Get More Refcardz! Visit refcardz.com

©
>
©
)
-
5=
=
(2}
OF
o
<
0
=
©
=
(a8
O
)
>
=
—
.8
S
©
L
<

Vaadin

.+ ! DZone Refcardz

brought to you by...

vaadin }>

= About Vaadin

= Creating an Application
= Components

* Layout Components

* Themes

= Data Binding and more...

Vaadin: A Familiar Way to
Build Web Apps with Java

By Marko Grénroos

ABOUT VAADIN

Vaadin is a server-side Ajax web application development
framework that allows you to build web applications just as you
would with traditional desktop frameworks, such as AWT or Swing.
An application is built from user interface components contained
hierarchically in layout components.

In the server-driven model, the application code runs on a server,
while the actual user interaction is handled by a client-side engine
running in the browser. The client-server communications and any
client-side technologies, such as HTML and JavaScript, are invisible
to the developer. As the client-side engine runs as JavaScript in the
browser, there is no need to install plug-ins.

Web Java Web
Browser Web ave Service
Client-Side Server icati
Engine

Figure 1: Vaadin Client-Server Architecture

If the built-in selection of components is not enough, you can
develop new components with the Google Web Toolkit (GWT)
in Java.

CREATING AN APPLICATION

An application that uses the Vaadin framework needs to inherit the
com.vaadin.Application class and implement the init () method.

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {
public void init() {
Window main = new Window(“Hello window”);
setMainWindow(main);
main.addComponent(new Label(“Hello World!”));

}

To write an application class and the initialization method,
you should:

e inherit the Application class

e create and set a main window

e populate the window with initial components

e define event listeners to implement the Ul logic
Optionally, you can also:

® set a custom theme for the window

® bind components to data

® bind components to resources

The application can change the components and the layout
dynamically according to the user input.
External
Resources
Servlet Container
pars File
Servlet Resources

Data
Binding

Web
Browser

Client-Side
Engine

AJAX Requests

Inherits Events Changes Inherits

Figure 2: Architecture for Vaadin Applications

You can create a Vaadin application project easily with the Vaadin
Plugin for Eclipse, with NetBeans, with Maven or with Spring Roo.

Event Listeners
In the event-driven model, user interaction with user interface
components triggers server-side events, which you can handle
with event listeners.

In the following example, we handle click events for a button with
an anonymous class:

Button button = new Button(“Click Me!”);
button.addListener(new ClickListener() {
public void buttonClick(ClickEvent event) {
getWindow() .showNotification(“Thank You!”);

fO/b &990@
g 7

0/7177

Support from the
Vaadin team

Pro Add-on compo-
nents and tools

Bug fix guarantee,
feature voting and
knowledge base

vaadin.com/pro

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

A1 DZoneRefcardz vaadin}>

Vaadin: A Familiar Way to Build Web Apps with Java

You can embed Vaadin applications to any web page

in div or iframe elements. See the Book of Vaadin
for more info.

Below is a list of the most important event interfaces; their
corresponding listener interface is named -Listener.

Event Interface Description

Property.ValueChangeEvent | Field components except Button

Button.ClickEvent Button click

Window.CloseEvent A sub-window or an application-level window

has been closed

Unless the immediate property (see below) is set, value change
events are not communicated immediately to the server-side
when the user changes the values. Instead, they are delayed until
the first immediate interaction. Certain events, such as button
clicks, are immediate by default.

Deployment

To deploy an application as a servlet, you must define a
WEB-INF/web.xm| deployment descriptor. The application
class must be defined in the application parameter.

<web-app>
<display-name>myproject</display-name>

<servlet>
<servlet-name>Myproject Application</servlet-name>
<servlet-class>com.vaadin.terminal.gwt.server.ApplicationServlet
</servlet-class>
<init-param>
<description>Vaadin application class to start</description>
<param-name>application</param-name>
<param-value>com.example.myproject.HelloWorld</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>Myproject Application</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

You can also deploy to a portal as a portlet.

COMPONENTS

Vaadin components include field, layout, and other components.
The component classes and their inheritance hierarchy is
illustrated in Figure 4.

Component Properties
Common component properties are defined in the Component
interface and the AbstractComponent base class.

Property Description

caption A label that identifies the component for the user, usually
shown above, left of, or inside a component, depending on the

component and the containing layout.

description | A label that identifies the component for the user, usually
shown above, left of, or inside a component, depending on the

component and the containing layout.

enabled If false, the user can not interact with the component. The

component is shown as grayed. (Default: true)

icon An icon for the component, usually shown left of the caption.

immediate | If true, value changes are communicated immediately to the server-
side, usually when the selection changes or (a text field) loses input

focus. The default is false for most components, but true for Button.

locale The current country and/or language for the component.
Meaning and use is application-specific for most components.
(Default: application locale)

readOnly If true, the user can not change the value. (Default: false)

visible Whether the component is actually visible or not. (Default: true)

Field Properties
Field properties are defined in the Field interface and the
AbstractField base class for fields.

Property Description

required

Boolean value stating whether a value for the field is required.
(Default: false)

requiredError | Error message to be displayed if the field is required but empty.

Sizing

The size of components is defined in the Sizeable interface.
Method Description
setWidth() Set the component size in either fixed units (px, pt, pc,
setHeight()

cm, mm, in, or em) or as a relative percentage (%) of the
containing layout. The value “-1" means undefined size
(see below).

setSizeFull() Sets both dimensions to 100% relative size of the space

given by the containing layout.

setSizeUndefined() | Setsboth dimensions as undefined, causing the

component to shrink to fit the content.

Notice that a layout with an undefined size must not contain a
component with a relative (percentual) size.

Validation

All components implementing the Validatable interface, such

as all fields, can be validated with validate() or isvValid(). You
need to implement a Validator and its validate() and isvalid()
methods and add the validator to the field with addvalidator().

Built-in validators are defined in the com.vaadin.data.validator
package and include:

Validator Description

DoubleValidator A floating-point value

EmailValidator An email address

IntegerValidator An integer value

RegexpValidator String that matches a regular expression

StringLengthValidator | Length of string is within a range

Resources
Icons, embedded images, hyperlinks, and downloadable files are
referenced as resources.

Button button = new Button(“Button with an icon”);
button.setIcon(new ThemeResource(“img/myimage.png”));

The external and theme resources are usually static resources.
Application resources are served by the Vaadin application

servlet, or by the user application itself.
FileResource

Resource ApplicationResource

ExternalResource

Figure 3: Resource classes and interfaces

Continued on Page 4...

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

@ DZone Refcardz vaadin }> 3 Vaadin: A Familiar Way to Build Web Apps with Java

Server-Side Components | pata Model T ——

Ordered Sortable -
Legen d W Viewer Container Filterable IndexedContainer
m Inherits or additem()

Editor i i . n :
implements Hierarchical HierarchicalContainer
setParent()

Class & Abstract Class

A getBean()
method() Inner Inner Viewer Item

abstractMethod() ~ (must or may implement) addltemProperty()
Default sizes: ¢+ 3 100% wide/high undefined width/height Editor

Beanltem<>

0 AbstractBeanContainer<>

Propertysetitem

ObjectProperty<>
)) Viewer Property — (Obect]
VariableOwner Paintable paint) ValueChangeEvent BeanContainer<>
change Variables() setDebugld() Editor sett\\//allue()
focus() getlked ValueChangeListener BeanltemContainer<>
Si bl setTablndex() valueChange()
Izeable Focusable
setWidth/Height() . Buffered Validatable
setSizeFull/Undefined() component Field commit/discard()) addValidator()
& Event N AN setWrite-/ReadThrough() isvalid(), validate()
Embedded) addStyleName/Listener() setRequired()
v-container Wefaes setCaption/Icon() setRequiredError() & &
setEnabled/Visible() TextArea TextField
getParent(), attach/detach() v-textarea v-textfield

m o) AbstractComponent AbstractField

‘9 setin
putPrompt/MaxLeng
Label | A setDescription()
v-label setimmediate() 0 ‘3’
v-menubar € =23 : & RlchItefttArea
Upload Progressindicator MEHEIEREIEE

MenuBar v-progressindicator buttonClick() CheckBox

m Command setPollingInterval/indeterminate() ClickListener v-checkbox

addltem() ® ;3 L::3 [ClickEvent | Y &
LoginForm Slider :
DragAndDropWrapper g v-slider Button NativeButton
v-ddwrapper . . . v-button v-nativebutton
setOrientation/Resolution()

‘9 setMin/Max() ,9 qi,

. DateField InlineDateField
ComponentContainer > CustomComponent \-datefield V-ininedatefild

addComponent() setCompositionRoot() setResolution()

v-upload

Buffered Q 5 '5'
Validatable ¢ PopupDateField
Container Item v-popupdatefield

Editor i
setContent() e setLayout/Footer() | setFormFieldFactory()

-wind y <, 2
Window = PopupViev? visbshest & AbstractSelect Select ComboBox
i TabSheet v-select v-filterselect
V-popupview A

1 setMainWindow() setMultiSelect()
com.vaadin.

Application{ S8

setTheme/Locale/LogoutURL()

o
Layout AbstractLayout AbsoluteLayout
v-absolutelayout

setMargin() getPosition()

Tab

Your Accordion‘a setVisible/Enabled() ListSelect

Application o o setCaption/icon() v-listselect
setDescription()

: :
NativeSelect

v-nativeselect

I8
. @ FormFieldFacto
TwinColSelect I v
v-twincolselect
DefaultFieldFactory
g

OptionGroup createField()
v-optiongroup TableFieldFactory

@ L4 ®
CustomLayout [l AbstractSplitPanel GridLayout CssLayout

v-customlayout setSplitPosition() v-gridlayout v-csslayout

setLocked() addComponent(c)
/(c, col, row)/(c, c1, r1, c2, r2)

ColumnGenerator

new CustomLayout("template”) setTableFieldFactory()

L QContainer.Ordered
Container.Sortable

Table
v-table

Horizontal-/ &
VerticalSplitPanel AbstractOrderedLayout CellStyleGenerator

v-splitpanel-horizontal/-vertical v-formlayou 49
Tree LL] QContainer.Hierarchical
v-tree
& ItemStyleGenerator

g
HorizontalLayout VerticalLayout

v-horizontallayout v-verticallayout

Figure 4: The Class Diagram presents all user interface component classes and the most important interfaces, relationships, and methods.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

7 DZone Refcardz

vaadin }>

Vaadin: A Familiar Way to Build Web Apps with Java

...Continued from Page 2

Class Name Description

ExternalResource | Any URL

ThemeResource | A static resource served by the application server from the

current theme. The path is relative to the theme folder.

FileResource Loaded from the file system

ClassResource Loaded from the class path

StreamResource

Generated dynamically by the application

LAYOUT COMPONENTS

The layout of an application is built hierarchically with layout
components or more generally component containers.

You start by creating a root layout for the main window and set it
with setContent(), unless you use the default, and then add the
other layout components hierarchically with addComponent ().
Margins

The margin of layout components is controlled with the margin
property, which you can set with setMargin(). Once enabled, the
HTML element of the layout will contain an inner element with
<layoutclass>-margin style, for example, v-verticallayout-
margin for a VerticalLayout. You can use the padding property in
CSS in a custom theme to set the width of the margin.

Spacing

Some layout components allow spacing between the elements. You
first need to enable spacing with setSpacing(true), which enables
the <layoutclass>-spacing-on style for the layout, for example,
v-gridlayout-spacing-on for GridLayout. You can then set the
amount of spacing in CSS in a custom theme with the padding-top
property for vertical and padding-left for horizontal spacing.

Alignment

When a layout cell is larger than a contained component,
the component can be aligned within the cell with the
setComponentAlignment () method.

Custom Layout

The CustomLayout component allows the use of a HTML

template that contains location tags for components, such as

<div location="hello”>. The components are inserted in the
location elements with the addComponent () method as shown below:

CustomLayout layout = new CustomLayout(“mylayout”);
layout.addComponent (new Button(“Hello”), “hello”);

The layout name in the constructor refers to a corresponding
.html file in the layouts subfolder in the theme folder, in the
above example layouts/mylayout.html. See Figure 5 for the
location of the layout template.

Creating Composite Components

You can create composite components by extending layout
components. The CustomComponent allows component
composition while hiding the implementation details. You

need to extend it and set the composition root, usually a layout
component, with setCompositionRoot() in the constructor.

THEMES

Vaadin allows customization of appearance of the user interface
with themes. Themes can include CSS style sheets, custom layout
HTML templates, and any graphics.

Custom themes are placed under the WebContent/VAADIN/themes/
folder of the web application. This location is fixed. The VAADIN
folder specifies that these are static resources specific to Vaadin.

The name of the theme folder defines the name of the theme, to
be used for the setTheme() method:

public void init() {
setTheme(“mytheme”) ;

The theme folder must contain the styles.css style sheet and
custom layouts must be placed in the layouts sub-folder, but
other contents may be named freely.

Custom themes need to inherit a base theme in the beginning of
the styles.css file. The default theme for Vaadin 6 is reindeer.

@import url(../reindeer/styles.css);

) WebContent/VAADIN/themes

.~y reindeer - a built-in theme

- theme style sheet

‘@import "../reindeer/styles.css";

h; mytheme - a custom theme
—5:, styles.css -+ : - theme style sheet
— = img - image resources

(] myimage.png

—\ _J layouts - custom layouts
ﬂ mylayout.html - layout template

Figure 5: Theme contents

Try adding ?debug or ?restartApplication to
the application URL.

DATA BINDING

Vaadin allows binding components directly to data. The data
model, illustrated in Figure 4, is based on interfaces on three
levels of containment: properties, items, and containers.

Properties
The Property interface provides access to a value of a specific
class with the setvalue() and getValue() methods.

All field components provide access to their value through the
Property interface, and the ability to listen for value changes with
a Property.ValueChangelListener. The field components hold
their value in an internal data source by default but you can bind
them to any data source with setPropertyDataSource().

For selection components, the property value points to the
item identifier of the current selection, or a collection of item
identifiers in the multiSelect mode.

Items

An item is an ordered collection of properties. The Item interface
also associates a name with each property. Common uses of
items include Form data and Table rows.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

A1 DZone Refcardz vaadin}=

Vaadin: A Familiar Way to Build Web Apps with Java

The Beanltem is an adapter that allows accessing any Java bean (or
POJO with the proper setters and getters) through the ltem interface.
This is useful for binding a Form to a bean.

Containers
A container is a collection of items. It allows accessing the
items with an item identifier associated with each item.

Common uses of containers include selection components, as
defined in the AbstractSelect class, especially the Table and Tree
components. (The current selection is indicated by the property of
the field, which points to the item identifier of the selected item.)

Vaadin includes the following container implementations:

Container Class Description

IndexedContainer Container with integer index keys

BeanltemContainer Container for Beanltems

HierarchicalContainer | Tree-like container, used especially by the Tree

component

FilesystemContainer | Direct access to the file system

Buffering

All field components implement the Buffered interface that
allows buffering user input before it is written to the data
source. Buffering is disabled by default.

Method Description
commit () Writes the buffered data to the data source
discard() Discards the buffered data and re-reads the data

from the data source

set-/getWriteThrough() | Setto false to enable write buffering

set-/getReadThrough() | Setto false to enable read buffering

USING ADD-ON COMPONENTS

In addition to the core features, you can find additional
components, themes, container implementations, and various
tools from the Vaadin Directory.

To install an add-on, download the Jar or Zip package from the
Directory. If packaged as a Zip, extract the Jar library from it.
Copy the Jar to the WEB-INF/1lib path in your project.

Most add-on components contain a widget set. The widget
sets from different add-ons need to be combined with the
core widgets by compiling a project widget set. The widget set
must be referenced in the web.xml descriptor.

e With Eclipse IDE, click the "Compile Vaadin Widgets”

button in the toolbar. This requires the Vaadin Plugin for
Eclipse.

e With NetBeans IDE and others, copy the build-widgetset.
xml script template from the Vaadin installation package,
edit it for your project, and run it with Ant.

More detailed instructions are given in the Directory
(http://vaadin.com/directory) and Book of Vaadin.

CREATING NEW COMPONENTS

Vaadin components consist of a server-side component and a
client-side GWT widget counterpart.

Creating a Client-Side Widget

To create a client-side component, you should:
e Implement the Paintable interface
e Maintain a reference to the ApplicationConnection object

e Implement updateFromUIDL() to deserialize state changes
from server-side

e Serialize state changes to server-side with calls to
updateVariable()

Creating a Server-Side Component

To create a server-side component, you should:

e Use @ClientWidget annotation for the server-side component
class to bind the component to the client-side counterpart

e Implement paintContent () to serialize state changes to
client-side with addvariable() and addAttribute() calls

e Implement changeVariables() to deserialize state changes
from client-side

Google Web Toolkit

Widget SomeWidget

Vaadin Client-Side Integration

Paintable
updateFromUIDL()

VMyWidget *

*) Needs to call updateVariable() to serialize state
to server. Must implement updateFromUIDL() to
deserialize state from server.

ApplicationConnection
updateVariable()

Makes XMLHttpRequest

Server connection UIDL / JSON / HTTP(S)

Server-Side Integration

CommunicationManager

Paintable VariableOwner
paint() changeVariables()
Component PaintTarget

AbstractComponent
paintContent()

MyComponent *
@ClientWidget(VMyWidget.class)

*) Must implement changeVariables() for deserialization
and paintContent() for serialization using the PaintTarget
interface.

Figure 6: Widget integration within the vaadin client-server communication
architecture

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

A57DZone Refcardz vaadin

‘/

Vaadin: A Familiar Way to Build Web Apps with Java

Defining a Widget Set

A widget set is a collection of widgets that, together with the
communication framework, form the Client-Side Engine of
Vaadin, when compiled with the GWT Compiler into JavaScript.

A widget set is defined in a .gwt.xml GWT Module Descriptor.
You need to specify at least one inherited base widget set,
typically the DefaultWidgetSet or a custom set.

<module>
<inherits name="com.vaadin.terminal.gwt.DefaultWidgetSet” />
<inherits name="com.example.widgetset.AnotherWidgetSet” />
</module>

The client-side source files must be located in the client sub-
package under the package of the descriptor.

You can associate a stylesheet with a widget set with the
<stylesheet> element in the .gwt.xml descriptor:

| <stylesheet src="colorpicker/styles.css”/> |

You can create new widgets easily with the Vaadin Plug-in
for Eclipse.

W|dget Project Structure

com.vaadin.demo.colorpicker

2| ColorPickerApplication.java - a demo application
7| ColorPicker.java - custom server-side component
o widgetset - widget set GWT module

_;l ColorPickerWidgetSet.gwt.xml - GWT module descriptor
. client
1 Jui
\‘E;l GwtColorPicker.java
;J VColorPicker.java
“— _J public
i colorpicker
:Jstyles.css

Figure 7: Widget set source structure.

- client-side source code
- GWT widgets
- custom widget

- integration widget

- widgetset style sheet

The Figure 7 illustrates the source code structure of a widget
project (for the Color Picker example).

For more information on Vaadin, visit the Vaadin Blog at
http://vaadin.com/blog or the Forum at http://vaadin.com/forum

ABOUT THE AUTHOR

Marko Grénroos is a professional writer and
software developer working at Vaadin Ltd, the
company behind Vaadin. He has been involved

in web application development since 1994 and
has worked on several application development
frameworks in C, C++, and Java. He has been
active in many open-source software projects and
holds an M.Sc. degree in Computer Science from
the University of Turku. He lives in Turku, Finland.

Website: http://iki.fi/magi
Blog: http://markogronroos.blogspot.com/

4% DZone Refcardz

Getting Started with

Cloud Computing
By Dariel Rublo

Free PDF

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

RECOMMENDED BOOK

Book of Vaadin is a comprehensive
documentation of Vaadin. It shows how to get
started, gives a good overview of the features,
and tutors you through advanced aspects of the
framework.

READ NOW
http://vaadin.com/book

Continuous Delivery
CSS3
NoSQL

DZone, Inc.

ISBN-13: 978-1-93k502-40-0
140 Preston Executive Dr. ISBN-10: 1-93bL502-40-2
Suite 100 50795
Cary, NC 27513
888.678.0399
919.678.0300
Refcardz Feedback Welcome
refcardz@dzone.com 1936"5024

Sponsorship Opportunities
sales@dzone.com

Version 1.0

Browse our collection of over 100 Free Cheat Sheets

Upcoming Refcardz

Android Application Development

$7.95

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

