

DZone, Inc. | www.dzone.com

By Chance Coble and Ted Neward

ABOUT F#

E
ss

e
n

ti
al

 F
#

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#81

Essential F#

F# is Microsoft’s most recent language for the .NET platform.
Developers who learn to take advantage of this new language’s
functional and object-oriented features will find new
productivity gains and new programming design approaches
not easily expressed in “just” objects alone. While functional
programming can lead to some mind-bending coding, the
basics are quite straightforward and should take little time to
master. Functional programming is characterised by concise
coding style and explicit modelling of behavior. Because F#
also offers a rich set of object oriented features, its integration
with other .NET languages such as C# and VB is nearly
seamless.

Hot
Tip

F# is a compiled .NET language, but can also be run
as a script interactively. Fire up the F# interactive
session (Under the View menu in Visual Studio or
“fsi.exe” in your F# installation bin directory). Add
two semi-colons “::” to terminate your interactive
expressions.

CONTENTS INCLUDE:
n	 About F#
n	 Getting Started
n	 Language Syntax
n	 OOP in F#
n	 F# Expressions
n	 Hot Tips and more...

GETTING STARTED

F# is available from the Microsoft F# Developer Center
(http://msdn.microsoft.com/en-us/fsharp/default.aspx) if it is
not already installed in your version of Visual Studio. It runs on
any version of .NET after 2.0.

F# Hello World looks like this:

#light
System.Console.WriteLine(“This is one hello”)
printfn “This is another hello”

Compile this file (hello.fs) with the command-line fsc.exe to
produce a .NET assembly:

fsc hello.fs

This produces hello.exe, which can be executed in the usual
fashion.

The “#light” syntax is an artifact of earlier F# versions and
will be removed in a future version of the language. The
“System.Console.WriteLine” call is the .NET Base Class Library
at work. The “printfn” is an F# function that ultimately does the
same thing: prints to the console.

LANGUAGE SYNTAX

F# is a combination of both functional and object-oriented
programming styles. As such, to the C# or Visual Basic

programmer, it can at times seem strikingly similar yet entirely
foreign.

F# programs are written as composed expressions, as opposed
to a series of imperative statements in C#/VB. Each expression
can be named (via the “let” keyword), and referenced as such:

let files = System.IO.DirectoryInfo(@”C:\Users\Chance”).
GetFiles()

This defines the “files” name to a value, in this case an array of
FileInfo objects. The actual type of “files” needn’t be specified,
since the language will infer it from the value returned from the
right-hand side.

Hot
Tip

Types in F# are inferred statically by the compiler. If
you are using a file editor in Visual Studio, hold your
mouse over any value to see its inferred type.

Type Inference
We refer to the type of a value being inferred because a
compile-time process attempts to figure out the types of values
on its own, and in the process verify the program is type safe.
Type annotations (in the form v:t, meaning v of type t) are not
as necessary in a language with type inference, even though
the language is still strongly typed.

Generics, which will be familiar to both .NET and Java
developers, have taken on an even greater role in F# because
of type inference. Notice that for any expressions without type
annotations the compiler can just assume generic types. For
example, the function below can be genericized to have the

Get over 70 DZone Refcardz
FREE from Refcardz.com!

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com/

DZone, Inc. | www.dzone.com

2
Essential F#

following type signature, even though it does not contain any
type annotations from the programmer.

let f x =
 let y = g x
 h y

let f (x:’a) : ’b =
 let y:’c = (g:’a->’c) x
 (h:’c->’b) y

The compiler does something similar to that labeling
automatically. From the generic labeling, determinations can
already be made about the types of these functions (assuming
the expression is strongly typed). First, notice f and h must
yield the same type (‘b). Second, the argument f is applied
to must be the same type to which g is applied (‘a). Using
small hints like these, the compiler is often able to completely
determine the types in a program with little assistance from the
programmer.

Most of type inference in F# can be boiled down to two rules.
First, if a function is applied to a value then the compiler may
assume that value is the type the function requires. Second, if
a value is bound to the result of an expression, then that value
is the type the expression yields.

There are a few times when these simple rules aren’t quite
enough and type annotations must be added to assist the
compiler. For example, when arithmetic operators are used,
F# is careful not to cast one numeric type to another without
explicit instructions from the programmer. That way type
inference does not become a burden to intensively numerical
computing.

Declare/update
mutable value

let mutable x = 0
x <- x + 1

Declare/update
ref value

let x = ref 0
x := !x + 1

Another example is in method overloading. The Write method
in System.Console for example has about 18 overloads. Type
inference may determine the type that is passed to it, but
cannot determine a value’s type in the other direction. That
information is required by the overloaded method to select the
proper logic to dispatch for the method.

Type inference does not just aide concise notation in the
face of static typing, it is also a helpful check on functional
programs. When you write a piece of code, and intellisense
indicates they all have the proper type, it is one more
indication that gross errors were not introduced into the
program. Using this tool, F# gets much of the concise
notation usually only available in dynamic languages while still
maintaining a fully static type system.

Basic Syntax
The “let” expression is at the core of F#’s functional syntax,
and is used in a variety of ways: defining a function, defining a
sequence, and so on. F# uses significant whitespace to mark
block beginnings and endings.

Define any value let x = 2

Define a
function value

let f a = a + x

Define a
recursive
function

open System.IO
let rec printSubDirFiles dir =
 let files = Directory.GetFiles dir
 let dirs = Directory.GetDirectories dir
 printf “%s\n%A\n\n” dir files
 Array.iter printSubDirFiles dirs

Anonymous
function

fun x -> Console.WriteLine (x.ToString())

The language also provides traditional imperative looping
and iteration constructs, such as “if”, “for” and “while”.
Note that “if/then” and “if/then/else” are slightly different
from traditional O-O languages, in that they, like most F#
expressions, must yield a value, and so both sides of the
“if/then/else” must result in the same type of value.

if/then if x=10 then printf “Was 10\n”

if/then/else if x=10 then “Was 10\n” else “Was not 10\n”

For loop for x in xs do
 printf “%s” x.ToString()

While loop let ls =
 System.Collections.Generic.List<int>()
while (ls.Count<10) do
 ls.Add(ls.Count)

Like most .NET languages, F# also provides some mechanism
for organizing code; in fact, F# provides two, modules
and namespaces, the latter acting the same way as C#/VB
namespaces. Modules provide not only lexical scoping, but
also space for module-level values, such as constants, fields
and functions.

Basic Code Organization:
namespaces, types and
modules

namespace MyFSharpProg
open System.Net
type Foo () =
 member x.GetRequest = WebRequest.
Create
module Main = begin
 // values and functions here
end

While most identifiers in F# are immutable, in accordance with
traditional functional programming principles, F# permits the
definition and modification of values using the “mutable”
keyword, or by taking the reference of the value in question by
preceding the value with “ref”. Assignment to mutable values
is done using the left-hand arrow operator (“<-“). Assignment
to “ref” values is done with the “:=” operator. Obtaining the
value of a “ref” value uses the “!” operator.

Declare/update
mutable value

let mutable x = 0
x <- x + 1

Declare/update
ref value

let x = ref 0
x := !x + 1

Function Composition
Because programs are built as composed expressions, the
sequence of program logic is typically defined through
function composition. Arguments to a function are evaluated
prior to the function body, making programming by
composition intuitive for programmers coming from a
C#/VB/Java background.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Essential F#

Operators such as >> (for function chaining) and |> (for value
piping) allow programmers to chain composed functions
together in the same order in which they will be evaluated.

Composing functions to
sum 5 largest array values

 let sumLargestFive:int array->int =
 Array.sort
 >> Array.rev
 >> fun a -> Array.sub a 0 5
 >> Array.sum

Composing functions
starting with a value
(piping)

let tabAndWrite (s:string) =
 s
 |> (+) “\t”
 |> Console.WriteLine

Functional Types and Data Structures
F# also defines tuples and records, which are simple data-
centric constructs useful in situations where full-blown objects
would be overkill.

Discriminated unions are similar in concept to enumerated
types from C# and Visual Basic, representing a bound set of
values; however, discriminated unions can incorporate multiple
kinds of types, including tuples and collections. Functional
code will make heavy use of all three (tuples, records, and
discriminated unions).

Collections
Data rich programming always involves dealing with (often
large) collections of information from the filesystem, database,
network or other sources. Three tools in F# make this
considerably easier than other programming paradigms and
languages.

tuples let (name,value) = (”Two”,2)

record types type Person = {name:string;age:int}
let p = { name=”Bob”;age=20 }

discriminated
unions

type WebTree =
 | Page of string * WebTree
 | Address of string

Collection generators provide an easy way to create sets of
data without involving a loop. Generators are available for lists,
arrays, or IEnumerables (called “seq” in F#), using the [start..
finish] style syntax. In the case of arrays, the [start..finish] syntax
can be used on an existing array index to “slice” the array into
a new one with the given range.

Pattern matching let rec listFromWebTree wt =
 match wt with
 | Page(url,subTree) ->
 url : listFromWebTree subTree
 | Address(url) -> [url]

Pattern matching
on lists (naming
the head and tail
with “::”)

let rec containsZero ls = function
 | first::rest -> if first=0 then true
 else containsZero rest
 | [] -> false

Pattern matching
with constants

let startsWithZero ls = function
 | 0::rest -> true
 | ls -> false

Pattern matching
with when and _

let startsWithZero ls = function
 | first::rest when first=0 -> true
 | _ -> false

Sequence expressions result in an IEnumerable that can be
consumed by any other language on the .NET platform, and
are ideal for lazy collection generation or evaluation. They
often use a pattern of the form “seq { for x in col do … yield x

done }” to transform collections into their evaluated result sets.
Finally, higher order functions (e.g. map, fold, reduce and sum)
allow programmers to ditch boiler plate code around collection
processing and just pass the body of the iterator to a function.
The body is often passed as an anonymous function.

List defined in 2
different ways

[1..10] =
 List.map
 (fun x -> x / 2)
 [for x in 1..10 -> x*2]

Array defined in 2
different ways

[|2..2..20|] =
 Array.map ((*) 2)
 [|for x in 1..10 -> x|]

Array slicing (0 to
9 and 10 to end)

[|1..20|].[..9]

[|1..20|].[10..]

Sequence
Expression (piped
into iterator)

seq
{
 let dirs =
 System.IO.Directory.GetFiles @”C:\”
 for x in dirs do
 yield x }
|> Seq.iter (printf “%s\t”)

Higher order
multiply by 10,
sum and print

[1..10]
|> List.map (fun x -> x * 10)
|> List.reduce (fun s x -> s + x)
|> printfn “%d”

Pattern Matching
Another core construct in the language is pattern-matching,
given by the “match” keyword and a series of expressions to
match against; with this construct, combined with recursion,
F# is able to create stack-centric, thread-friendly versions of
traditional looping code:

let rec factorial n =
 match n with
 | 0 -> 1
 | v -> v * factorial(v-1)

Each case is demarcated by a new vertical “pipe” character,
and the result by the right-hand side of the “->”. Note that
the match clause can introduce new local bindings (“v” in the
example), which will be populated for use in the expression
evaluation. Pattern matching can also include “guard”
expressions, given by “when”clauses. More forms are given in
the F# spec.

Pattern matching let rec listFromWebTree wt =
 match wt with
 | Page(url,subTree) ->
 url :: listFromWebTree subTree
 | Address(url) -> [url]

Pattern matching
on lists (naming the
head and tail with
“::”)

let rec containsZero ls = function
 | first::rest -> if first=0 then true
 else containsZero rest
 | [] -> false

Pattern matching
with constants

let startsWithZero ls = function
 | 0::rest -> true
 | ls -> false

Pattern matching
with when and _

let startsWithZero ls = function
 | first::rest when first=0 -> true
 | _ -> false

More Pattern
matching with _

let startsWithZero ls = function
 | 0::_ -> true
 | _ -> false

Exceptions
F# allows developers to trap exceptions thrown by methods

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Essential F#

F# EXPRESSIONS

Below is a table of F# expressions for reference. Some of these
can be typed into the interactive shell. Feel free to fire up the
interactive shell and type these in yourself.

Type Notation
value x : int

function that is
applied to an int,
and yields an int

f:(int -> int)

function in a
function

map:(‘a->’b)->’a list->’b list

generics f:’a -> ‘b

annotate an
argument

let toStr (x:int) = x.ToString()

F# Interactive Commands
Reference a dll #r #r “System.Windows.Forms”;;

Load an F# code file #load #load “Module.fs”;;

Add a directory to
the search path

#I #I @“c:\lib”;;

Refer to the last
yielded result from
an expression

it printf “%O\n” it

Multiple
constructors

type Person
 (fn:string,ln:string,age:int) =
 new (age:int) =
 Person(“John”,”Doe”,age)
 member p.FirstName = fn
 member p.LastName = ln
 member p.Age = age
 override p.ToString() =
 String.Format(“{0} {1})”,
 p.FirstName, p.LastName)

Abstract
methods for an
interface and its
construction

type Shape =
 abstract Area: unit -> float
type Rectangle(l,w) =
 interface Shape with
 member me.Area () = l * w

Abstract
methods for
an abstract
class and its
construction

[<AbstractClass>]
type Shape(nm:string) =
 member me.Name = nm
 abstract Area : unit -> float
type Rectangle(l,w) =
 inherit Shape(“Rectangle”)
 override me.Area() = l * w

Augmenting
Record types
with methods

type PersonRec =
 {fn:string;ln:string;age:int}
 with
 member
me.AgePlusOne = me.age + 1

Augmenting
Discriminated
Unions with
methods

type PersonKinds =
 | Male of Person
 | Female of Person
 with
 member me.AgePlusOne =
 match me with
 | Male p -> p.Age + 1
 | Female p -> p.Age + 1

Instantiating
the type and
applying the
method

(Male (Person(“John”,”Doe”,24)))
 .AgePlusOne

Augmenting
existing types
with methods

type Person
 with
 member x.AgePlusOne = x.Age + 1

Object
expression

let dirty =
 { new System.IDisposable with
 member me.Dispose() = () } // clean up

OOP IN F#

F# is a full object-oriented language in the .NET ecosystem,
meaning it knows not only how to use but also how to define
new class types with the full range of O-O features: fields,
methods, properties, events, interfaces, inheritance, and so on.

Defining a simple class type:

type Person(fn:string,ln:string,a:int) =
 member p.FirstName = fn
 member p.LastName = ln
 member p.Age = a
 override p.ToString() =
 String.Format(“{0} {1})”,
 p.FirstName, p.LastName)

The constructor is in the type declaration line, and that type
is intrinsically immutable (that is, the properties FirstName,
LastName and Age all have get access but not set). This is in
line with traditional functional principles. To create mutable
members, the F# “mutable” keyword must appear on the
member to be mutable, and the explicit “get” and “set”
members for each property must be established.

Types in F# can inherit from base classes or interfaces, using
the “override” keyword to override inherited members:

type Student(fn:string,ln:string,a:int)=
 inherit Person(fn, ln, a)
 override s.ToString() = ...

F# can also create object expressions, which are anonymously-
defined types that inherit from an existing class or interface; in
many cases, this will be much quicker and easier than creating
a new type.

Classes and Object Expression

Class definition type AccessCounter() =
 let mutable i = 0
 member me.Access () = i <- i + 1
 member me.Count
 with get () = i
 set v = i <- v

that are called, as well as generate exceptions when desired.
There are shortcut functions (e.g. “failwith”) defined that
provide a concise way to generate exceptions with custom
messages.

Using the try/with syntax, developers can use the pattern
matching syntax to check the type of the exception and invoke
the appropriate logic.

Try catch with
pattern match on
type of exception

 open System.IO
 try
 File.ReadAllText(@”C:\dir\myfile.txt”)
 with
 | :? DirectoryNotFoundException as ex
 -> “Dir does not exist”
 | ex -> ex.Message

always run code
after exception
block

Try
 File.ReadAllText(@”C:\dir\myfile.txt”)
finally
 printf “Always run this\n”

Function to throw
FailureException

failwith “Operation Failed”

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Essential F#

Time the evaluation
of an expression

#time >#time;;
> [1..10000];;
Real: 00:00:00.028, CPU:
00:00:00.015, GC gen0: 1, gen1: 0,
gen2: 0

Units of Measure
Declare a Unit type [<Measure>] seconds

type [<Measure>] meters

Manipulate unit values let velocity
 (d:float<meters>)
 (t:float<seconds>) =
 d / t

Break the unit type [<Measure>] inches

velocity 5.0<inches>
 10.0<seconds>

Async Combinators
Used to create and manipulate async expressions.

Build an async expression using
the continuations for continue,
cancel and exception

Async.Primitive (con,can,exn)

Build an async expression
using the begin and end
methods provided

Async.BuildPrimitive
 (b,e)

Yield an async expression
that, when executed, runs the
sequence of async expressions
in parallel and yields an array
of results

aExprs
|> Async.Parallel
|> printf “%A\n”

Fork the expression let! child = Async.StartChild
aExpr

Fork the expression and yield
a threading task that executes
the operation.

let! tsk =
 Async.StartChildAsTask aExpr

Manipulate the current thread sync.SwitchToGuiThread Async.
SwitchToNewThread Async.
SwitchToThreadPool

Async Expression Execution
Run the computation of type
Async<T> and yield the T

Async.RunSynchronously aExpr

Provide three continuations
for continue, exception and
cancellation to be evaluated
when the expression yields a
result

Async.RunWithContinuations

 (con,exc,can,aExpr)

Fire and Forget in the thread
pool

Async.Start

Yield a Threading Task that
executes the computation

Async.StartAsTask

Apply a function to every
element of a sequence in
parallel

let aMap f xs =
 Seq.map
 (fun x -> async {return f x})
 xs
 |> Async.Parallel

Active Patterns
Notice that the Active Pattern creates a function view on an
object oriented architecture. The point of this approach is to
marry functional languages on top of existing object oriented
architectures and class libraries. The combination of views
on the objects that result in functional types, and pattern
matching can make functional programming on an object
oriented framework more readable and clear. The approach

also encourages object oriented extensions where they make
sense to existing functional architectures while minimizing
clutter.

Defining Patterns let (|Xml|NoXml|)
 (doc:XmlDocument) =
 if doc.InnerXml = “”
 then NoXml
 else Xml(doc.InnerXml)

Matching Active Patterns match xml with
| NoXml -> printf “Doc was empty!”
| Xml(xml) -> printf “%O” xml

Partial (Incomplete) Active
Patterns that read a set
of file contents and yield
different types, depending
on the specific views of the
object

open System.IO
let (|NoFiles|_|) (fs:FileInfo []) =
 if fs.Length=0 then Some ()
 else None
let (|TooManyFiles|_|) n
 (fs:FileInfo []) =
 if fs.Length > n then Some ()
 else None
let (|FilesContents|_|)
 maxReadSize (fs:FileInfo [])
 :byte array array option=
 let buff =
 Array.create maxReadSize 0uy
 fs
 |> Array.map
 (fun file ->
 let len =
 file
 .OpenRead()
 .Read

(buff,0,maxReadSize)
 (len,buff))
 |> Array.map
 (fun (len,contents) ->
 Array.init
 len
 (fun i -> contents.[i]))
 |> Some

Pattern matching piece to
consume the active pattern
setup above

let processFiles =
 match files with
 | TooManyFiles 50 () -> “>>oh no!”
 | NoFiles () -> “0 Oh no!”
 | FilesContents 1000 fs ->
 “Got “
 + fs.Length.ToString()
 + “ files”

Error Messages
Included below are some common error messages with F#.
The areas that tend to trip up people beginning F# are usually
exacerbated by misunderstanding the error messages. But a
clear understanding of these error messages makes your F#
programming a cinch. If one of these messages pops up when
you are trying to compile, or drop some code in the interactive
session then use the reference below to clarify the problem.
The first column of the table describes the problem, the
second column is the error message reference, and the third
column gives examples for recreating the error.

F#’s type system does
not automatically cast
numbers

This expression
has type
 float
but is here used
with type
 int

let add x y = x + y
let isum = 1 + 1
let fsum = 1.0 + 1.0

Values should be
eventually typed
through inference,
or annotation (i.e.
generic types can’t be
instantiated)

Value
restriction. The
value ‘x’ has
been inferred
to have generic
type.

let rec f x = f x

//Alternatively

let id x = x
let arr =
 Array.create
 10
 id

http://www.dzone.com
http://www.refcardz.com

Upcoming Titles
Cloud Computing
Java CDI
Continuous Integration
Integrating PHP & Flex
Vaadin
FlashBuilder 4.0
Resin

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Essential F#

RECOMMENDED BOOKABOUT THE AUTHORS

BUY NOW
books.dzone.com/books/expert-fsharp

ISBN-13: 978-1-934238-81-3
ISBN-10: 1-934238-81-3

9 781934 238813

50795

Different type
expectations:
Expression is typed as
‘b, but ‘a was put in
the code

This expression
has type
 ‘a
but here is used
with type
 ‘b

let printStr =
 printf “%s”

printStr 10

Incomplete Pattern
Match Warning
(unhandled patterns
possible)

Incomplete
pattern matches
on this
expression

match x with
| 1 -> “Was one”
| 2 -> “Was two”

// The wildcard _ can
// fix this

Overloaded functions
often require type
annotations to select
the correct method call

The method
‘Write’ is
overloaded.

open System
let print s =
 Console.Write s

F# RESOURCES

F# - Microsoft Research
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

F# - Downloads
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/release.aspx

Microsoft F# Developer Center
http://msdn.microsoft.com/en-us/fsharp/default.aspx

F# Samples
http://www.codeplex.com/fsharpsamples

Chance Coble has been doing functional programming for nearly a
decade, begining with Haskell years ago. His interests in programming
are primarily in machine intelligence and pattern recognition. He has
implemented applications in a number of contexts over the last 10
years including enterprise financial platforms, scientific applications in
biology, virtual/augmented reality and most recently biometrics.

Blog: http://leibnizdream.wordpress.com/

Ted Neward is a software architect, consultant, author, and
presenter who has consulted for such companies as Intuit and
Pacific Bell, and UC Davis. He is the author of “Server-Based Java
Programming” (Manning, 2000), and coauthor of “C# in a Nutshell”
(O’Reilly, 2002) and “SSCLI Essentials” (O’Reilly, 2003). Ted was a
member of the JSR 175 Expert Group. He now frequently speaks
on the conference circuit and to user groups all over the world. He
continues to develop and teach courses on Java and .NET.

Blog: http://blogs.tedneward.com/
Website: http://www.tedneward.com/

Expert F# is about practical programming
in a beautiful language that puts the power
and elegance of functional programming
into the hands of .NET developers. In
combination with .NET, F# achieves
unrivaled levels of programmer productivity
and program clarity. This books serves as:

 • The authoritative guide to F# by the
 designer of F#
 • A comprehensive reference of F# concepts,
 syntax, and features
 • A treasury of expert F# techniques for
 practical, real–world programming

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/expert-fsharp
http://books.dzone.com/books/soa-patterns

