
 

 

DZone, Inc.  |   www.dzone.com

By Paul M. Duvall

C
o

n
ti

n
u

o
u

s 
In

te
g

ra
ti

o
n

: 
P

at
te

rn
s 

an
d

 A
n

ti
-p

at
te

rn
s 

  
  

  
  
 w

w
w

.d
zo

n
e.

co
m

  
  

  
  

  
  

 G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

 
#84

Continuous Integration:
Patterns and Anti-Patterns

CONTENTS INCLUDE:
n	 About Continuous Integration
n	 Build Software at Every Change
n	 Patterns and Anti-patterns
n	 Version Control
n	 Build Management
n	 Build Practices and more...

Aldon®
Change. Collaborate. Comply.

ABOUT CONTINUOUS INTEGRATION

Continuous Integration (CI) is the process of building software 
with every change committed to a project’s version control 
repository.  

CI can be explained via patterns (i.e., a solution to a problem 
in a particular context) and anti-patterns (i.e., ineffective 
approaches sometimes used to “fix” the particular problem) 
associated with the process. Anti-patterns are solutions that 
appear to be beneficial, but, in the end, they tend to produce 
adverse effects. They are not necessarily bad practices, but can 
produce unintended results when compared to implementing 
the pattern.

Continuous Integration
While the conventional use of the term Continuous Integration 
generally refers to the “build and test” cycle, this Refcard 
expands on the notion of CI to include concepts such as 
Deployment and Provisioning. The end result is learning 
whether you are capable of delivering working software with 
every source change.

Pattern Run a software build with every change applied to the Repository

Anti-Patterns scheduled builds, nightly builds, building periodically, building exclusively on 
developer’s machines, not building at all

BUILD SOFTWARE AT EVERY CHANGE

The following table contains a summary of all the patterns 
covered in this Refcard:

A CI scenario starts with the developer committing source 
code to the repository. There are four features required for CI. 
     • A connection to a version control repository 
     • An automated build script 
     • Some sort of feedback mechanism (such as e-mail) 
     • A process for integrating the source code changes 
        (manual or CI server)

Pattern Description

Private Workspace Develop software in a Private Workspace to isolate changes

Repository Commit all files to a version-control repository

Mainline Develop on a mainline to minimize merging and to manage 
active code lines

Codeline Policy Developing software within a system that utilizes multiple 
codelines

Task-Level Commit Organize source code changes by task-oriented units of work 
and submit changes as a Task Level Commit

Label Build Label the build with unique name

Automated Build Automate all activities to build software from source without 
manual configuration

Minimal Dependencies Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity For each tagged deployment, use the same deployment 
package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifier Create a single template file that all target environment 
properties are based on

Staged Builds Run remote builds into different target environments

Private Build Perform a Private Build before committing changes to the 
Repository

Integration Build Perform an Integration Build periodically, continually, etc.

Continuous Feedback Send automated feedback from CI server to development team

Expeditious Fixes Fix build errors as soon as they occur

Developer Documentation Generate developer documentation with builds based on 
checked-in source code

Independent Build Separate build scripts from the IDE

Single Command Ensure all build and deployment processes can be run through 
a single command

Dedicated Machine Run builds on a separate dedicated machine

Externalize Configuration Externalize all variable values from the application configuration 
into build-time properties

Tokenize Configuration Token values are entered into configuration files and then 
replaced during the Scripted Deployment

Protected Configuration Files are shared by authorized team members only

brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
www.aldon.com
http://info.aldon.com/l/904/2010-01-14/G8A3J


DZone, Inc.  |   www.dzone.com

2
Continuous Integration: Patterns and Anti-patterns

PATTERNS AND ANTI-PATTERNS

Binary Integrity

Pattern For each tagged deployment, the same deployment package (e.g. WAR or 
EAR) is used in each target environment.

Anti-Patterns Separate compilation for each target environment on the same tag.

Version Control
The patterns in this section were originally described in the 
book Software Configuration Management Patterns (Addison-
Wesley, 2003, Berczuk and Appleton), except for ‘Label Build’:

Pattern Description

Private Workspace Prevent integration issues from distracting you, and from your changes 
causing others problems by developing in a Private Workspace.

Repository All files are committed to version-control repository — in the deployment 
context, all of the configuration files and tools.

Mainline Minimize merging and keep the number of active code lines 
manageable by developing on a Mainline

Codeline Policy The policy should be brief, and should spell out the “rules of the road” 
for the codeline

Task-Level Commit

Pattern Organize source code changes by task-oriented units of work and submit 
changes as a Task Level Commit.  (from SCM Patterns)

Anti-Patterns Keeping changes local to developer for several days and stacking up changes 
until committing all changes. This often causes build failures or requires 
complex troubleshooting.

Label Build

Pattern Label the build with unique name so that you can run the same build at 
another time.

Anti-Patterns Not labeling builds, Using revisions or branches as “labels.”

<path id=”svn.classpath”>
   <fileset dir=”${lib.dir}”>
     <include name=”**/*.jar” />
   </fileset>
</path>
<taskdef name=”svn” classpathref=”svn.classpath” classname=”org.
tigris.subversion.svnant.SvnTask”/>

<target name=”create-tag-from-trunk”>
   <svn username=”jhancock” password=”S!gnhere”>
     <copy srcUrl=”https://brewery-ci.googlecode.com/svn/trunk”
       destUrl=”https://brewery-ci.googlecode.com/svn/tags/
brewery-1.0.0”
       message=”Tag created by jhancock on ${TODAY}” />
   </svn>
</target>

Build Management
Automated Build

Pattern Automate all activities to build software from source without manual 
configuration. Create build scripts that are decoupled from IDEs. Later, these 
build scripts will be executed by a CI system so that software is built at every 
change.

Anti-Patterns Continually repeating the same processes with manual builds or partially 
automated builds requiring numerous manual configuration activities. 

<?xml version=”1.0” encoding=”iso-8859-1”?>

<project name=”brewery” default=”all” basedir=”.”>
  <target name=”clean” />
  <target name=”svn-update” />
  <target name=”all” depends=”clean,svn-update”/>
  <target name=”compile-src” />
  <target name=”compile-tests” />
  <target name=”integrate-database” />
  <target name=”run-tests” />
  <target name=”run-inspections” />
  <target name=”package” />
  <target name=”deploy” />
</project>

Minimal Dependencies

Pattern Reduce pre-installed tool dependencies to the bare minimum. Eliminate 
required environment variables from the Automated Build and Scripted 
Deployment.

Anti-Patterns Requiring developer to define and configure environment variables. Require 
developer to install numerous tools in order for the build/deployment to work.

Scripted Database Script all database actions

Database Sandbox Create a lightweight version of your database

Database Upgrade Use scripts and database to apply incremental changes in each 
target environment

Automated Tests Write an automated test for each unique path

Categorize Tests Categorize tests by type

Continuous Inspection Run automated code analysis to find common problems

Build Threshold Use thresholds to notify team members of code aberrations

Deployment Test Script self-testing capabilities into Scripted Deployments

Scripted Deployment All deployment processes are written in a script

Headless Execution Securely interface with multiple machines without typing a 
command

Unified Deployment Create a single deployment script capable of running on 
different platforms and target environments

Disposable Container Automate the installation and configuration of Web and 
database containers

Remote Deployment Use a centralized machine or cluster to deploy software to 
multiple target environments

Environment Rollback Provide an automated Single Command rollback of changes 
after an unsuccessful deployment

Continuous Deployment Deploy software with every change applied to the project’s 
version control repository

Single-Command 
Provisioning

Run a single command to provision target environment

Decouple Installation Separate the configuration from the installation

Dependency Management

Pattern Centralize all dependent libraries to reduce bloat, classpath problems, and 
repetition of the same dependent libraries and transitive dependencies from 
project to project.

Anti-Patterns Multiple copies of the same JAR dependencies in each and every project. 
Redefining the same information for each project. Classpath hell!

Tools such as Ivy and Maven can be used for managing 
dependencies.

Aldon®
Change. Collaborate. Comply.

http://www.dzone.com
http://www.refcardz.com
www.aldon.com


DZone, Inc.  |   www.dzone.com

3
Continuous Integration: Patterns and Anti-patterns

Single Command

Pattern Ensure all build and deployment processes can be run through a single 
command. This makes it easier to use, reduces deployment complexities 
and ensures a Headless Execution of the deployment process. Deployers, or 
headless processes, can type a single command to generate working software 
for users.

Anti-Patterns Some deployment processes require people to enter multiple commands 
and procedures such as copying files, modifying configuration files, restarting 
a server, setting passwords, and other repetitive, error-prone actions. 

Single-command deployment execution using Ant:

ant-Dproperties.file=$USERHOME/projects/petstore/properties/dev-
install.properties deploy:remote:install

Dedicated Machine

Pattern Run builds on a separate dedicated machine.

Anti-Patterns Existing environmental and configuration assumptions can lead to the “but it 
works on my machine problem.”

When creating an integration build machine consider the 
following:

Build Configuration
Independent Build

Pattern Separate build scripts from the IDE. Create build scripts that are decoupled 
from IDEs. Later, these build scripts will be executed by a CI system so that 
software is built at every change.

Anti-Patterns Automated Build relies on IDE settings. Build cannot run from the 
command line.  

Consistent Directories

Pattern Create a simple, yet well-defined directory structure to optimize software 
builds and increase cross-project knowledge transfer.

Anti-Patterns Putting code, documentation and large files in the same parent directory 
structure, leading to long-running builds.

Template Verifier

Pattern Create a single template file that all target environment properties are based on.

Anti-
Patterns

Use manual verification, trial and error (when deployment fails, check the logs), 
or keeping files “hidden” on a machine.

Integration Build

Pattern Ensure that your code base always builds reliably by doing an Integration 
Build periodically. 

Anti-Patterns “Works on My Machine” (WOMM). Continuous Compilation.

Continuous Feedback

Pattern Sending automated feedback from CI server to development team.

Anti-Patterns Minimal feedback, which prevents action from occurring. Receiving spam 
feedback, which causes people to ignore messages.

Examples Email, RSS, SMS, X10, Monitors, Web Notifiers

Expeditious Fixes

Pattern Fix build errors as soon as they occur.

Anti-Patterns Build entropy - problems stack up causing more complex troubleshooting 
and some claim that “CI” is the problem.

Fix broken builds 
immediately

Although it is the team’s responsibility, the developer who recently 
committed code must be involved in fixing the failed build

Run private 
builds

To prevent Integration failures, get changes from other developers by 
getting the latest changes from the repository and run a full integration 
build locally, known as a Private Build

Avoid getting 
broken code

If the build has failed, you will lose time if you get code from the Repository. 
Wait for the change or help the developer(s) fix the build failure and then 
get the latest code

Developer Documentation

Pattern Generate developer documentation with builds (at appropriate intervals) 
based on checked-in source code.

Anti-Patterns Developer documentation is manually generated, periodically. This is both 
a burdensome process and one in which the information becomes useless 
quickly because it does not reflect the checked-in source code.

Automating your documentation’s generation will help you 
keep it up to date and thereby make it more useful for your 
software’s users.

SchemaSpy

<property name=”reports.dir” value=”${basedir}”/>
<java jar=”schemaSpy_3.1.1.jar” output=”${reports.dir}/output.log” 
error=”${reports.dir}/error.log” fork=”true”>
  <arg line=”-t mysql”/>
  <arg line=”-host localhost”/>
  <arg line=”-port 3306”/>
  <arg line=”-db brewery”/>
  <arg line=”-u root”/>
  <arg line=”-p sa”/>
  <arg line=”-cp mysql-connector-java-5.0.5-bin.jar”/> <arg line=”-o 
${reports.dir}”/>
</java>

Note: ‘Private Build’ and ‘Integration Build’ are also from Berczuk and Appleton’s book 
Software Configuration Management Patterns (Addison-Wesley, 2003, Berczuk and Appleton)Staged Builds

Pattern Using the Remote Deployment pattern, run remote builds into different target 
environments

Anti-Patterns Deploying directly to production.

Build Practices
Private Build

Pattern Verify your changes will not break the Integration Build by performing a 
Private Build prior to committing changes to the Repository.

Anti-Patterns Checking in changes to version-control repository without running a build on 
developer’s workstation.

Aldon®
Change. Collaborate. Comply.

http://www.dzone.com
http://www.refcardz.com
www.aldon.com


DZone, Inc.  |   www.dzone.com

4
Continuous Integration: Patterns and Anti-patterns

Recommended system 
resources

Increase hardware resources for an integration build machine 
rather than wasting time waiting for slow builds.

All software assets in the 
version control repository

See the Repository pattern. 

Clean environment CI process removes any code dependencies on the integration 
environment. Automated build must set test data and any other 
configuration elements to a known state.

Externalize Configuration

Pattern All variable values are externalized from the application configuration into 
build-time properties.

Anti-Patterns Some hardcode these values, manually, for each of the target environments, 
or they might use GUI tools to do the same.

Example properties that are external to application-specific files:

authentication.type=db
application.url=http://${tomcat.server.hostname}:${tomcat.server.
port}/brewery-webapp
database.type=mysql
database.server=localhost
database.port=3306
database.name=mydb
database.user=myuser!
database.password=mypa$$!
database.url=jdbc:mysql://${database.server}:${database.
port}/${database.name}
tomcat.server.hostname=localhost
tomcat.server.name=default
tomcat.web.password=pa$$123!
tomcat.cobraorb.port=12748

Tokenize Configuration

Pattern Token values are entered into configuration files and then replaced during 
the Scripted Deployment based on Externalized Configuration properties 
checked into Repository.

Anti-Patterns Target-specific data is entered into configuration files in each environment.

Protected Configuration

Pattern Using the repository, files are shared by authorized team members only.

Anti-Patterns Files are managed on team members’ machines or stored on shared drives 
accessible by authorized team members.

Database
Scripted Database

Pattern Script all database actions.

Anti-Patterns Late and manual migration of a database in the development cycle is painful 
and expensive.

Script all DDL and DML so that database changes can be run 
from the command line.  Use a version-control repository to 
manage all database-related changes. (i.e. refer to the pattern)

<target name=”db:create” depends=”filterSqlFiles” description=”Create 
the database definition”> 
   <sql driver=”com.mysql.jdbc.Driver”
    url=”jdbc:mysql://localhost:3306/”
    userid=”root”
    password=”root”
    classpathref=”db.lib.path”
    src=”${filtered.sql.dir}/database-definition.sql” delimiter=”//”/> 
</target>

Database Sandbox

Pattern     * Create a lightweight version of your database (only enough records to test 
        functionality)
    * Use this lightweight DML to populate local database sandboxes for each 
        developer
    * Use this data in development environments to expedite test execution

Anti-Patterns Shared development database.

Give each developer, tester or test user a separate database 
instance. Install a lightweight database server in each user’s 
test environment (e.g., MySQL, Personal Oracle), which can 
be installed on the user’s private workstation, on a shared test 
server, or on a dedicated “virtual server” running on a shared 
server.

Database Upgrade

Pattern Use scripts and database to apply incremental changes in each target 
environment, which provides a centrally managed and scripted process to 
applying incremental changes to the database.

Anti-Patterns Manually applying database and data changes in each target environment.

Running a custom SQL file from a LiquiBase change set:

build.xml
<updateDatabase changeLogFile=”db.change.xml“     
driver=”org.apache.derby.jdbc.EmbeddedDriver“ 
url=”jdbc:derby:brewery“ username=”“ password=“” dropFirst=”true“ 
classpathref=”project.class.path”/>

db.change.xml
<changeSet id=”1” author=“phenry”>
  <sqlFile path=”insert-data.sql”/>
</changeSet>

Testing and Code Quality
Automated Tests

Pattern Write an automated test for each unique path. 

Anti-Patterns Not running tests, no regression tests, manual testing

Examples A Simple Unit Test
public void setUp() {
beerService = new BeerDaoStub();
}

public void testUnitGetBeer() {
Collection beers = beerService.findAll();
assertTrue(beers != null && beers.size() > 0);
}

Running a Unit Test in Ant
<junit fork=”yes” haltonfailure=”true” dir=”${basedir}” 
printsummary=”yes”>
   <classpath refid=”test.class.path” />
   <classpath refid=”project.class.path”/>
   <formatter type=”plain” usefile=”true” />
   <formatter type=”xml” usefile=”true” />
   <batchtest fork=”yes” todir=”${logs.junit.dir}”>
     <fileset dir=”${test.unit.dir}”>
       <patternset refid=”test.sources.pattern”/>
     </fileset>
   </batchtest>
</junit>

Categorize Tests

Pattern Categorize tests by type and your builds become more agile, tests can be run 
more frequently, and tests no longer take hours to complete.

Anti-Patterns Tests take hours to run, leading to excessive wait times and increased expense.

Continuous Inspection

Pattern Run automated code analysis to find common problems. Have these tools run 
as part of continuous integration or periodic builds.

Anti-Patterns Long, manual code reviews or no code reviews.

Examples:
CheckStyle

<taskdef resource=”checkstyletask.properties” 
classpath=”${checkstyle.jar}”/>

<checkstyle config=”${basedir}/cs-rules.xml”   
failOnViolation=”false”>
  <formatter toFile=”${checkstyle.data.file}” type=”xml” />

Aldon®
Change. Collaborate. Comply.

http://www.dzone.com
http://www.refcardz.com
www.aldon.com


DZone, Inc.  |   www.dzone.com

5
Continuous Integration: Patterns and Anti-patterns

Unified Deployment

Pattern Create a single deployment script capable of running on different platforms 
and target environments.

Anti-Patterns Some may use a different deployment script for each target environment or 
even for a specific machine.

Disposable Container

Pattern Automate the installation and configuration of Web and database containers 
by decoupling installation and configuration.

Anti-Patterns Manually install and configure containers into each target environment.

Remote Deployment

Pattern Use a centralized machine or cluster to deploy software to multiple target 
environments.

Anti-Patterns Manually applying deployments locally in each target environment.

    <fileset casesensitive=”yes” dir=”${src.dir}”     includes=”**/*.
java” />
</checkstyle>

<xslt taskname=”checkstyle”
in=”${checkstyle.data.file}”
out=”${checkstyle.report.file}”
style=”${checkstyle.xsl.file}” />

Build Threshold

Pattern Notify team members of code aberrations such as low code coverage or 
high cyclomatic complexity.  Fail a build when a project rule is violated. Use 
continuous feedback mechanisms to notify team members. 

Anti-Patterns Manual code reviews. Learning of code quality issues later in the development 
cycle.

<module name=”CyclomaticComplexity”>
  <property name=”max” value=”10”/>
</module>

Deployment Test

Pattern Script self-testing capabilities into Scripted Deployments.

Anti-Patterns Deployments are verified by running through manual functional tests that do 
not focus on deployment-specific aspects. No deployment tests are run.

The table below describes examples of the types of test that 
might be run as part of a Deployment Test smoke suite.

Example Test Type Description

Database Write an automated functional test that inserts data into a database. 
Verify the data was entered in the database.

Simple Mail Transfer 
Protocol (SMTP)

Write an automated functional test to send an e-mail message from 
the application.

Web service Use a tool like SoapAPI to submit a Web service and verify the output.

Web container(s) Verify all container services are operating correctly.

Lightweight Directory 
Access Protocol (LDAP)

Using the application, authenticate via LDAP.

Logging Write a test that writes a log using the application’s logging 
mechanism.

Deployment
Scripted Deployment

Pattern All deployment processes are written in a script.

Anti-Patterns Manually installing and configuring a Web container. Use of the GUI-based 
administration tool provided by the container to modify the container based 
on a specific environment. 

<available file=”@{tomcat.home}/server/@{tomcat.server.name}/bin” 
   property=”tomcat.bin.exists”/>
<if>
  <isset property=”tomcat.bin.exists”/>
<then>
  <echo message=”Starting tomcat instance at @{tomcat.home} with 
start_tomcat” />
  <exec executable=”@{tomcat.home}/server/@{tomcat.server.name}/
bin/start_tomcat” 
   osfamily=”unix” />
</then>
<else>
  <echo message=”Starting tomcat instance at @{tomcat.home} with 
startup.sh” />
  <exec osfamily=”unix” executable=”chmod” spawn=”true”>
    <arg value=”+x” />
    <arg file=”@{tomcat.home}/bin/startup.sh” />
    <arg file=”@{tomcat.home}/bin/shutdown.sh” />
  </exec>
		
  <exec executable=”sh” osfamily=”unix” dir=”@{tomcat.home}/bin” 
spawn=”true”>
    <env key=”NOPAUSE” value=”true” />
    <arg line=”startup.sh” />
  </exec>

    <exec osfamily=”windows” executable=”cmd” dir=”@{tomcat.home}/
bin” spawn=”true” >
      <env key=”NOPAUSE” value=”true” />
        <arg line=”/c startup.sh” />
    </exec>
    <sleep seconds=”15” />
    </else>
  </if>

Headless Execution

Pattern Securely interface with multiple machines without typing a command.

Anti-Patterns People manually access machines by logging into each of the machines as 
different users; then they copy files, configure values, and so on.

Aldon®
Change. Collaborate. Comply.

http://www.dzone.com
http://www.refcardz.com
www.aldon.com


 

 

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc.  |    w
ww.dzone.com

D
es

ig
n 

Pa
tt

er
ns

  
  

  
  

  
  

  
  

  
  

  
 w

w
w

.d
zo

ne
.c

om
  

  
  

  
  

  
  

  
  

  
  

  
  

 G
et

 M
o

re
 R

ef
ca

rz
! 

V
is

it
 r

ef
ca

rd
z.

co
m

 

#8

Brought to you by...

Inspired 

by the 

GoF 

Bestseller

This Design Patterns refcard provides a quick reference to the 

original 23 Gang of Four (GoF) design patterns, as listed in  

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams, 

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can 

be changed at runtime.

Class S
cope: Deals with class relationships that can be 

changed at compile time.

C  Abstract Factory

S  Adapter

S  Bridge

C  Builder

B  Chain of 

 
Responsibility

B  Command

S  Composite

S  Decorator

S  Facade

C  Factory Method

S  Flyweight

B  Interpreter

B  Iterator

B  Mediator

B  Memento

C  Prototype

S  Proxy

B  Observer

C  Singleton

B  State

B  Strategy

B  Template Method

B  Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such 

that they can be decoupled from their im
plementing 

system.

Structural Patterns: U
sed to form large object 

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms, 

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY      
      

   O
bject Behavioral

COMMAND      
      

    
 

      
    O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest( )

ConcreteHandler 1

+handlerequest( )

ConcreteHandler 2

+handlerequest( )

Purpose
Gives more than one object an opportunity to handle a request by linking 

receiving objects together.

Use 

When

n
	Multiple objects may handle a request and the handler doesn’t have to 

   be a specific object.

n
	A set of objects should be able to handle a request with the handler

   determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an 

exception is thrown in a method the runtime checks to see if th
e method 

has a mechanism to handle the exception or if it
 should be passed up the 

call stack. When passed up the call stack the process repeats until code to 

handle the exception is encountered or until th
ere are no more parent 

objects to hand the request to.

Receiver

Invoker

Command

+execute( )

Client
ConcreteCommand

+execute( )

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows 

the request to be handled in traditionally object based relationships such 

as queuing and callbacks.

Use 

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing  

of algorithms. By utilizing the command pattern the functionality to be  

executed can be given to a job queue for processing without any need 

for the queue to have knowledge of the actual implementation it is
 

invoking. The command object that is enqueued implements its particular 

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Vaadin
Continuous Integration 2
Spring Web Flow
Integrating Zend and PHP
Resin
Flash Builder 4.0
Maven 3

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need: 
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

   

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com 

Sponsorship Opportunities 
sales@dzone.com 

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, 
photocopying, or otherwise, without prior written permission of the publisher. 

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to 

more than 3.3 million software developers, architects and decision 

makers. DZone offers something for everyone, including news, 

tutorials, cheat sheets, blogs, feature articles, source code and more.  

“DZone is a developer’s dream,” says PC Magazine.

6
Continuous Integration: Patterns and Anti-patterns

ISBN-13: 978-1-934238-84-4
ISBN-10: 1-934238-84-8

9 781934 238844

50795

Continuous Deployment

Pattern Deploy software with every change applied to the project’s version control 
repository.

Anti-Patterns Deploying periodically. Manual deployments. Manual configuration of target 
environments.

Single-Command Provisioning

Pattern Run a single command or click a button to provision target environment.

Anti-Patterns Numerous manual and error-prone steps, often performed by other teams, 
leading to delays and target environment inconsistencies making errors 
difficult to troubleshoot.

Decouple Installation

Pattern Separate the configuration from the installation.

Anti-Patterns Saving off preconfigured images whose configuration has not been automated.

Environment Rollback

Pattern Provide an automated Single Command rollback of changes after an 
unsuccessful deployment.

Anti-Patterns Manually rolling back application and database changes.

RECOMMENDED BOOKABOUT THE AUTHOR

Paul M. Duvall is the CEO of Stelligent, a firm that helps clients 
create production-ready software every day. A featured speaker at 
many leading software conferences, he has worked in virtually every 
role on software projects: developer, project manager, architect, 
and tester. He is the principal author of Continuous Integration: 
Improving Software Quality and Reducing Risk (Addison-Wesley, 
2007) and a 2008 Jolt Award Winner. Paul contributed to the UML 
2 Toolkit (Wiley, 2003), wrote a series for IBM developerWorks 
called “Automation for the People,” and contributed a chapter to 

No Fluff Just Stuff Anthology: The 2007 Edition (Pragmatic Programmers, 2007). He 
is passionate about automating software development and release processes and 
actively blogs on IntegrateButton.com and TestEarly.com.

	
  

For any software developer who has spent days in 
“integration hell,” cobbling together myriad software 
components, Continuous Integration: Improving Software 
Quality and Reducing Risk illustrates how to transform 
integration from a necessary evil into an everyday part 
of the development process. The key, as the authors 
show, is to integrate regularly and often using continuous 
integration (CI) practices and techniques.

Some of the concepts and material in this Refcard were adapted from:
     • Continuous Integration: Improving Software Quality and Reducing Risk, by Paul M. Duvall (Addison-Wesley, 2007) -
        http://www.amazon.com/gp/product0321336380/?tag=integratecom-20

     • IBM developerWorks series Automation for the people, by Paul Duvall -
        http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=automation+people

BUY NOW
books.dzone.com/books/continuous-integrations

Aldon®
Change. Collaborate. Comply.

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.amazone.com/gp/product0321336380/?tag=integratecom-20
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=automation+people
http://books.dzone.com/books/continuous-integration
www.aldon.com

