
Becoming a Vaadin Expert

How to update yourself

It’s not always easy to keep up with the
latest Java web development tools and
trends. To help you with this, Vaadin offers
exceptionally good documentation, tutorials
and official hands-on trainings all around
the world.

Attend the official Vaadin trainings to learn
about Vaadin best practices, the right
application architecture and how to best
benefit from the latest features. To boost
your career take the certification exam and
become a Vaadin Certified Developer.

Develop your skills and build amazing Java web applications.

Download
Vaadin Framework

Read the
Book of Vaadin

Build an application
for evaluation

Vaadin 7
Fundamentals training

Vaadin 7
Advanced training

Build the next generation of
enterprise web applications Vaadin 7

Developer certification

Get certified

vaadin.com/certification

Sign up
for training

vaadin.com/training

http://vaadin.com/certification
http://vaadin.com/training

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#85
V

aa
d

in
 7

:
A

 N
ew

 W
a

y
to

 B
u

ild
 W

eb
 U

Is
 w

it
h

 J
a

va

By: Marko Grönroos

Vaadin is a web application development framework that allows you
to build web applications much as you would with traditional desktop
frameworks, such as AWT or Swing. A UI is built hierarchically from user
interface components contained in layout components. User interaction is
handled in an event-driven manner.

Vaadin supports both a server-side and a client-side development model.
In the server-side model, the application code runs on a server, while the
actual user interaction is handled by a client-side engine that runs in the
browser. The client-server communications and client-side technologies,
such as HTML and JavaScript, are invisible to the developer. The client-
side engine runs as JavaScript in the browser, so there is no need to install
plug-ins.

UI LogicComponents

Built-in
Components

Add-on
Components

Custom
Components

Back-End

Business
Logic

Persistence

Browser

Built-in
Widgets

Add-on
Widgets

Custom
Widgets

Client-Side
UI

Client-Side Engine

Service

Web Server / Portal

Figure 1: Vaadin Client-Server Architecture

The client-side development model allows building new client-side widgets
and user interfaces with the GWT toolkit included in Vaadin. The widgets
can be integrated with server-side component counterparts to enable
using them in server-side applications. You can also make pure client-side
UIs, which can communicate with a back-end service.

A server-side Vaadin application consists of one or more UI classes that
extend the com.vaadin.UI class and implement the init() method.

@Title(“My Vaadin UI”)
public class HelloWorld extends com.vaadin.UI {
 @Override
 protected void init(VaadinRequest request) {
 // Create the content root layout for the UI
 VerticalLayout content = new VerticalLayout();
 setContent(content);

 // Display the greeting
 content.addComponent(new Label(“Hello World!”));
 }
}

Normally, you need to:

•	 extend the UI class
•	 build an initial UI from components
•	 define event listeners to implement the UI logic

Optionally, you can also:

•	 set a custom theme for the UI
•	 bind components to data
•	 bind components to resources

Web Browser
Client-Side Engine

Vaadin
Service

Vaadin
Session

Application
UI

Back-End
Business Logic, persistence, database, ...

Application Server
Java Web Application

Web Page

UI UI
Component

Event
Listener

UI ChangesUI Events

Data
Model

Application
Theme

Default
Theme

n

1

n

«extends»

Data
Binding

n

HTTP

Vaadin
Servlet/Portlet

1

AJAX RequestsHTTP

«extends»

Figure 2: Architecture for Vaadin Applications

You can create a Vaadin application project easily with the Vaadin Plugin
for Eclipse, with NetBeans, or with Maven.

Hot
Tip

You can get a reference to the UI object associated
with the currently processed request from anywhere in
the application logic with UI.getCurrent(). You can also
access the current VaadinSession, VaadinService, and
VaadinServlet objects in the same way.

CONTENTS INCLUDE:

❱ Creating a Server-side UI

❱ Components

❱ Themes

❱ Class Diagram

❱ Data Binding

❱ Widget Integration... and more!

Vaadin 7:
Modern Web Apps in Java

Vaadin Charts
The best charting component for Vaadin

with over 50 chart types.

Learn more
vaadin.com/charts

Live examples
demo.vaadin.com/charts

ABOUT VAADIN

CREATING A SERVER-SIDE UI

Brought to you by:

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://vaadin.com/download
http://vaadin.com/charts
http://demo.vaadin.com/charts

2 Vaadin 7

DZone, Inc. | www.dzone.com

Event Listeners
In the event-driven model, user interaction with user interface components
triggers server-side events, which you can handle with event listeners.

In the following example, we handle click events for a button with an
anonymous class:

Button button = new Button(“Click Me”);
button.addClickListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 Notification.show(“Thank You!”);
 }
});
layout.addComponent(button);

Value changes in a field component can be handled correspondingly with a
ValueChangeListener. By setting the immediate property of a component
to true, user interaction events can be fired immediately when the focus
changes. Otherwise, they are delayed until the first immediate interaction,
such as a button click.

In addition to the event-driven model, UI changes can be made from the
server-side with server push.

Deployment
Vaadin applications are deployed to a Java application server as web
applications. A UI runs as a Java Servlet, which needs to be declared in a
web.xml deployment descriptor, or with the @WebServlet and
@VaadinServletConfiguration annotations in a Servlet 3.0 capable server
as follows:

@WebServlet(value = “/*”, asyncSupported = true)
@VaadinServletConfiguration(
 productionMode = false,
 ui = HelloWorld.class)
public class myServlet extends VaadinServlet {
}

The VaadinServlet handles server requests and manages user sessions
and UIs. All that is normally hidden, but you may need to do some tasks in
the custom servlet class. The Eclipse plugin creates the servlet class as an
inner class of the UI class. In a Servlet 2.4 capable server, you need to use
a web.xml.

Vaadin UIs can also be deployed as portlets in a portal.

Vaadin components include field, layout, and other components. The
component classes and their inheritance hierarchy is illustrated in Figure 4.

Component Properties
Common component properties are defined in the Component interface
and the AbstractComponent base class for all components.

Property Description

caption A label usually shown above, left of, or inside a component,
depending on the component and the containing layout.

description A longer description that is usually displayed as a tooltip
when mouse hovers over the component.

enabled If false, the component is shown as grayed out and the user
cannot interact with it. (Default: true)

icon An icon for the component, usually shown left of the caption,
specified as a resource reference.

immediate If true, value changes are communicated immediately to the
server-side, usually when the selection changes or the field
loses input focus. (Default: false)

locale The current country and/or language for the component.
Meaning and use is application-specific for most
components. (Default: UI locale)

readOnly If true, the user cannot change the value. (Default: false)

visible Whether the component is actually visible or not. (Default:
true)

Field Properties
Field properties are defined in the Field interface and the AbstractField base
class for fields.

Property Description

required Boolean value stating whether a value for the field is
required. (Default: false)

requiredError Error message to be displayed if the field is required
but empty. Setting the error message is highly
recommended for providing the user with information
about a failure.

Sizing
The size of components can be set in fixed or relative units in either
dimension (width or height), or be undefined to shrink to fit the content.

Method Description

setWidth()
setHeight()

Set the component size in either fixed units (px,
pt, pc, cm, mm, in, em, or rem) or as a relative
percentage (%) of the containing layout. The null
value or “-1” means undefined size (see below),
causing the component to shrink to fit the content.

setSizeFull() Sets both dimensions to 100% relative size

setSizeUndefined() Sets both dimensions as undefined, causing the
component to shrink to fit the content.

Figure 4 shows the default sizing of components.

Notice that a layout with an undefined size must not contain a component
with a relative (percentual) size.

Validation
Field values can be validated with validate() or isValid(). You add validators
to a field with addValidator(). Fields in a FieldGroup can all be validated at
once.

Built-in validators are defined in the com.vaadin.data.validator package
and include:

Validator Description

CompositeValidator Combines other validators

DateRangeValidator The date/time is between a specified range

Double(Range)Validator The input is a double value (and within a range)

EmailValidator The input is a valid email address

Integer(Range)Validator The input is an integer (and within a range)

NullValidator The input value either is null or is not

RegexpValidator The input string matches a regular expression

StringLengthValidator The length of the input string is within a range

You can also implement a custom Validator by defining its validate()
method.

Fields in a FieldGroup bound to a BeanItem can be validated with the Bean
Validation API (JSR-303), if an implementation is included in the class path.

Resources
Icons, embedded images, hyperlinks, and downloadable files are referenced
as resources.

Button button = new Button(“Button with an icon”);
button.setIcon(new ThemeResource(“img/myimage.png”));

External and theme resources are usually static resources. Connector
resources are served by the Vaadin servlet.

COMPONENTS

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://vaadin.com/download

3 Vaadin 7

DZone, Inc. | www.dzone.com

ConnectorResourceResource

ExternalResource

ThemeResource

FileResource

ClassResource

StreamResource

Figure 3: Resource Classes and Interfaces

Class Name Description

ExternalResource Any URL

ThemeResource A static resource served by the application server
from the current theme. The path is relative to the
theme folder.

FileResource Loaded from the file system

ClassResource Loaded from the class path

StreamResource Provided dynamically by the application

The layout of a UI is built hierarchically from layout components, or more
generally component containers, with the actual interaction components as
the leaf nodes of the component tree.
You start by creating a root layout and set it as the UI content with
setContent(). Then you add the other components to that with
addComponent(). Single-component containers, most notably Panel and
Window, only hold a single content component, just as UI, which you must
set with setContent().

The sizing of layout components is crucial. Their default sizes are marked
in Figure 4, and can be changed with the sizing methods described earlier.
Notice that if all the components in a layout have relative size in a particular
direction, the layout may not have undefined size in that direction!

Margins
Setting setMargin(true) enables all margins for a layout, and with a
MarginInfo parameter you can enable each margin individually. The margin
sizes can be adjusted with the padding property (as top, bottom, left, and
right padding) in a CSS rule with a corresponding v-top-margin, v-bottom-
margin, v-left-margin, or v-right-margin selector. For example, if you have
added a custom mymargins style to the layout:

.mymargins.v-margin-left {padding-left: 10px;}

.mymargins.v-margin-right {padding-right: 20px;}

.mymargins.v-margin-top {padding-top: 30px;}

.mymargins.v-margin-bottom {padding-bottom: 40px;}

Spacing
Setting setSpacing(true) enables spacing between the layout slots. The
spacing can be adjusted with CSS as the width or height of elements with
the v-spacing style. For example, for a vertical layout:

.v-vertical > .v-spacing {height: 50px;}

For a GridLayout, you need to set the spacing as left/top padding for a
.v-gridlayout-spacing-on element:

Alignment
When a layout cell is larger than a contained component, the component
can be aligned within the cell with the setComponentAlignment() method
as in the example below:

VerticalLayout layout = new VerticalLayout();
Button button = new Button(“My Button”);
layout.addComponent(button);
layout.setComponentAlignment(button, Alignment.MIDDLE_CENTER);

Expand Ratios
The ordered layouts and GridLayout support expand ratios that allow some
components to take the remaining space left over from other components.
The ratio is a float value and components have 0.0f default expand ratio.
The expand ratio must be set after the component is added to the layout.

VerticalLayout layout = new VerticalLayout();
layout.setSizeFull();
layout.addComponent(new Label(“Title”)); // Doesn’t expand

TextArea area = new TextArea(“Editor”);
area.setSizeFull();
layout.addComponent(area);
layout.setExpandRatio(area, 1.0f);

Also Table supports expand ratios for columns.

Custom Layout
The CustomLayout component allows the use of a HTML template that
contains location tags for components, such as <div location=”hello”/>.
The components are inserted in the location elements with the
addComponent() method as shown below:

CustomLayout layout = new CustomLayout(“mylayout”);
layout.addComponent(new Button(“Hello”), “hello”);

The layout name in the constructor refers to a corresponding .html file in
the layouts subfolder in the theme folder, in the above example layouts/
mylayout.html. See Figure 5 for the location of the layout template file.

Hundreds of Vaadin add-on components are available from the Vaadin
Directory, both free and commercial. You can download them as
an installation package or retrieve with Maven, Ivy, or a compatible
dependency manager. Please follow the instructions given in Vaadin
Directory at http://vaadin.com/directory.

Most add-ons include widgets, which need to be compiled to a project
widget set. In an Eclipse project created with the Vaadin Plugin for Eclipse,
select the project and click the Compile Vaadin widgets button in the tool
bar.

THEMES

Vaadin allows customizing the appearance of the user interface with
themes. Themes can include Sass or CSS style sheets, custom layout
HTML templates, and graphics.

Basic Theme Structure
Custom themes are placed under the VAADIN/themes/ folder of the web
application (under WebContent in Eclipse projects). This location is fixed
and the VAADIN folder specifies that these are static resources specific to
Vaadin. The structure is illustrated in Figure 5.

Each theme has its own folder with the name of the theme. A theme folder
must contain a styles.scss (for Sass) or a styles.css (for plain CSS) style
sheet. Custom layouts must be placed in the layouts sub-folder, but other
contents may be named freely.

Custom themes need to inherit a base theme. The built-in themes in Vaadin
7 are reindeer, runo, and chameleon, as well as a base theme on which the
other built-in themes are based.

Sass Themes
Sass (Syntactically Awesome StyleSheets) is a stylesheet language based
on CSS3, with some additional features such as variables, nesting, mixins,
and selector inheritance. Sass themes need to be compiled to CSS. Vaadin
includes a Sass compiler that compiles stylesheets on-the-fly during
development, and can also be used for building production packages.

To enable multiple themes on the same page, all the style rules in a theme
should be prefixed with a selector that matches the name of the theme. It
is defined with a nested rule in Sass. Sass themes are usually organized in
two files: a styles.scss and a theme-specific file such as mytheme.scss.

LAYOUT COMPONENTS

.v-gridlayout-spacing-on {
 padding-left: 100px;
 padding-top: 50px;
}

ADD-ON COMPONENTS

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://vaadin.com/directory
http://vaadin.com/download

4 Vaadin 7

DZone, Inc. | www.dzone.com

Abstract-
ComponentContainer

Interface
java.package.path

Class AbstractClass
java.package.path

Legend
Inner

Inner Inner

Inherits or
implements

method()
abstractMethod() (must or may implement)

Default sizes: 100% wide/high undefined width/height

Server-Side Components

java.package.path

css-style

Connector
com.vaadin.shared

Component
com.vaadin.ui

ClientConnector
com.vaadin.server

Sizeable
setWidth/Height()
setSizeFull
setSizeUndefined()

Property<>
com.vaadin.data

Item
com.vaadin.data

Editor
ValueChangeListener

Viewer

Container
com.vaadin.data

Editor

Viewer

Editor

Viewer

Data Model
Ordered

Hierarchical

Sortable

Indexed

Filterable

n

n

addItem()

addItemProperty()

valueChange()

BeanItem<>

PropertysetItem

AbstractBeanContainer<>

HierarchicalContainer

IndexedContainer

Bean

n

BeanContainer<>

BeanItemContainer<>

setParent()

getBean()

ObjectProperty<> Object

ValueChangeEvent

Focusable

Link
v-link

Label
v-label

MenuBar
v-menubar

focus()
setTabIndex()

Image
v-image

Video
v-video

Audio
v-audio

Upload
v-upload

HasComponents

Panel
v-panel

CustomLayout
v-customlayout

Window
v-window

setContent()

UI
com.vaadin.ui

v-ui

Layout

new CustomLayout("template")

Horizontal-/
VerticalSplitPanel
v-splitpanel-horizontal/-vertical

AbstractSingleCom-
ponentContainer

AbstractComponent

Flash
v-flash

Embedded
v-container

BrowserFrame

v-browserframe

AbstractMediaAbstract-
Embedded

FieldGroup
(not a component)

com.vaadin.data
Field<> n

Your
UI

setValue()
getValue()

Item

MenuItem addItem()

Component-
Container

SingleComponent-
Container

AbstractLayout

addComponent()

AbstractSplit-
Panel

AbstractOrdered-
Layout

VerticalLayout
v-verticallayout

HorizontalLayout
v-horizontallayout

AbsoluteLayout
v-absolutelayout

GridLayout
v-gridlayout

ComponentPosition

CssLayout
v-csslayout

TabSheet
v-tabsheet

addTab()

SQLContainer

CustomComponent
v-customcomponent

setCompositionRoot()

DragAndDropWrapper

v-ddwrapper

Accordion
v-accordion

FormLayout
v-formlayout

AbstractField<>

Slider
v-slider

<Double>

ProgressIndicator
v-progressindicator

<Double>

Button
v-button

CheckBox
v-checkbox

<Boolean>

TextField
v-textfield

RichTextArea
v-richtextarea

<String>

DateField
<Date>

InlineDateField
v-inlinedatefield

PopupDateField
v-datefield

ListSelect
v-listselect

NativeSelect
v-nativeselect

TwinColSelect
v-twincolselect

Table
v-table

Tree
v-tree

ComboBox
v-filterselect

Container.Ordered
Container.Sortable

CellStyleGenerator

ColumnGenerator

setResolution()

ItemStyleGenerator

setRows()

v-textfield
PasswordField

TreeTable
v-treetable

Collapsible

Container.Hierarchical

RowGenerator

Abstract-
TextField

<String>

TextArea
v-textarea

AbstractSelect
<Object>

addComponent(c)/(c, col, row)/(c, c1, r1, c2, r2)

getPosition()

The Class Diagram presents all user interface
component classes and the most important interfaces,
relationships, and methods.

Calendar
v-calendar

ColorPicker
v-colorpicker

v-colorpicker
ColorPickerArea

AbstractColorPicker

Tab

CustomField<>
v-customfield

1

Buffered

Validatable
validate/isValid()
addListener()

Container
1

setContainer-
DataSource()

setSplitPosition()
setLocked()

UI.getCurrent().addWindow()

setComponentAlignment/ExpandRatio()setMargin/Spacing()

setMultiSelect()

initContent()

setInputPrompt/MaxLength()

v-nativebutton
NativeButton

setCaption/
Icon()

ClickListener

fixed

setIndeterminate()
setPollingInterval()

setRows()

init()

setOrientation/Resolution/Min/Max()

setMargin/Spacing()
setVerticalExpandRatio()
setHorizontalExpandRatio()
setComponentAlignment()

«is» «wraps»

setEnabled/Visible()
getParent()/attach()

setDescription()
setImmediate

bind(), buildAndBind()
bindMemberFields()

setFieldFactory()setBuffered()
commit()
discard()

access()

Figure 4: Class Diagram

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://vaadin.com/download

5 Vaadin 7

DZone, Inc. | www.dzone.com

mytheme.scss

mytheme

img

myimage.png

layouts

mylayout.html

VAADIN/themes

- a custom theme

- actual Sass style sheet

- image resources

- custom layouts

- layout template

reindeer.scss

reindeer - a built-in theme

- theme Sass style sheet

@import "../reindeer/reindeer.scss";

styles.scss - theme main Sass style sheet
@import "mytheme.scss";

Figure 5: Theme Contents

With this organization, the styles.scss would be as follows:

@import “mytheme.scss”;

/* Enclose theme in a nested style with the theme name. */
.mytheme {
 @include mytheme; /* Use the mixin defined in mytheme.scss */
}

The mytheme.scss, which contains the actual theme rules, would define
the theme as a Sass mixin as follows:

Every component has a default CSS class based on the component
type, and you can add custom CSS classes for UI components with
addStyleName(), as shown below.

Applying a Theme
You set the theme for a UI with the @Theme annotation.

@Theme(“mytheme”)
@Title(“My Vaadin UI”)
public class MyUI extends com.vaadin.UI {
 @Override
 protected void init(VaadinRequest request) {
 …
 // Display the greeting
 Label label = new Label(“This is My Component!”);
 label.addStyleName(“mycomponent”);
 content.addComponent(label);
 }

DATA BINDING

Vaadin allows binding components directly to data. The data model,
illustrated in Figure 4, is based on interfaces on three levels of containment:
properties, items, and containers.

Properties
The Property interface provides access to a value of a specific class with
the setValue() and getValue() methods.

All field components provide access to their value through the Property
interface, and the ability to listen for value changes with a
Property.ValueChangeListener. The field components hold their value in an
internal data source by default, but you can bind them to any data source
with setPropertyDataSource(). Conversion between the field type and the
property type is handled with a Converter.

For selection components, the property value points to the item identifier
of the current selection, or a collection of item identifiers in the multiSelect
mode.

The ObjectProperty is a wrapper that allows binding any object to a
component as a property.

Items
An item is an ordered collection of properties. The Item interface also
associates a property ID with each property. Common uses of items
include form data, Table rows, and selection items.

The BeanItem is a special adapter that allows accessing any Java bean (or
POJO with proper setters and getters) through the Item interface.

Forms can be built by binding fields to an item using the FieldGroup utility
class.

Containers
A container is a collection of items. It allows accessing the items by an
item ID associated with each item.

Common uses of containers include selection components, as defined in
the AbstractSelect class, especially the Table and Tree components. (The
current selection is indicated by the property of the field, which points to
the item identifier of the selected item.)

Vaadin includes the following built-in container implementations:

Container Class Description

IndexedContainer Container with integer index keys

BeanItemContainer Bean container that uses bean as item ID

BeanContainer Bean container with explicit item ID type

HierarchicalContainer Tree-like container, used especially by the Tree
and TreeTable components

FilesystemContainer Direct access to the file system

SQLContainer Binds to an SQL database

JPAContainer Binds to a JPA implementation

Also, all components that can be bound to containers are containers
themselves.

Buffering
All field components implement the Buffered interface that allows buffering
user input before it is written to the data source.

Method Description

commit() Validates the field or field group and, if successful, writes
the buffered data to the data source

discard() Discards the buffered data and re-reads the data from the
data source

setBuffered() Enables buffering when true. Default is false.

The FieldGroup class has the same methods to manage buffering for all
bound fields.

WIDGET INTEGRATION

The easiest way to create new components is composition with the
CustomComponent. If that is not enough, you can create an entirely new
component by creating a client-side GWT (or JavaScript) widget and a
server-side component, and binding the two together with a connector,
using a shared state and RPC calls.

/* Import a base theme.*/
@import “../reindeer/reindeer.scss”;

@mixin mytheme {
 /* Include all the styles from the base theme */
 @include reindeer;

 /* Insert your theme rules here */
 .mycomponent { color: red; }
}

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://vaadin.com/download

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Vaadin 7

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

Server-Side

Client-Side (GWT)

RPC

Widget

Connector

Component

State

Figure 6: Integrating a Client-Side widget with a Server-Side API

Shared state is used for communicating component state from the server-
side component to the client-side connector, which should apply them to
the widget. The shared state object is serialized by the framework.

You can make RPC calls both from the client-side to the server-side,
typically to communicate user interaction events, and vice versa. To do so,
you need to implement an RPC interface.

Defining a Widget Set
A widget set is a collection of widgets that, together with inherited widget
sets and the communication framework, forms the Client-Side Engine of
Vaadin when compiled with the GWT Compiler into JavaScript.

A widget set is defined in a .gwt.xml GWT Module Descriptor. You
need to specify at least one inherited base widget set, typically the
DefaultWidgetSet or other widget sets.

<module>
 <inherits name=”com.vaadin.DefaultWidgetSet” />
</module>

The client-side source files must normally be located in a client sub-
package in the same package as the descriptor.

You can associate a stylesheet with a widget set with the <stylesheet>
element in the .gwt.xml descriptor:

<stylesheet src=”mycomponent/styles.css”/>

Widget Project Structure
Figure 7 illustrates the source code structure of a widget project, as created
with the Vaadin Plugin for Eclipse.

MyComponentWidgetSet.gwt.xml

client

public

com.example.mycomponent

- GWT module descriptor

- client-side source code

MyComponent.java - server-side component

MyComponentWidget.java - client-side widget

mycomponent

MyComponentConnector.java - integration connector

mycomponent

styles.css - widget style sheet

MyComponentState.java

MyComponentClientRpc.java

MyComponentServerRpc.java

- shared state

- server-to-client RPC interface

- client-to-server RPC interface

- static content for widget set

Figure 7: Widget Project Source Structure

Book of Vaadin is a comprehensive
documentation of Vaadin. It shows how to
get started, gives a good overview of the
features, and tutors you through advanced
aspects of the framework.

Marko Grönroos is a professional writer and software
developer working at Vaadin Ltd in Turku, Finland. He
has been involved in web application development since
1994 and has worked on several application development
frameworks in C, C++, and Java. He has been active in
many open source software projects and holds an M.Sc.
degree in Computer Science from the University of Turku.

Website: http://iki.fi/magi

Blog: http://markogronroos.blogspot.com/

A B O U T T H E A U T H O R R E C O M M E N D E D B O O K

C++
CSS3
OpenLayers
Regex

READ NOW
http://vaadin.com/book

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
https://twitter.com/olivergierke/
http://vaadin.com/download

