

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#85
V

aa
d

in
:

A
 F

am
ili

ar
 W

ay
 t

o
 B

u
ild

 W
e

b
 A

p
p

s
w

it
h

 J
av

a

CONTENTS INCLUDE:
n	 About Vaadin
n	 Creating an Application
n	 Components
n	 Layout Components
n	 Themes
n	 Data Binding and more... By Marko Grönroos

Vaadin: A Familiar Way to
Build Web Apps with Java

ABOUT VAADIN

Vaadin is a server-side Ajax web application development
framework that allows you to build web applications just as you
would with traditional desktop frameworks, such as AWT or Swing.
An application is built from user interface components contained
hierarchically in layout components.

In the server-driven model, the application code runs on a server,
while the actual user interaction is handled by a client-side engine
running in the browser. The client-server communications and any
client-side technologies, such as HTML and JavaScript, are invisible
to the developer. As the client-side engine runs as JavaScript in the
browser, there is no need to install plug-ins.

Figure 1: Vaadin Client-Server Architecture

If the built-in selection of components is not enough, you can
develop new components with the Google Web Toolkit (GWT)
in Java.

CREATING AN APPLICATION

An application that uses the Vaadin framework needs to inherit the
com.vaadin.Application class and implement the init() method.

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {
 public void init() {
 Window main = new Window(“Hello window”);
 setMainWindow(main);
 main.addComponent(new Label(“Hello World!”));
 }
}

To write an application class and the initialization method,
you should:

 • inherit the Application class

 • create and set a main window

 • populate the window with initial components

 • define event listeners to implement the UI logic

Optionally, you can also:

 • set a custom theme for the window

 • bind components to data

 • bind components to resources

The application can change the components and the layout
dynamically according to the user input.

Figure 2: Architecture for Vaadin Applications

You can create a Vaadin application project easily with the Vaadin
Plugin for Eclipse, with NetBeans, with Maven or with Spring Roo.

Event Listeners
In the event-driven model, user interaction with user interface
components triggers server-side events, which you can handle
with event listeners.

In the following example, we handle click events for a button with
an anonymous class:

Button button = new Button(“Click Me!”);
button.addListener(new ClickListener() {
 public void buttonClick(ClickEvent event) {
 getWindow().showNotification(“Thank You!”);
 }
});

brought to you by...

Vaadin
Pro Account

$99
from

permonth

Support from the
Vaadin team

Pro Add-on compo-
nents and tools

Bug fix guarantee,
feature voting and
knowledge base

Try one month for free
with code: DZONE

vaadin.com/pro

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

2 Vaadin: A Familiar Way to Build Web Apps with Java

DZone, Inc. | www.dzone.com

Hot
Tip

You can embed Vaadin applications to any web page
in div or iframe elements. See the Book of Vaadin
for more info.

Below is a list of the most important event interfaces; their
corresponding listener interface is named -Listener.

Event Interface Description

Property.ValueChangeEvent Field components except Button

Button.ClickEvent Button click

Window.CloseEvent A sub-window or an application-level window
has been closed

Unless the immediate property (see below) is set, value change
events are not communicated immediately to the server-side
when the user changes the values. Instead, they are delayed until
the first immediate interaction. Certain events, such as button
clicks, are immediate by default.

Deployment
To deploy an application as a servlet, you must define a
WEB-INF/web.xml deployment descriptor. The application
class must be defined in the application parameter.

<web-app>
 <display-name>myproject</display-name>

 <servlet>
 <servlet-name>Myproject Application</servlet-name>
 <servlet-class>com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <description>Vaadin application class to start</description>
 <param-name>application</param-name>
 <param-value>com.example.myproject.HelloWorld</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>Myproject Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

You can also deploy to a portal as a portlet.

COMPONENTS

Vaadin components include field, layout, and other components.
The component classes and their inheritance hierarchy is
illustrated in Figure 4.

Component Properties
Common component properties are defined in the Component
interface and the AbstractComponent base class.

Property Description

caption A label that identifies the component for the user, usually
shown above, left of, or inside a component, depending on the
component and the containing layout.

description A label that identifies the component for the user, usually
shown above, left of, or inside a component, depending on the
component and the containing layout.

enabled If false, the user can not interact with the component. The
component is shown as grayed. (Default: true)

icon An icon for the component, usually shown left of the caption.

immediate If true, value changes are communicated immediately to the server-
side, usually when the selection changes or (a text field) loses input
focus. The default is false for most components, but true for Button.

locale The current country and/or language for the component.
Meaning and use is application-specific for most components.
(Default: application locale)

readOnly If true, the user can not change the value. (Default: false)

visible Whether the component is actually visible or not. (Default: true)

Field Properties
Field properties are defined in the Field interface and the
AbstractField base class for fields.

Property Description

required Boolean value stating whether a value for the field is required.
(Default: false)

requiredError Error message to be displayed if the field is required but empty.

Sizing
The size of components is defined in the Sizeable interface.

Method Description

setWidth()
setHeight()

Set the component size in either fixed units (px, pt, pc,
cm, mm, in, or em) or as a relative percentage (%) of the
containing layout. The value “-1” means undefined size
(see below).

setSizeFull() Sets both dimensions to 100% relative size of the space
given by the containing layout.

setSizeUndefined() Sets both dimensions as undefined, causing the
component to shrink to fit the content.

Notice that a layout with an undefined size must not contain a
component with a relative (percentual) size.

Validation
All components implementing the Validatable interface, such
as all fields, can be validated with validate() or isValid(). You
need to implement a Validator and its validate() and isValid()
methods and add the validator to the field with addValidator().

Built-in validators are defined in the com.vaadin.data.validator
package and include:

Validator Description

DoubleValidator A floating-point value

EmailValidator An email address

IntegerValidator An integer value

RegexpValidator String that matches a regular expression

StringLengthValidator Length of string is within a range

Resources
Icons, embedded images, hyperlinks, and downloadable files are
referenced as resources.

Button button = new Button(“Button with an icon”);
button.setIcon(new ThemeResource(“img/myimage.png”));

The external and theme resources are usually static resources.
Application resources are served by the Vaadin application
servlet, or by the user application itself.

Figure 3: Resource classes and interfaces

Continued on Page 4...

http://www.refcardz.com
http://www.dzone.com

3 Vaadin: A Familiar Way to Build Web Apps with Java

DZone, Inc. | www.dzone.com

Figure 4: The Class Diagram presents all user interface component classes and the most important interfaces, relationships, and methods.

http://www.refcardz.com
http://www.dzone.com

4 Vaadin: A Familiar Way to Build Web Apps with Java

DZone, Inc. | www.dzone.com

...Continued from Page 2

Class Name Description

ExternalResource Any URL

ThemeResource A static resource served by the application server from the
current theme. The path is relative to the theme folder.

FileResource Loaded from the file system

ClassResource Loaded from the class path

StreamResource Generated dynamically by the application

LAYOUT COMPONENTS

The layout of an application is built hierarchically with layout
components or more generally component containers.

You start by creating a root layout for the main window and set it
with setContent(), unless you use the default, and then add the
other layout components hierarchically with addComponent().

Margins
The margin of layout components is controlled with the margin
property, which you can set with setMargin(). Once enabled, the
HTML element of the layout will contain an inner element with
<layoutclass>-margin style, for example, v-verticallayout-
margin for a VerticalLayout. You can use the padding property in
CSS in a custom theme to set the width of the margin.

Spacing
Some layout components allow spacing between the elements. You
first need to enable spacing with setSpacing(true), which enables
the <layoutclass>-spacing-on style for the layout, for example,
v-gridlayout-spacing-on for GridLayout. You can then set the
amount of spacing in CSS in a custom theme with the padding-top
property for vertical and padding-left for horizontal spacing.

Alignment
When a layout cell is larger than a contained component,
the component can be aligned within the cell with the
setComponentAlignment() method.

Custom Layout
The CustomLayout component allows the use of a HTML
template that contains location tags for components, such as
<div location=”hello”>. The components are inserted in the
location elements with the addComponent() method as shown below:

CustomLayout layout = new CustomLayout(“mylayout”);
layout.addComponent(new Button(“Hello”), “hello”);

The layout name in the constructor refers to a corresponding
.html file in the layouts subfolder in the theme folder, in the
above example layouts/mylayout.html. See Figure 5 for the
location of the layout template.

Creating Composite Components
You can create composite components by extending layout
components. The CustomComponent allows component
composition while hiding the implementation details. You
need to extend it and set the composition root, usually a layout
component, with setCompositionRoot() in the constructor.

THEMES

Vaadin allows customization of appearance of the user interface
with themes. Themes can include CSS style sheets, custom layout
HTML templates, and any graphics.

Custom themes are placed under the WebContent/VAADIN/themes/
folder of the web application. This location is fixed. The VAADIN
folder specifies that these are static resources specific to Vaadin.

The name of the theme folder defines the name of the theme, to
be used for the setTheme() method:

public void init() {
 setTheme(“mytheme”);
 …

The theme folder must contain the styles.css style sheet and
custom layouts must be placed in the layouts sub-folder, but
other contents may be named freely.

Custom themes need to inherit a base theme in the beginning of
the styles.css file. The default theme for Vaadin 6 is reindeer.

@import url(../reindeer/styles.css);

Figure 5: Theme contents

Hot
Tip

Try adding ?debug or ?restartApplication to
the application URL.

DATA BINDING

Vaadin allows binding components directly to data. The data
model, illustrated in Figure 4, is based on interfaces on three
levels of containment: properties, items, and containers.

Properties
The Property interface provides access to a value of a specific
class with the setValue() and getValue() methods.

All field components provide access to their value through the
Property interface, and the ability to listen for value changes with
a Property.ValueChangeListener. The field components hold
their value in an internal data source by default but you can bind
them to any data source with setPropertyDataSource().

For selection components, the property value points to the
item identifier of the current selection, or a collection of item
identifiers in the multiSelect mode.

Items
An item is an ordered collection of properties. The Item interface
also associates a name with each property. Common uses of
items include Form data and Table rows.

http://www.refcardz.com
http://www.dzone.com

5 Vaadin: A Familiar Way to Build Web Apps with Java

DZone, Inc. | www.dzone.com

The BeanItem is an adapter that allows accessing any Java bean (or
POJO with the proper setters and getters) through the Item interface.
This is useful for binding a Form to a bean.

Containers
A container is a collection of items. It allows accessing the
items with an item identifier associated with each item.

Common uses of containers include selection components, as
defined in the AbstractSelect class, especially the Table and Tree
components. (The current selection is indicated by the property of
the field, which points to the item identifier of the selected item.)

Vaadin includes the following container implementations:

Container Class Description

IndexedContainer Container with integer index keys

BeanItemContainer Container for BeanItems

HierarchicalContainer Tree-like container, used especially by the Tree
component

FilesystemContainer Direct access to the file system

Buffering
All field components implement the Buffered interface that
allows buffering user input before it is written to the data
source. Buffering is disabled by default.

Method Description

commit() Writes the buffered data to the data source

discard() Discards the buffered data and re-reads the data
from the data source

set-/getWriteThrough() Set to false to enable write buffering

set-/getReadThrough() Set to false to enable read buffering

USING ADD-ON COMPONENTS

In addition to the core features, you can find additional
components, themes, container implementations, and various
tools from the Vaadin Directory.

To install an add-on, download the Jar or Zip package from the
Directory. If packaged as a Zip, extract the Jar library from it.
Copy the Jar to the WEB-INF/lib path in your project.

Most add-on components contain a widget set. The widget
sets from different add-ons need to be combined with the
core widgets by compiling a project widget set. The widget set
must be referenced in the web.xml descriptor.

 • �With Eclipse IDE, click the “Compile Vaadin Widgets”
button in the toolbar. This requires the Vaadin Plugin for
Eclipse.

 • �With NetBeans IDE and others, copy the build-widgetset.
xml script template from the Vaadin installation package,
edit it for your project, and run it with Ant.

More detailed instructions are given in the Directory
(http://vaadin.com/directory) and Book of Vaadin.

CREATING NEW COMPONENTS

Vaadin components consist of a server-side component and a
client-side GWT widget counterpart.

Creating a Client-Side Widget
To create a client-side component, you should:

 • Implement the Paintable interface

 • Maintain a reference to the ApplicationConnection object

 • �Implement updateFromUIDL() to deserialize state changes
from server-side

 • �Serialize state changes to server-side with calls to
updateVariable()

Creating a Server-Side Component
To create a server-side component, you should:

 • �Use @ClientWidget annotation for the server-side component
class to bind the component to the client-side counterpart

 • �Implement paintContent() to serialize state changes to
client-side with addVariable() and addAttribute() calls

 • �Implement changeVariables() to deserialize state changes
from client-side

Figure 6: Widget integration within the vaadin client-server communication
architecture

http://www.refcardz.com
http://www.dzone.com

6 Vaadin: A Familiar Way to Build Web Apps with Java

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

Defining a Widget Set
A widget set is a collection of widgets that, together with the
communication framework, form the Client-Side Engine of
Vaadin, when compiled with the GWT Compiler into JavaScript.

A widget set is defined in a .gwt.xml GWT Module Descriptor.
You need to specify at least one inherited base widget set,
typically the DefaultWidgetSet or a custom set.

<module>
 <inherits name=”com.vaadin.terminal.gwt.DefaultWidgetSet” />
 <inherits name=”com.example.widgetset.AnotherWidgetSet” />
</module>

The client-side source files must be located in the client sub-
package under the package of the descriptor.

You can associate a stylesheet with a widget set with the
<stylesheet> element in the .gwt.xml descriptor:

<stylesheet src=”colorpicker/styles.css”/>

You can create new widgets easily with the Vaadin Plug-in
for Eclipse.

Widget Project Structure

Figure 7: Widget set source structure.

The Figure 7 illustrates the source code structure of a widget
project (for the Color Picker example).

For more information on Vaadin, visit the Vaadin Blog at
http://vaadin.com/blog or the Forum at http://vaadin.com/forum

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Continuous Delivery
CSS3
NoSQL
Android Application Development

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

READ NOW
http://vaadin.com/book

Marko Grönroos is a professional writer and
software developer working at Vaadin Ltd, the
company behind Vaadin. He has been involved
in web application development since 1994 and
has worked on several application development
frameworks in C, C++, and Java. He has been
active in many open-source software projects and
holds an M.Sc. degree in Computer Science from
the University of Turku. He lives in Turku, Finland.

Website: http://iki.fi/magi

Blog: http://markogronroos.blogspot.com/

Book of Vaadin is a comprehensive
documentation of Vaadin. It shows how to get
started, gives a good overview of the features,
and tutors you through advanced aspects of the
framework.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

