

DZone, Inc. | www.dzone.com

By Norman Richards

ABOUT CDI

Ja
va

 C
o

n
te

xt
s

&
 D

e
p

e
n

d
e

n
cy

 I
n

je
ct

io
n

w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#83

Contexts and Dependency Injection
for the Java EE Platform

CONTENTS INCLUDE:
n	 About CDI
n	 About Weld
n	 The Bean
n	 Using Injection
n	 Extending Beans
n	 Events and more...

Contexts and Dependency Injection for the Java EE Platform
(CDI) introduces a standard set of component management
services to the Java EE platform. CDI manages the lifecycle
and interactions of stateful components bound to well-defined
contexts. CDI provides typesafe dependency injection
between components. CDI provides interceptors and
decorators to extend the behavior of components, an event
model for loosely coupled components, and an SPI allowing
portable extensions to integrate cleanly with the Java EE
environment.

CDI and Java EE
The Java EE 6 platform includes CDI as part of both the full
profile and the web profile. The EE 6 platform was designed
to make sure all EE components make use of CDI services,
putting CDI directly at the heart of the platform, welding
together the various EE technologies.

CDI and Seam
CDI was influenced by many technologies, with Seam in
particular pioneering many of the concepts that have been
formalized in CDI. However, Seam is not CDI, and not all of
Seam’s innovations are part of the CDI specification. As such,
the latest version of Seam, Seam 3, will be based on CDI and
will provide a collection of portable extensions to CDI that
can be integrated cleanly into any CDI environment. Seam 3
will also provide a legacy Seam 2 mode, giving existing Seam
applications a migration path onto CDI.

ABOUT WELD

Weld is the CDI reference implementation. It is a great place to
get started with CDI. Weld can be downloaded from
http://seamframework.org/Download.

Running the examples
Weld comes with an extensive library of examples that is a
great starting point to learn CDI. These examples run in Java
EE containers such as JBoss AS and Glassfish as well as in
servlet containers like Tomcat and Jetty.

Example name Description

examples/jsf/login A simple example demonstrating a user login component

examples/jsf/numberguess A number guessing game

examples/jsf/permalink A blog example

examples/jsf/translator A text translation example using EJBs

examples/wicket/numberguess The number guessing game implemented with Wicket

examples/wicket/gae An alternative version of the Wicket number guess that
runs on Google App Engine

Building the examples
Each example can be built using Maven 2.

$ mvn clean install

The target directory contains the built archive, which can be
deployed to EE containers like JBoss AS and Glassfish. The
examples that build to WAR files can also be deployed to
Tomcat and Jetty.

For convenience, each example contains an Ant file with
targets to build and deploy directly to JBoss AS and Tomcat.

ant -Djboss.home=/path/to/jboss-6.0 deploy
ant -Djboss.home=/path/to/jboss-6.0 undeploy

ant –Dtomcat.home=/path/to/tomcat tomcat.deploy
ant –Dtomcat.home=/path/to/tomcat tomcat.undeploy

Creating a Weld project
New project stubs can be created using Maven 2 archetypes.

Interactive Mode

mvn archetype:generate

Non-interactive mode

mvn archetype:generate
 -DinteractiveMode=n
 -DarchetypeArtifactId=weld-jsf-servlet-minimal
 -DarchetypeGroupId=org.jboss.weld.archetypes
 -Dversion=1.0.01
 -DgroupId=com.mycompany
 -DartifactId=myproject

Weld archetypes

Weld archetype Description

weld-jsf-servlet-minimal A Weld web application using JavaServer Faces (JSF)

weld-jsf-jee-minimal A Weld application using EJB and JSF but no persistence

weld-jsf-jee A Weld application using EJB and JSF with a persistence context

Need to integrate Spring, Hibernate,
or Seam with JBoss AS?
We’ve already done it for you. JBoss Enterprise
Application Platform 5.0 includes pre-integrated
frameworks for building all sorts of Java apps.
	 •	Customize	your	app	server	footprint

	 •	Simply	your	configurations

	 •		Bring	the	power	of	full	text	search	to	your	
app	with	Hibernate	Search

	 •	Use	our	pre-integrated	Apache	CXF	web	services	stack

	 •		Seam,	Hibernate,	and	Hibernate	Search	tooling	through	
JBoss	Developer	Studio	Hibernate	queries

Download today: jboss.com/download

bought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.jboss.com/downloads/
http://www.jboss.com/downloads/

DZone, Inc. | www.dzone.com

2
Contexts and Dependency Injection for the Java EE Platform

Building a Weld project

mvn clean install

THE BEAN

CDI, at the most basic level, revolves around the notion of
beans. Beans are instantiated by CDI, and their lifecycle is
managed according to the stateful context to which they
belong. So, it’s natural to start by asking what is a bean? In
CDI, almost any object can be a bean. When using CDI in a
Java EE environment, any Java EE component is a bean if it
is defined to be a managed bean by its EE specification. This
includes session beans, message-driven beans, servlets, filters,
etc.

Most non-EE POJOs are also automatically managed beans
and no special declarations are required to define a managed
bean. A bean definition consists of the following:

Bean Type The bean type is the set of Java types that the bean provides. CDI injection
always uses type as the primary identifier for determining the bean that will
provide an instance. Unless otherwise restricted, a bean’s type includes all the
superclasses and interfaces in the Java type hierarchy.

Qualifier There may be multiple beans that implement a desired Java type. It is possible
to distinguish between multiple types using qualifier annotations. Qualifiers
are developer-defined and provide a type-safe way to distinguish between
multiple beans implementations.

Scope All beans have a well-defined scope that determines the lifecycle and visibility
of instances. The set of scopes is fully extensible, with built-in scopes including
request scope, conversation scope, session scope and application scope.
Beans can also be dependent and inherit the scope of their injection point.

EL name Although it’s completely optional, beans may define an EL name that can be
used for non-type safe access. One common usage of EL name is for binding
components to JavaServer Faces (JSF) views.

Interceptors A bean’s behavior can be extended or overridden by adding interceptors and
decorators to the bean.

Implementation All beans must of course provide an implementation of the types they provide.
This is normally the Java class that defines the bean.

Not all instances of a bean type are managed instances.
Instances created with the Java new operator are not
managed. Only instances provided by the CDI BeanManager
or through an injection point are managed instances.

Managed instances can have injection performed on them
when they are created. Injection points are declared using the
@javax.inject.Inject annotation.

USING INJECTION

Injection is performed at creation time for any fields annotated
@Inject.

public class Foo
{
 @Inject Bar bar;
}

Injection is also performed for any methods annotated @Inject.

public class Foo
{
 @Inject
 public void setBar(Bar bar) {
 // …
 }
}

Method injection points can be thought of as initializer
methods. Method injection points can support multiple
injected arguments.

public class Foo
{
 @Inject
 public void initializeMe(Bar bar, Baz baz) {
 // …
 }
}

Beans can have any number of field or method injection points.
Additionally, a bean may have a constructor annotated @Inject.
Any declared parameters will be injected when the instance is
created.

public class Foo
{
 @Inject
 public Foo(Bar bar, Baz baz) {
 // …
 }
}

If a bean doesn’t designate a constructor using @Inject, the no
argument constructor will be used.

Producers
If CDI needs to instantiate a new instance, it will normally call
the designated constructor. However, it’s possible to directly
control the creation of new instances with producer methods.
Producer methods are annotated @javax.enterprise.inject.
Produces and return the object to be produced. Any arguments
to a producer method will be injected by CDI.

public class FooProducer {
 @Produces
 public Foo makeFooFromBar(Bar bar) {
 return new Foo(bar);
 }
}

An alternative form of producer is the producer field. The
value of the producer field is the value to be injected.

public class AnotherFooProducer {
 @Produces Foo foo;

 @Inject
 public void initalizeMe(Bar bar) {
 foo = new Foo(bar);
 }
}

Producer fields can be combined with Java EE injection
annotations such as @Resource, @EJB and @PersistenceContext.

@Produces
@WebServiceRef(lookup=”java:app/service/PaymentService”)
PaymentService paymentService;

@Produces
@EJB(ejbLink=”../their.jar#PaymentService”)
PaymentService paymentService;

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

DZone, Inc. | www.dzone.com

3
Contexts and Dependency Injection for the Java EE Platform

New instances
CDI injects the contextual, and thus possibly shared, instance
of a bean. When this is not desired, the @javax.enterprise.
inject.New annotation can be used to force a new instance to be
created and injected.

public class FooProducer {
 @Produces public Foo makeFoo(@New Bar bar) {
 return new Foo(bar);
 }
}

Programmatic lookup
Injection occurs when a component is created and initialized
by CDI. There are many cases where this is not desirable. In
those cases, programmatic lookup is available by injecting the
corresponding javax.enterprise.inject.Instance for a bean.

public class Foo {
 @Inject Instance<Bar> bar;

 public Bar getBar() {
 return bar.get();
 }
}

The get method performs the actual lookup defined by the
injection point.

Qualifiers
CDI does injection by type, but most systems have the need
for more than one instance of a given type. Rather than giving
them unique names or identifiers, CDI handles this through
qualifiers. Qualifiers are annotations on bean types and
injection points that differentiate between types. If a type
is a noun, then a qualifier is an adjective that can be used to
describe and distinguish the nouns.

A qualifier is an annotation that itself is annotated with the
@javax.inject.Qualifier meta-annotation.

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Synchronous {
}

Qualifiers can be added to a class to define a qualified bean
type. Typically this will be a subclass of a parent type or the
implementation of an interface.

@Synchronous
public class SynchronousPaymentProcessor
 implements PaymentProcessor
{
 // ...
}

Producer methods and fields can also use qualifiers to
distinguish between the types.

@Produces
@Asynchronous
public PaymentProcessor createAsynchronousProcessor() {
 return new AsynchronousPaymentProcessor();
}

It’s now possible to distinguish between the two types by
adding the qualifier to any injection point. It’s not necessary to
know the specific subtype or implementation class.

@Inject @Asynchronous PaymentProcessor processor;

@Inject
public void processSynchronously(@Synchronous PaymentProcessor) {
 // …
}

Hot
Tip

A bean can have multiple qualifiers. Injection points
only need to specify enough qualifiers to uniquely
match a bean.

Qualifiers annotations may have members.

@Target({FIELD, PARAMETER})
@Retention(RUNTIME)
@Qualifier
public @interface Currency {
 public String code();
}

All members must be equal, so the following injection point
and producer field would not match.

@Inject @Currency(code=“USD”) PaymentProcessor processor;
@Produces @Currency(code=”EUR”) PaymentProcessor processor;

However, if the qualifier annotation member is marked as
@javax.enterprise.util.Nonbinding, then the member values
would not be considered and the injection point would match
the producer field.

@Target({FIELD, PARAMETER})
@Retention(RUNTIME)
@Qualifier
public @interface Currency {
 @Nonbinding public String code();
}

Nonbinding values can provide useful metadata to a method.
These nonbinding values can be retrieved by injecting the
javax.enterprise.inject.spi.InjectionPoint and querying the
qualifiers.

@Produces
@Currency(code=”USD”)
public PaymentProcessor processor(InjectionPoint injectionPoint) {
 PaymentProcessor processor = new PaymentProcessor();
		
 for (Annotation qualifier:injectionPoint.getQualifiers()) {
 if (qualifier instanceof Currency) {
 Currency currency = (Currency) qualifier;
 processor.setBaseCurrency(currency.code());
 break;
 }
 }

 return processor;
}

The built-in qualifiers
Qualifier Description

@javax.enterprise.inject.Any Every bean and every injection point has the @Any qualifier,
even if it is not specified, unless the @New annotation is
specified.

@javax.enterprise.inject.New The @New annotation forces a new instance to be created by
the container instead of using the contextual instance.

@javax.enterprise.inject.Default Any bean or injection point that does not declare the @Named
qualifier has the default qualifier added.

@javax.enterprise.inject.Named This qualifier declares a text name that can be used to
reference the bean. This is used for un-typed access such as
through EL.

Bean names
The @javax.inject.Named qualifier specifies a textual that can be
used in places where CDI’s type-based lookup is not possible.
The primary use case is EL access in places such as JSF views.
@Inject @Named(“foo”) Foo foo;

The String value of the annotation is the name of the bean. If
the @Named annotation doesn’t explicitly specify a name, the
container will derive a default name. The default name is the
unqualified class name of the bean class, after converting the
first character to lower case. The following two injection points
use the exact same name.
@Inject @Named Bar namedBar1;
@Inject @Named(“bar”) Bar namedBar2;

Bean Scopes
CDI manages contextual objects. Contextual objects are
stateful and have a distinct lifecycle determined by the scope
they belong to. When a contextual bean is needed, CDI looks
in the appropriate shared context for the instance to inject. If

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

DZone, Inc. | www.dzone.com

4
Contexts and Dependency Injection for the Java EE Platform

there is no shared instance, CDI creates one and stores it in the
context for future use. When the enclosing scope is destroyed,
the beans inside will be destroyed.

Bean Scope Description

@javax.enterprise.context.
RequestScoped

@RequestScoped beans are shared for the length of a single
request. This could be an HTTP request, a remote EJB invocation,
a web services invocation or message-delivery to an MDB. These
beans are destroyed at the end of the request.

@javax.enterprise.context.
ConversationScoped

@ConversationScoped beans are shared across multiple requests
in the same HTTP session but only if there is an active conversation
maintained. Conversations are supported for JSF requests through
the javax.enterprise.context.Conversation bean.

@javax.enterprise.context.
SessionScoped

@SessionScoped beans are shared between all requests that occur
in the same HTTP session and are destroyed when the session is
destroyed.

@javax.enterprise.context.
ApplicationScoped

An @ApplicationScoped bean will live for as long as the application
is running and is destroyed when the application is shut down.

@javax.enterprise.context.
Dependent

@Dependent beans are never shared between injection points.
Any injection of a dependent bean is a new instance whose lifecycle
is bound to the lifecycle of the object it is being injected into.

The set of scopes is extensible. New scopes are declared with
the @javax.inject.Scope or @javax.enterprise.context.NormalScope
meta-annotation.

Bean Destruction
When a contextual bean goes out of scope, it is destroyed. To
destroy a bean, the container calls any @PreDestroy callbacks for
the bean and destroys any @Dependent objects before disposing
of the object.

An application can perform custom cleanup of created objects
by using a dispose method. A dispose method is the analog
of a producer method and is designated by marking the
parameter with @javax.enterprise.inject.Disposes.

@ApplicationScoped
public class BarProducer {
 ArrayList<Bar> allBars = new ArrayList<Bar>();
 @Produces
 public Bar createBar() {
 Bar newBar = new Bar();
 allBars.add(newBar);
 return newBar;
 }	
 public void disposeBar(@Disposes Bar bar) {
 allBars.remove(bar);
 }
}

As with producer methods, disposer methods may take
additional arguments to receive injected values. Only the one
argument to be disposed is annotated @Disposes.

Alternatives
Alternatives allow for deployment-time selection of bean
implementation. An alternative is a bean marked with the
@javax.enterprise.inject.Alternative annotation. Alternatives
provide an alternate implementation of a bean that is not
enabled unless is specifically enabled in the beans.xml file, in
which case it overrides the original bean.

@Alternative
public class AlternativeFoo
 extends Foo
{
 // alternative implementation
}

Alternatives are enabled only when activated in the beans.xml file.

<beans xmlns=”http://java.sun.com/xml/ns/javaee”>
 <alternatives>
 <class>org.example.AlternativeFoo</class>
 </alternatives>
</beans>

If the @Alternative annotation is applied to a stereotype, all
beans with the stereotype may be enabled as a group.

<beans xmlns=”http://java.sun.com/xml/ns/javaee”>
 <alternatives>
 <stereotype>org.example.MyAlternatives</stereotype>
 </alternatives>
</beans>

An alternative that extends the object it replaces will normally
want to directly inherit the metadata (qualifiers, name, etc.)
of the parent. In that case, the alternative should include the
@javax.enterprise.inject.Specializes annotation to ensure that
the original class is completely replaced by the alternative.

@Alternative
@Specializes
public class AlternativeFoo
 extends Foo
{
 // alternative implementation
}

EXTENDING BEAN FUNCTIONALITY

CDI supports two mechanisms for dynamically adding or
modifying the behavior of beans: interceptors and decorators.

Interceptors
Interceptors provide a mechanism for implementing
functionality across multiple beans and bean methods that is
orthogonal to the core function of those beans.

Interceptor
An interceptor is a bean declared with the @javax.interceptor.
Interceptor annotation. Method interceptor should have a
method annotated @javax.interceptor.AroundInvoke that takes the
javax.interceptor.InvocationContext as a parameter.

@Interceptor
public class TransactionInterceptor {
 @AroundInvoke
 public Object manageTransaction(InvocationContext ctx) {
 // …
 }
}

Interceptor Binding Type
Interceptors are bound using an interceptor binding type. An
interceptor binding type may be declared by specifying the
@javax.interceptor.InterceptorBinding meta-annotation.
@Inherited
@Target({TYPE, METHOD})
@Retention(RUNTIME)
@InterceptorBinding
public @interface Transactional {
}

The interceptor binding is applied to both the interceptor and
the interception point to bind the two together.

@Interceptor
@Transactional
public class TransactionInterceptor {
 // …
}

@Tranactional
public class Foo {
 //…
}

An interceptor bound to a class will intercept all methods.
Alternatively, the interceptor can be bound to specific methods.
public class Foo {
 @Transactional
 public void someTransactionalWork() {
 // …
 }
}

As with qualifiers, binding types may declare members. For
an interceptor binding to match, all members must be equal
unless they are declared @NonBinding.

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

DZone, Inc. | www.dzone.com

5
Contexts and Dependency Injection for the Java EE Platform

Interceptors are not enabled unless they are declared in the
beans.xml file.

<beans xmlns=”http://java.sun.com/xml/ns/javaee”>
 <interceptors>
 <class>org.example.TransactionInterceptor</class>
 <class>org.example.LoggingInterceptor</class>
 </interceptors>
</beans>

If multiple interceptors are defined for a call, the interceptors
calls are chained. The ordering is determined by the order
they are listed in beans.xml.

Decorators
Decorators also dynamically extend beans but with a slightly
different mechanism than interceptors. Where interceptors
deliver functionality orthogonal to potentially many beans,
decorators extend the functionality of a single bean type with
functionality that is specific to that type.

A decorator is bean with the @javax.decorator.Decorator
annotation. A decorator only decorates the interfaces that it
implements.

@Decorator class TimestampLogger
 implements Logger
{
 @Inject @Delegate Logger logger;

 public void log(String message) {
 logger.log(timestamp() + “: “ + message);
 }
}

A decorator must declare a single delegate injection point
annoted @javax.decorator.Delegate. The delegate injection point
is the object to be decorated. Any calls to the delegate object
that correspond to a decorated type will be called on the
decorator, which may in turn invoke the method directly on the
delegate object.

The decorator bean does not need to implement all methods
of the decorated types and may be abstract. Decorators are
called after interceptors.

Decorators are not active unless they are explicitly enabled in
beans.xml.

<beans xmlns=”http://java.sun.com/xml/ns/javaee”>
 <decorators>
 <class>org.example.TimestampLogger</class>
 <class>org.example.IdentityLogger</class>
 </decorators>
</beans>

EVENTS

Events provide a mechanism for loosely coupled communication
between components. An event consists of an event type,
which may be any Java object, and optional event qualifiers.

The event object
Events are managed through instances of javax.enterprise.
event.Event. Event objects are injected based on the event type.

@Inject Event<LoggedInEvent> normalEvent;
@Inject @Admin Event<LoggedInEvent> adminEvent;

Events are fired by calling fire() with an instance of the event
type to be passed to the observer.

event.fire(new LoggedInEvent(username));

Observers
Observers listen for events with observer methods. The event
type is annotated @javax.enterprise.event.Observes. Additional
parameters to an observer method are normal CDI injection
points.

Hot
Tip

If there are multiple observers for an event, the order
that they are called in is not defined.

Conditional observers
If an instance of a component with an observer method
doesn’t exist when the corresponding event is fired, the
container will instantiate a new instance to handle the event.
This behavior is controllable using the receive value of
@Observes.

public void refreshOnDocumentUpdate(@Observes(receive=IF_EXISTS)
 @Updated Document doc) {
 // ...
}

javax.enterprise.event.Reception

Reception value Meaning

IF_EXISTS The observer method is only called if an instance of the component already
exists.

ALWAYS The observer method is always called. If an instance doesn’t exist, one will be
created. This is the default value.

Transactional observer
Events are normally processed when the event is fired. For
transactional methods, it is often desirable for the event
at a certain point in the transaction lifecycle, such as after
the transaction completes. This is specified with the during
value of @Observes. If a transaction phase is specified but no
transaction is active, the event is fired immediately.

TransactionPhase value Meaning

IN_PROGRESS The event is called when it is fired, without regard to the transaction
phase. This is the default value.

BEFORE_COMPLETION The event is called during the before completion phase of the
transaction.

AFTER_COMPLETION The event is called during the after completion phase of the
transaction.

AFTER__FAILURE The event is called during the after completion phase of the
transaction, only when the transaction fails.

AFTER_SUCCESS The event is called during the after completion phase of the
transaction, only when the transaction completes successfully.

public void afterLogin(@Observes LoggedInEvent event) {
 //...
}

public void afterAdminLogin(@Observes @Admin LoggedInEvent event) {
 // ...
}

STEREOTYPES

A stereotype is a meta-annotation that bundles multiple
annotations together for re-use. A stereotype may be declared
by specifying the @javax.enterprise.inject.Stereotype
meta-annotation.

@RequestScoped
@Secure
@Transactional
@Named
@Stereotype
@Target(TYPE)
@Retention(RUNTIME)
public @interface Action {
}

Any bean that is annotated @Action will inherit all of the
annotations of the stereotype.

CDI defines the stereotype, @javax.enterprise.inject.Model for
declaring the model layer of a web application.

http://www.dzone.com
http://www.refcardz.com
http://www.jboss.com/downloads/

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Blaze DS
Domain Driven Design
Virtualization
Java Performance Tuning
Expression Web
Spring Web Flow
BPEL

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Contexts and Dependency Injection for the Java EE Platform

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-83-7
ISBN-10: 1-934238-83-X

9 781934 238837

50795

BUY NOW
books.dzone.com/books/javaee-glassfish

CONVERSATIONS

Conversations are available in JSF only. Programmatically
accessible through javax.enterprise.context.Conversation
component.
public interface Conversation {
 public void begin();
 public void begin(String id);
 public void end();
 public String getId();
 public long getTimeout();
 public void setTimeout(long milliseconds);
 public boolean isTransient();
}

Any conversation is in one of two states: transient or long-
running. Switch between states by calling begin/end. Long
running conversations and their state will be maintained by
requests in that conversation. Transient conversations are
destroyed at the end of the request.

If a conversation is requested that is timed out or
otherwise destroyed, a javax.enterprise.context.
NonexistentConversationException is thrown.

DEPLOYMENT

Bean archive
Bean classes of enabled beans must be deployed in bean
deployment archives. A bean deployment archive is any JAR,
EE archive, or directory on the classpath that contains a
beans.xml file in the META-INF directory. For WAR files, the
WEB-INF classes directory is also considered if there is a
beans.xml file in the WEB-INF directory.

beans.xml structure
The beans.xml file is defined by the XSD at
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd

@Named
@RequestScoped
@Stereotype
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface Model {
}

Norman Richards is a senior software engineer at Socialware
in Austin, Texas. He is an independent contributor to the Seam
and Weld projects and was formerly a core developer on Seam
at Red Hat and JBoss. He is the author of numerous articles and
several books, including JBoss: A Developer’s Notebook, JBoss
4.0: The Official Guide and JBoss: A developer’s Notebook.

Norman is a graduate of the University of Texas at Austin. Norman can be
contacted through his website at http://nostacktrace.com/

Step by step and easy to follow, this book describes
many of the Java EE 6 specifications and reference
implementations, and shows them in action using practical
examples. This book uses the new version of GlassFish 3 to
deploy and administer the code examples.

<interceptors>

<decorators>

<alternatives>

<beans>

<class>

<class>

<class>

<stereotype>

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/javaee-glassfish
http://www.jboss.com/downloads/

