different forms. The most important of these
are listed below:

Site URL

Homepage http://platform.netbeans.org

Tutorials http://platform.netbeans.org/tutorials

NetBeans API javadoc http://bits.netbeans.org/6.8/javadoc/

Blogs http://planetnetbeans.org

FAQ http://wiki.netbeans.org/NetBeansDeveloperFAQ

Mailing List dev@platform.netbeans.org
http://netbeans.org/platform/lists/dev/archive

Screencast http://platform.netbeans.org/tutorials/nbm-10-top-apis.html

The following are frequently asked questions, returning over
and over again, with their answers:

FAQ Answers

What’s the difference between a
‘NetBeans Platform Application’ and a
‘Module Suite’?

The former gives you a subset of the NetBeans
Platform, the latter a subset of NetBeans IDE. Use the
former when building on the NetBeans Platform, the
latter when building on NetBeans IDE.

Why is my explorer view not
synchronized with the Properties
window?

Because you need to add this line to the
TopComponent constructor:
associateLookup(ExplorerUtils.createLookup(em,
getActionMap());

I created a palette but it isn’t
showing when I open the related
TopComponent.

Because your TopComponent is not in ‘editor’ mode.

Heiko Böck is the author of the well-known “The Definitive Guide to NetBeans Platform”

Anton Epple (http://eppleton.sharedhost.de/) is a NetBeans Platform consultant & trainer.

Miloš Šilhánek is a Java, NetBeans Platform, 3D and AI enthusiast and Czech translator of
Heiko Böck’s book.

Geertjan Wielenga works on the NetBeans team and is co-author of “Rich Client
Programming: Plugging into the NetBeans Platform”

Tom Wheeler (http://www.tomwheeler.com) has worked with NetBeans Platform nearly every
day for the past five years and is a consultant, trainer and member of the NetBeans Dream
Team.

Andreas Stefik is an Assistant Professor at Southern Illinois University Edwardsville.

The Definitive Guide to NetBeans™ Platform is a thorough
and definitive introduction to the NetBeans Platform, cover-
ing all its major APIs in detail, with relevant code examples
used throughout.

BUY NOW
books.dzone.com/books/definitive-guide-netbeans

Rich Client Programming will help you get started with
NetBeans module development, master NetBeans’ key
APIs, and learn proven techniques for building reliable
desktop software.

BUY NOW
books.dzone.com/books/richclientprog

This Refcard could not have been made without the technical insights provided by the following: Tim Boudreau, Tim Dudgeon,
Jeremy Faden, Laurent Forêt, Jesse Glick, Manikantan, Ernie Rael, Antonio Vieiro and Tom Wheeler.

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://platform.netbeans.org?cid=928528
http://platform.netbeans.org
http://platform.netbeans.org/tutorials
http://planetnetbeans.org
http://wiki.netbeans.org/NetBeansDeveloperFAQ
http://platform.netbeans.org/tutorials/nbm-10-top-apis.html
http://eppleton.sharedhost.de/
http://www.tomwheeler.com
http://books.dzone.com/books/definitive-guide-netbeans
http://books.dzone.com/books/richclientprog
http://books.dzone.com/books/richclientprog
http://books.dzone.com/books/richclientprog

