.~ !DZone Refcardz s JBoss

@ @ by Red Hat

= About CDI

e Contexts and Dependency Injection

* The Bean

ol for the Java EE Platform

* Events and more...

By Norman Richards

Building the examples
ABOUT CDI Each example can be built using Maven 2.

| $ mvn clean install

Contexts and Dependency Injection for the Java EE Platform

(CDI) introduces a standard set of component management The target directory contains the built archive, which can be
services to the Java EE platform. CDI manages the lifecycle deployed to EE containers like JBoss AS and Glassfish. The
and interactions of stateful components bound to well-defined examples that build to WAR files can also be deployed to
contexts. CDI provides typesafe dependency injection Tomcat and Jetty.

between components. CDI provides interceptors and
decorators to extend the behavior of components, an event
model for loosely coupled components, and an SPI allowing

portable extensions to integrate cleanly with the Java EE ant -Djboss.home=/path/to/jboss-6.0 deploy
ant -Djboss.home=/path/to/jboss-6.0 undeploy

S
@)
O
N
o
el
©
O
—“—
(O}
el
Bt
Z
>
N
©
E S
©
(8]
(el
()
o
()
LS
(o)
=
Fe]
()
O

For convenience, each example contains an Ant file with
targets to build and deploy directly to JBoss AS and Tomcat.

environment.
ant —Dtomcat.home=/path/to/tomcat tomcat.deploy

CDI and Java EE ant —Dtomcat.home=/path/to/tomcat tomcat.undeploy
The Java EE 6 platform includes CDI as part of both the full
profile and the web profile. The EE 6 platform was designed Creating a Weld project
£ to make sure all EE components make use of CDl services, New project stubs can be created using Maven 2 archetypes.
utting CDI directly at the heart of the platform, weldin .
o P 9 cty . P 9 Interactive Mode
o together the various EE technologies.
q; | mvn archetype:generate
c CDI and Seam : :
3 CDI was influenced by many technologies, with Seam in Non-interactive mode
o particular pioneering many of the concepts that have been mvn aBF:igg‘z;Qegﬁgg;en
. K i A -Di iv =
3 formalized in CDI. However, Seam is not CDI, and not all of _DarchetypeArtifactId=weld-jsf-servliet-minimal
e . . . -DarchetypeGroupId=org.jboss.weld.archetypes
3 Seam'’s innovations are part of the CDI specification. As such, i gy
S the latest version of Seam, Seam 3, will be based on CDI and -DgroupId=com.mycompany
. .) . -DartifactId= ject
will provide a collection of portable extensions to CDI that artifactlo=myprojec
can be integrated cleanly into any CDI environment. Seam 3 Weld archetypes
will also provide a legacy Seam 2 mode, giving existing Seam Wi Seiten
appllcatlons a migration path onto CDI. weld-jsf-servlet-minimal | A Weld web application using JavaServer Faces (JSF)

weld-jsf-jee-minimal A Weld application using EJB and JSF but no persistence
ABOUT WELD
weld-jsf-jee A Weld application using EJB and JSF with a persistence context
Weld is the CDI reference implementation. It is a great place to

get started with CDI. Weld can be downloaded from

°®° R
http://seamframework.org/Download. : JBoss
.. by Red Hat

Running the examples . 4 .
Weld comes with an extensive library of examples that is a Need to integrate Spring, Hibernate,

great starting point to learn CDI. These examples run in Java or Seam with JBoss AS?

EE containers such as JBoss AS and Glassfish as well as in We've already done it for you. JBoss Enterprise
Application Platform 5.0 includes pre-integrated

servlet containers like Tomcat and Jetty.
y frameworks for building all sorts of Java apps.

Example name Description « Customize your app server footprint
examples/jsf/login A simple example demonstrating a user login component « Simply your configurations
examples/jsf/numberguess A number guessing game * Bring the power of full text search to your
app with Hibernate Search
examples/jsf/permalink Ablog example « Use our pre-integrated Apache CXF web services stack
examples/jsf/translator A text translation example using EJBs + Seam, Hibernate, and Hibernate Search tooling through

JBoss Developer Studio Hibernate queries

examples/wicket/numberguess | The number guessing game implemented with Wicket :
Download today: jboss.com/download

examples/wicket/gae An alternative version of the Wicket number guess that
runs on Google App Engine

Java Contexts & Dependency Injection

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.jboss.com/downloads/
http://www.jboss.com/downloads/

DZone Refcardz <Boss

[J
@ @ by Red Hat

Contexts and Dependency Injection for the Java EE Platform

Building a Weld project

| mvn clean install

Jawa £L 6 Seamer Appicaion

Pp [Slocaibor B0, Twpraecy home it 3 G

Hello World!

Your COI Bean sellowerid says Hells World

Find out more

uing the Unied E Tagere avateve foes

* I communty i

Bean Validation examples

aarn mare atoust Jeva I8 6 and
e evseeone v ded vy Wed
En10roes 3N oLat.on Dased CONStrS Gefned On the model Class
Letters:
Numbers:
Email;

R 7 vou wve o0 000 e prmave iat
- e 00 comede
L Buiog 4 e W e

e -

THE BEAN

CDl, at the most basic level, revolves around the notion of
beans. Beans are instantiated by CDI, and their lifecycle is
managed according to the stateful context to which they
belong. So, it's natural to start by asking what is a bean? In
CDI, almost any object can be a bean. When using CDl in a
Java EE environment, any Java EE component is a bean if it

is defined to be a managed bean by its EE specification. This
includes session beans, message-driven beans, servlets, filters,
etc.

Most non-EE POJOs are also automatically managed beans
and no special declarations are required to define a managed
bean. A bean definition consists of the following:

The bean type is the set of Java types that the bean provides. CDI injection
always uses type as the primary identifier for determining the bean that will
provide an instance. Unless otherwise restricted, a bean’s type includes all the
superclasses and interfaces in the Java type hierarchy.

Bean Type

Qualifier There may be multiple beans that implement a desired Java type. It is possible
to distinguish between multiple types using qualifier annotations. Qualifiers
are developer-defined and provide a type-safe way to distinguish between

multiple beans implementations.

All beans have a well-defined scope that determines the lifecycle and visibility
of instances. The set of scopes is fully extensible, with built-in scopes including
request scope, conversation scope, session scope and application scope.
Beans can also be dependent and inherit the scope of their injection point.

Scope

Although it's completely optional, beans may define an EL name that can be
used for non-type safe access. One common usage of EL name is for binding
components to JavaServer Faces (JSF) views.

EL name

Abean’s behavior can be extended or overridden by adding interceptors and
decorators to the bean.

Interceptors

All beans must of course provide an implementation of the types they provide.
This is normally the Java class that defines the bean.

USING INJECTION

Not all instances of a bean type are managed instances.

Implementation

Instances created with the Java new operator are not
managed. Only instances provided by the CDI BeanManager
or through an injection point are managed instances.

Managed instances can have injection performed on them
when they are created. Injection points are declared using the
@javax.inject.Inject annotation.

Injection is performed at creation time for any fields annotated
@Inject.

public class Foo

{
}

@Inject Bar bar;

Injection is also performed for any methods annotated eInject.

public class Foo
{
@Inject
public void setBar(Bar bar) {
/]
}

Method injection points can be thought of as initializer
methods. Method injection points can support multiple
injected arguments.

public class Foo
{
@Inject
public void initializeMe(Bar bar, Baz baz) {
//
}

Beans can have any number of field or method injection points.
Additionally, a bean may have a constructor annotated @Inject.
Any declared parameters will be injected when the instance is
created.

public class Foo
{
@Inject
public Foo(Bar bar, Baz baz) {
I =
}

If a bean doesn't designate a constructor using @Inject, the no
argument constructor will be used.

Producers

If CDI needs to instantiate a new instance, it will normally call
the designated constructor. However, it’s possible to directly
control the creation of new instances with producer methods.
Producer methods are annotated @javax.enterprise.inject.
Produces and return the object to be produced. Any arguments
to a producer method will be injected by CDI.

public class FooProducer {
@Produces
public Foo makeFooFromBar(Bar bar) {
return new Foo(bar);

An alternative form of producer is the producer field. The
value of the producer field is the value to be injected.

public class AnotherFooProducer {
@Produces Foo foo;

@Inject

public void initalizeMe(Bar bar) {
foo = new Foo(bar);

}

Producer fields can be combined with Java EE injection
annotations such as @Resou rce, @EJB and @PersistenceContext.

@Produces
@WebServiceRef (lookup="java:app/service/PaymentService”)
PaymentService paymentService;

@Produces
@EJB(ejbLink="../their.jar#PaymentService”)
PaymentService paymentService;

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

o. : Bm. 3

[]
@ @ by Red Hat

DZone Refcardz

Contexts and Dependency Injection for the Java EE Platform

New instances

CDl injects the contextual, and thus possibly shared, instance
of a bean. When this is not desired, the @javax.enterprise.
inject.New annotation can be used to force a new instance to be
created and injected.

public class FooProducer {
@Produces public Foo makeFoo(@New Bar bar) {
return new Foo(bar);
}

}

Programmatic lookup

Injection occurs when a component is created and initialized
by CDI. There are many cases where this is not desirable. In
those cases, programmatic lookup is available by injecting the
corresponding javax.enterprise.inject.Instance for a bean.

public class Foo {
@Inject Instance<Bar> bar;

public Bar getBar() {
return bar.get();
}
4

The get method performs the actual lookup defined by the
injection point.

Qualifiers

CDI does injection by type, but most systems have the need
for more than one instance of a given type. Rather than giving
them unique names or identifiers, CDI handles this through
qualifiers. Qualifiers are annotations on bean types and
injection points that differentiate between types. If a type

is a noun, then a qualifier is an adjective that can be used to
describe and distinguish the nouns.

A qualifier is an annotation that itself is annotated with the
@javax.inject.Qualifier meta-annotation.

@Qualifier

@Retention (RUNTIME)

@Target ({METHOD, FIELD, PARAMETER, TYPE})
public @interface Synchronous {

}

Qualifiers can be added to a class to define a qualified bean
type. Typically this will be a subclass of a parent type or the
implementation of an interface.

@Synchronous
public class SynchronousPaymentProcessor
implements PaymentProcessor

Jl oo

}

Producer methods and fields can also use qualifiers to
distinguish between the types.

@Produces

@Asynchronous

public PaymentProcessor createAsynchronousProcessor() {
return new AsynchronousPaymentProcessor();

}

It's now possible to distinguish between the two types by
adding the qualifier to any injection point. It's not necessary to
know the specific subtype or implementation class.

@Inject @Asynchronous PaymentProcessor processor;

@Inject
public void processSynchronously(@Synchronous PaymentProcessor) {

}

Abean can have multiple qualifiers. Injection points

only need to specify enough qualifiers to uniquely
match a bean.

Qualifiers annotations may have members.

@Target ({FIELD, PARAMETER})

@Retention (RUNTIME)

@Qualifier

public @interface Currency {
public String code();

}

All members must be equal, so the following injection point
and producer field would not match.

@Inject @Currency(code=“USD”) PaymentProcessor processor;
@Produces @Currency(code="EUR”) PaymentProcessor processor;

However, if the qualifier annotation member is marked as
@javax.enterprise.util.Nonbinding, then the member values
would not be considered and the injection point would match
the producer field.

@Target ({FIELD, PARAMETER})

@Retention (RUNTIME)

@Qualifier

public @interface Currency {
@Nonbinding public String code();

}

Nonbinding values can provide useful metadata to a method.
These nonbinding values can be retrieved by injecting the
javax.enterprise.inject.spi.InjectionPoint and querying the
qualifiers.

@Produces

@Currency (code="USD")

public PaymentProcessor processor(InjectionPoint injectionPoint) {
PaymentProcessor processor = new PaymentProcessor();

for (Annotation qualifier:injectionPoint.getQualifiers()) {
if (qualifier instanceof Currency) {
Currency currency = (Currency) qualifier;
processor.setBaseCurrency(currency.code());
break;

}

return processor;

The built-in qualifiers

Qualifier

Description

@javax.enterprise.inject.Any Every bean and every injection point has the @Any qualifier,
even if it is not specified, unless the @New annotation is

specified.

@javax.enterprise.inject.New The @New annotation forces a new instance to be created by

the container instead of using the contextual instance.

@javax.enterprise.inject.Default | Any bean or injection point that does not declare the @Named

qualifier has the default qualifier added.

This qualifier declares a text name that can be used to
reference the bean. This is used for un-typed access such as
through EL.

@javax.enterprise.inject.Named

Bean names

The @javax.inject.Named qualifier specifies a textual that can be
used in places where CDI's type-based lookup is not possible.
The primary use case is EL access in places such as JSF views.

@Inject @Named(“foo”) Foo foo; |

The String value of the annotation is the name of the bean. If
the enamed annotation doesn't explicitly specify a name, the
container will derive a default name. The default name is the
unqualified class name of the bean class, after converting the
first character to lower case. The following two injection points
use the exact same name.

@Inject @Named Bar namedBarl;
@Inject @Named(“bar”) Bar namedBar2;

Bean Scopes

CDI manages contextual objects. Contextual objects are
stateful and have a distinct lifecycle determined by the scope
they belong to. When a contextual bean is needed, CDI looks
in the appropriate shared context for the instance to inject. If

DZone, Inc.

| www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

o. : Bm. 3

[]
@ @ by Red Hat

DZone Refcardz

Contexts and Dependency Injection for the Java EE Platform

there is no shared instance, CDI creates one and stores it in the
context for future use. When the enclosing scope is destroyed,
the beans inside will be destroyed.

Bean Scope Description

@javax.enterprise.context.
RequestScoped

@RequestScoped beans are shared for the length of a single
request. This could be an HTTP request, a remote EJB invocation,
a web services invocation or message-delivery to an MDB. These
beans are destroyed at the end of the request.

@javax.enterprise.context.
ConversationScoped

@ConversationScoped beans are shared across multiple requests
in the same HTTP session but only if there is an active conversation
maintained. Conversations are supported for JSF requests through
the javax.enterprise.context.Conversation bean.

<beans xmlns="http://java.sun.com/xml/ns/javaee”>
<alternatives>
<stereotype>org.example.MyAlternatives</stereotype>
</alternatives>
</beans>

An alternative that extends the object it replaces will normally
want to directly inherit the metadata (qualifiers, name, etc.)
of the parent. In that case, the alternative should include the
@javax.enterprise.inject.Specializes annotation to ensure that
the original class is completely replaced by the alternative.

@javax.enterprise.context.
SessionScoped

@SessionScoped beans are shared between all requests that occur
in the same HTTP session and are destroyed when the session is
destroyed.

@javax.enterprise.context.
ApplicationScoped

An @ApplicationScoped bean will live for as long as the application
is running and is destroyed when the application is shut down.

@javax.enterprise.context.
Dependent

@Dependent beans are never shared between injection points.
Any injection of a dependent bean is a new instance whose lifecycle
is bound to the lifecycle of the object it is being injected into.

The set of scopes is extensible. New scopes are declared with
the @javax.inject.Scope Or @javax.enterprise.context.NormalScope

meta-annotation.

Bean Destruction

When a contextual bean goes out of scope, it is destroyed. To
destroy a bean, the container calls any @Prebestroy callbacks for
the bean and destroys any ebependent objects before disposing
of the object.

An application can perform custom cleanup of created objects
by using a dispose method. A dispose method is the analog
of a producer method and is designated by marking the
parameter with @javax.enterprise.inject.Disposes.

@ApplicationScoped
public class BarProducer {
ArraylList<Bar> allBars = new ArraylList<Bar>();

@Produces

public Bar createBar() {
Bar newBar = new Bar();
allBars.add(newBar);
return newBar;

}

public void disposeBar(@Disposes Bar bar) {
allBars.remove(bar);
}

}

@Alternative

@Specializes

public class AlternativeFoo
extends Foo

// alternative implementation

EXTENDING BEAN FUNCTIONALITY

CDI supports two mechanisms for dynamically adding or
modifying the behavior of beans: interceptors and decorators.

Interceptors

Interceptors provide a mechanism for implementing
functionality across multiple beans and bean methods that is
orthogonal to the core function of those beans.

Interceptor

An interceptor is a bean declared with the @javax.interceptor.
Interceptor annotation. Method interceptor should have a
method annotated @javax.interceptor.AroundInvoke that takes the
javax.interceptor.InvocationContext as a parameter.

@Interceptor
public class TransactionInterceptor {
@AroundInvoke
public Object manageTransaction(InvocationContext ctx) {

}
)

Interceptor Binding Type

Interceptors are bound using an interceptor binding type. An
interceptor binding type may be declared by specifying the
@javax.interceptor.InterceptorBinding meta-annotation.

As with producer methods, disposer methods may take
additional arguments to receive injected values. Only the one
argument to be disposed is annotated @bisposes.

Alternatives

Alternatives allow for deployment-time selection of bean
implementation. An alternative is a bean marked with the
@javax.enterprise.inject.Alternative annotation. Alternatives
provide an alternate implementation of a bean that is not
enabled unless is specifically enabled in the beans.xml file, in
which case it overrides the original bean.

@Alternative
public class AlternativeFoo
extends Foo

// alternative implementation

Alternatives are enabled only when activated in the beans.xml file.

<beans xmlns="http://java.sun.com/xml/ns/javaee”>
<alternatives>
<class>org.example.AlternativeFoo</class>
</alternatives>

</beans>

If the eAlternative annotation is applied to a stereotype, all
beans with the stereotype may be enabled as a group.

@Inherited

@Target ({TYPE, METHOD})
@Retention (RUNTIME)
@InterceptorBinding

public @interface Transactional {

The interceptor binding is applied to both the interceptor and
the interception point to bind the two together.

@Interceptor

@Transactional

public class TransactionInterceptor {
I =

}

@Tranactional

public class Foo {
e

}

An interceptor bound to a class will intercept all methods.
Alternatively, the interceptor can be bound to specific methods.

public class Foo {
@Transactional
public void someTransactionalWork() {
I =
}

}

As with qualifiers, binding types may declare members. For
an interceptor binding to match, all members must be equal
unless they are declared @NonBinding.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

. : Bm. 3

[]
@ @ by Red Hat

DZone Refcardz

Contexts and Dependency Injection for the Java EE Platform

Interceptors are not enabled unless they are declared in the
beans.xml file.

<beans xmlns="http://java.sun.com/xml/ns/javaee”>
<interceptors>
<class>org.example.TransactionInterceptor</class>
<class>org.example.LoggingInterceptor</class>
</interceptors>
</beans>

If multiple interceptors are defined for a call, the interceptors
calls are chained. The ordering is determined by the order
they are listed in beans.xmt.

Decorators

Decorators also dynamically extend beans but with a slightly
different mechanism than interceptors. Where interceptors
deliver functionality orthogonal to potentially many beans,
decorators extend the functionality of a single bean type with
functionality that is specific to that type.

A decorator is bean with the @javax.decorator.Decorator
annotation. A decorator only decorates the interfaces that it
implements.

public void afterLogin(@Observes LoggedInEvent event) {
}

public void afterAdminLogin(@Observes @Admin LoggedInEvent event) {
M caa
}

If there are multiple observers for an event, the order

that they are called in is not defined.

Conditional observers

If an instance of a component with an observer method
doesn't exist when the corresponding event is fired, the
container will instantiate a new instance to handle the event.
This behavior is controllable using the receive value of

@0bserves.

public void refreshOnDocumentUpdate(@Observes(receive=IF EXISTS)
@Updated Document doc) {
0 oo
}

@Decorator class TimestampLogger
implements Logger
{

@Inject @Delegate Logger logger;

public void log(String message) {
logger.log(timestamp() + “: “ + message);

}
!

A decorator must declare a single delegate injection point
annoted @javax.decorator.Delegate. The delegate injection point
is the object to be decorated. Any calls to the delegate object
that correspond to a decorated type will be called on the
decorator, which may in turn invoke the method directly on the
delegate object.

The decorator bean does not need to implement all methods
of the decorated types and may be abstract. Decorators are
called after interceptors.

Decorators are not active unless they are explicitly enabled in
beans.xml.

<beans xmlns="http://java.sun.com/xml/ns/javaee”>
<decorators>
<class>org.example.TimestampLogger</class>
<class>org.example.IdentitylLogger</class>
</decorators>
</beans>

EVENTS

Events provide a mechanism for loosely coupled communication
between components. An event consists of an event type,

which may be any Java object, and optional event qualifiers.

The event object
Events are managed through instances of javax.enterprise.
event.Event. Event objects are injected based on the event type.

@Inject Event<LoggedInEvent> normalEvent;
@Inject @Admin Event<LoggedInEvent> adminEvent;

Events are fired by calling fire() with an instance of the event
type to be passed to the observer.

event.fire(new LoggedInEvent(username));

Observers

Observers listen for events with observer methods. The event
type is annotated @javax.enterprise.event.Observes. Additional
parameters to an observer method are normal CDI injection
points.

javax.enterprise.event.Reception

Reception value | Meaning

IF_EXISTS The observer method is only called if an instance of the component already
exists.
ALWAYS The observer method is always called. If an instance doesn't exist, one will be

created. This is the default value.

Transactional observer

Events are normally processed when the event is fired. For
transactional methods, it is often desirable for the event

at a certain point in the transaction lifecycle, such as after
the transaction completes. This is specified with the during
value of eobserves. If a transaction phase is specified but no
transaction is active, the event is fired immediately.

TransactionPhase value Meaning

IN_PROGRESS The event is called when it is fired, without regard to the transaction

phase. This is the default value.

BEFORE_COMPLETION The event is called during the before completion phase of the

transaction.

AFTER_COMPLETION The event is called during the after completion phase of the

transaction.

AFTER__FAILURE The event is called during the after completion phase of the

transaction, only when the transaction fails.

AFTER_SUCCESS The event is called during the after completion phase of the

transaction, only when the transaction completes successfully.

STEREOTYPES

A stereotype is a meta-annotation that bundles multiple

annotations together for re-use. A stereotype may be declared
by specifying the @javax.enterprise.inject.Stereotype
meta-annotation.

@RequestScoped

@Secure

@Transactional

@Named

@Stereotype

@Target(TYPE)

@Retention (RUNTIME)

public @interface Action {

Any bean that is annotated eaAction will inherit all of the
annotations of the stereotype.

CDI defines the stereotype, @javax.enterprise.inject.Model for
declaring the model layer of a web application.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

l Dzone Refcal'dZ s JBoss Contexts and Dependency Injection for the Java EE Platform

[]
@ @ by Red Hat

@Named
@RequestScoped DEPLOYMENT
@Stereotype

@Target({TYPE, METHOD, FIELD})
@Retention (RUNTIME) o
public @interface Model { Bean archive
}

Bean classes of enabled beans must be deployed in bean
deployment archives. A bean deployment archive is any JAR,

EE archive, or directory on the classpath that contains a

beans.xml file in the META-INF directory. For WAR files, the

WEB-INF classes directory is also considered if there is a
beans.xml file in the WEB-INF directory.

Conversations are available in JSF only. Programmatically
accessible thl’ough javax.enterprise.context.Conversation

component.
public interface Conversation { beans xm| structure
public void begin();) . .
public void begin(String id); The beans.xml file is defined by the XSD at
public void end(); . .
public String getId(); http://java.sun.com/xml/ns/javaee/beans_1_0.xsd

public long getTimeout();
public void setTimeout(long milliseconds);
public boolean isTransient();

¥

<interceptors>

Any conversation is in one of two states: transient or long-
running. Switch between states by calling begin/end. Long
running conversations and their state will be maintained by
requests in that conversation. Transient conversations are
destroyed at the end of the request.

<decorators>

<cass>

<aternat|ves>

If a conversation is requested that is timed out or
otherwise destroyed, a javax.enterprise.context.

<stereotype>

NonexistentConversationException is thrown.

ABOUT THE AUTHOR RECOMMENDED BOOK

Norman Richards is a senior software engineer at Socialware Step by step and easy to follow, this book describes
in Austin, Texas. He is an independent contributor to the Seam B many of the Java EE 6 specifications and reference
and Weld projects and was formerly a core developer on Seam Java EE 6 implementations, and shows them in action using practical
at Red Hat and JBoss. He is the author of numerous articles and in GlassFis examples. This book uses the new version of GlassFish 3 to
several books, including JBoss: A Developer’s Notebook, JBoss o deploy and administer the code examples.
4.0: The Official Guide and JBoss: A developer’s Notebook.
Norman is a graduate of the University of Texas at Austin. Norman can be
contacted through his website at http://nostacktrace.com/

BUY NOW

books.dzone.com/books/javaee-glassfish

Professional Cheat Sheets You Can Trust
“Exactly what busy developers need:
simple, short, and to the point.”
James Ward, Adobe Systems

Upcoming Titles Most Popular
Blaze DS Spring Configuration
Domain Driven Design jQuery Selectors
Virtualization Windows Powershell
Java Performance Tuning Dependency Injection with EJB 3
Expression Web Netbeans IDE JavaEditor
Spring Web Flow Getting Started with Eclipse
BPEL Very First Steps in Flex
DZone, Inc.
140 P E ve D ISBN-13: 978-1-934238-83-7
DZOne v Preston Executive Dr. ISBN-10: 1-934238-83-X
Suite 100 50795
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news, Reffcardz Feedback Welcome '5‘03
‘) dz@dzone. 1 N
tutorials, cheatsheets, blogs, feature articles, source code and more. refcarazEczone.com 9%781934"238837 @

"DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, Version 1.0
photocopying, or otherwise, without prior written permission of the publisher.

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/javaee-glassfish
http://www.jboss.com/downloads/

