

DZone, Inc. | www.dzone.com

By Craig Walls

ABOUT SPRING WEB FLOW

S
p

ri
n

g
 W

e
b

 F
lo

w

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#86

Spring Web Flow
CONTENTS INCLUDE:
n	 About Spring Web Flow
n	 Distilling Spring Web Flow
n	 Installing Spring Web Flow
n	 Defining a Flow
n	 States
n	 Transitions and more...

Many web sites employ free-form navigation, allowing users to
find their own way around. But sometimes it’s better for a web
application to guide the user around, taking them from one
step to the next. A shopping cart on an e-commerce site is a
familiar example of an application leading a user instead of the
other way around.

Based on Spring MVC, Spring Web Flow is a framework for
building flow-based applications. In this Refcard, you’ll see how
to add Spring Web Flow to a Spring application and define
flows that initiate conversations between the application and
its users.

Get over 70 DZone Refcardz
FREE from Refcardz.com!

DISTILLING SPRING WEB FLOW

All flows are made up of three essential elements: States,
Transitions and Flow Data.

States
Within a flow stuff happens. Either the application performs
some logic, the user answers a question or fills out a form, or
a decision is made to determine the next step to take. The
points in the flow where these things happen are known as
states.

Spring Web Flow defines five different kinds of state: View,
Active, Decision, Subflow, and End. We’ll see how all of these
states work together to define a flow later in this Refcard.

Transitions
If you think of states as being the cities, scenic points, or truck
stops of a flow, then transitions are the highways that connect
them. A view state, action state, or subflow state may have any
number of transitions that direct them to other states.

Flow Data
As a flow progresses, data is either collected, created, or
otherwise manipulated. Depending on the scope of the data, it
may be carried around for periods of time to be processed or
evaluated within the flow. (I’m tempted to refer to this data as
the flow’s state, but that the word state is already overloaded,
so I’ll just call it flow data.)

Flow data can have varying lifespan, depending on which one
of five scopes it belongs to. Spring Web Flow’s scopes are:

Scope Description

Flow Flow scope is created at the beginning of a flow and is destroyed when the flow
ends. Data in flow scope is available to all states within a flow until the flow ends.

Conversation Conversation scope is created at the beginning of a top-level flow and is
destroyed when that flow ends. Conversation scope is much like flow scope,
except that where flow scope is only available to the flow which it was created in,
conversation scope is available to the top-level flow and all of its subflows.

Request Request scope is created at the beginning of an HTTP request and destroyed
at the end of the request. Data in request scope is available to all states for the
duration of the request (which may span multiple states and even stretch beyond
view boundaries).

Flash Flash scope is created when a flow begins, wiped clean when a view is rendered,
and destroyed at the end of a flow. Data in flash scope is available to all states
within a flow for the duration of the current request. Flash scope differs from
request scope in that flash scope will be cleared when a view is rendered, but a
request may span multiple views (if a view redirects, for example).

View View scope is created when the flow enters a view state and destroyed when
the view is rendered. Because of its short lifespan, data in view scope is only
available within the view state that it was created.

The following diagram illustrates the lifespan of each scope:

	

INSTALLING SPRING WEB FLOW

Adding Spring Web Flow to the classpath
Adding Spring Web Flow to your application starts with
making the Spring Web Flow libraries available in your
project’s classpath. At very least, this means the following JAR
files (named as they are distributed in the Spring Web Flow
download):
 • org.springframework.Web Flow-2.0.8.RELEASE.jar
 • org.springframework.binding-2.0.8.RELEASE.jar

The Spring Web Flow distribution also comes with two other
JAR files that you may find useful:
 • org.springframework.faces-2.0.8.RELEASE.jar
 • org.springframework.js-2.0.8.RELEASE.jar

These libraries support JavaServer Faces and JavaScript/Ajax

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Spring Web Flow

Hot
Tip

The “/app/*” URL pattern helps keep requests for
DispatcherServlet partitioned from requests for other application
artifacts, such as images and style sheets. But the “/app” portion
may seem like extra noise and you may not want it to be seen by
users of the application. To relegate the “/app” portion of the URL
to merely an internal implementation detail, I recommend using
Paul Tuckey’s Url Rewrite Filter (http://tuckey.org/urlrewrite/).

Configuring Spring Web Flow
The next step is to configure Spring Web Flow in the Spring
application context. Spring Web Flow’s XML configuration
namespace makes configuring Spring Web Flow simple
work. To use it, add the namespace declaration to the Spring
configuration file:

<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:flow=”http://www.springframework.org/schema/Web Flow-config”
 xsi:schemaLocation=”http://www.springframework.org/schema/Web Flow-
config
 http://www.springframework.org/schema/Web Flow-config/spring-Web Flow-
config-2.0.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd”>
 // configuration and beans go here
</beans>

Configuring a Flow Executor
The first bit of Spring Web Flow configuration needed is to
wire in the flow executor. Put simply, the flow executor drives
the execution of the flow. It is configured in Spring with the
<flow:flow-executor> element:

<flow:flow-executor id=”flowExecutor” />

Configuring the Flow Registry
The flows created with Spring Web Flow are defined in
separate XML files (using a different namespace than the
Spring configuration files). We’ll soon see what a flow definition
looks like. But first we’ll need to tell Spring Web Flow where

integration resepectively. Although these are interesting topics,
they are outside of the scope of this Refcard and will not be
used.

Spring Web Flow also needs an expression language to help
in defining flows. Spring Web Flow uses OGNL (http://www.
opensymphony.com/ognl) or the Unified EL as an expression
language. For the examples in this Refcard, I’m using OGNL.
That means that ognl.jar needs to be in the classpath.

Adding Spring’s DispatcherServlet
Spring Web Flow is built upon the foundation of Spring MVC.
Therefore, like any Spring MVC web application, all requests
enter the application through Spring MVC’s DispatcherServlet.
To configure DispatcherServlet in your web application, add
the following <servlet> to web.xml:

<servlet>
 <servlet-name>SpringPizza</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

You’ll also need to indicate which requests should be handled
by DispatcherServlet. For our example, DispatcherServlet will
be configured to handle requests whose URL pattern (relative
to the application context path) is “/app/*”:

<servlet-mapping>
 <servlet-name>SpringPizza</servlet-name>
 <url-pattern>/app/*</url-pattern>
</servlet-mapping>

it can find those flow definition files. For that, we’ll configure a
flow registry:

<flow:flow-registry id=”flowRegistry”
 base-path=”/WEB-INF/flows”>
 <flow:flow-location-pattern value=”/**/*-flow.xml” />
</Web Flow:flow-registry>

As shown here, the flow registry is configured to look within the
application’s /WEB-INF/flows directory (recursively) for any files
whose name ends with “-flow.xml”. Those files will define the
flows that will be executed by the flow executor.

All flows are given IDs (which are ultimately used to reference
the flow). Using the URL pattern given here, the flow ID will be
the directory path containing the flow definition file relative to
the base path (the part represented with the double-asterisk).
The following table illustrates a few examples of how the flow
IDs may be derived from the flow location pattern given:

Path to flow definition Flow ID

/WEB-INF/flows/pizza/pizza-flow.xml pizza

/WEB-INF/flows/pizza/some-flow.xml pizza

/WEB-INF/flows/pizza/customer/cust-flow.xml pizza/customer

Another way to control a flow’s ID is to leave the base-path
off of the <flow:flow-registry> element and to directly identify
a specific flow definition file using the <flow:flow-location>
element. For example:

<flow:flow-registry id=”flowRegistry”>
 <flow:flow-location path=”/WEB-INF/flows/springpizza.xml” />
</Web Flow:flow-registry>

When the base-path isn’t used, the rules for determining the
flow ID change so that the base name of the flow definition file
becomes the flow ID. In the example given here, the flow ID
would be “springpizza”.

Or you can be even more explicit about the flow ID by
specifying an id attribute of the <flow:flow-location> element:

<flow:flow-registry id=”flowRegistry”>
 <flow:flow-location id=”pizza”
 path=”/WEB-INF/flows/springpizza.xml” />
</Web Flow:flow-registry>

In this case, the flow ID would be “pizza”.

Handling flow requests
Spring Web Flow provides a Spring MVC handler adapter
called FlowHandlerAdapter. This handler adapter is the bridge
between DispatcherServlet and the flow executor, handling
requests and manipulating the flow based on those requests.
To configure FlowHandlerAdapter we need to add the
following <bean> declaration:

<bean class=”org.springframework.Web Flow.mvc.servlet.
FlowHandlerAdapter”>
 <property name=”flowExecutor” ref=”flowExecutor” />
</bean>

DispatcherServlet knows how to dispatch requests by
consulting with one or more handler mappings. For web flows,
FlowHandlerMapping helps DispatcherServlet know to send
flow requests to the FlowHandlerAdapter:

<bean class=”org.springframework.Web Flow.mvc.servlet.
FlowHandlerMapping”>
 <property name=”flowRegistry” ref=”flowRegistry” />
</bean>

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Spring Web Flow

DEFINING A FLOW

In Spring Web Flow, flows are defined in XML files. But be
careful not to confuse Spring Web Flow’s flow definition XML
files with the configuration we’ve just done to configure Spring
Web Flow within a Spring application context. Flow definitions
are kept in separate XML files using a different XML schema.
The root of a flow definition XML looks like this:

<flow xmlns=”http://www.springframework.org/schema/Web Flow”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.springframework.org/schema/Web Flow
 http://www.springframework.org/schema/Web Flow/spring-Web Flow-
2.0.xsd”>
 // flow definition goes here
</flow>

The flow definition schema is rooted with the <flow> element
and offers several elements for defining a flow, as listed here:

XML Element Description

<action-state> Performs one or more actions. The outcome of an action may determine
the transition to be taken to the next state in the flow.

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the flow.

<bean-import> Imports user-defined beans that are resolvable using flow expressions.

<decision-state> Evaluates one or more expressions to decide the next step in the flow.

<end-state> Denotes the final state of a flow. Upon entry to the end state, the flow
is terminated.

<exception-handler> Designates a bean that will handle exceptions for this flow.

<global-transitions> Defines one or more transitions that are available from all states.

<input> Declares an input provided by the caller into this flow.

<on-end> Actions to execute when the flow ends.

<on-start> Actions to execute when the flow starts.

<output> Declares an output to be returned to the caller of this flow.

<persistence-
context>

Allocates a persistence context when the flow starts. Enables flushing of
changes when the flow ends. (Used with a transaction manager wired
into a flow execution listener.)

<secured> Used with Spring Security to restrict access to this state given the current
user’s security attributes.

<subflow-state> Starts another flow as a subflow.

<var> Declares a flow instance variable.

<view-state> A state that involves the user in the flow by presenting them with some
output and possibly prompting them for input.

Specifying the start state
By default, the flow executor starts the flow at the first state it
finds in the flow definition XML file. That’s a nice convention to
follow, but if you’d rather be more explicit about which state
begins a flow, then set the start-state attribute on the <flow>
element:

<flow xmlns=”http://www.springframework.org/schema/Web Flow”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.springframework.org/schema/Web Flow
 http://www.springframework.org/schema/Web Flow/spring-Web Flow-
2.0.xsd”
 start-start=”welcome”>
 // ...
</flow>

STATES

As mentioned before, there are five kinds of state in Spring
Web Flow. These five states are expressed in a flow definition
file using the five XML elements in the following table:

XML Element Description

<action-state> Performs one or more actions. The outcome of an action may determine the
transition to be taken to the next state in the flow.

<decision-state> Evaluates one or more expressions to decide the next step in the flow.

<end-state> Denotes the final state of a flow. Upon entry to the end state, the flow is
terminated.

<subflow-state> Starts another flow as a subflow.

<view-state> A state that involves the user in the flow by presenting them with some
output and possibly prompting them for input.

View states
View states are used to display information to a user or to
prompt the user for input. The actual view implementation is
usually a JSP page, but can be any view that is supported by
Spring MVC. View states are defined in the flow definition XML
file with the <view-state> element.

<view-state> Children

<view-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the state.

<binder> Used to configure custom form binding.

<exception-handler> References a <bean> (through the bean attribute) that implements
FlowExecutionExceptionHandler that should handle exceptions thrown
in this state.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<on-exit> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed as exiting this state.

<on-render> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed as rendering this state’s view.

<secured> Used with Spring Security to restrict access to this state given the current
user’s security attributes.

<transition> Defines a path from this state to another state based on an event or
exception. May optionally execute one or more actions in the course of
the transition.

<var> Declares a view instance variable.

<view-state> Diagram

States are first-class elements of a web flow. As a flow executes,
it transitions from one state to another state, performing some
action, making some decision, or displaying some output at
each step of the way.

Since a web flow application could contain multple flows, the
FlowHandlerMapping needs to be wired with a reference to the
flow registry so that it knows which flow to send requests to.

Defining a simple view state
The simplest possible view state involves only the <view-state>
element with its id attribute set:

<view-state id=”welcome” />

With nothing else specified, this view state assumes a logical
view name of “welcome” (the same as the state’s ID). And,
although no transitions are declared here, there may be some
global transitions in play allowing the flow to transition away
from this state.

Explicitly specifying the view
The convention of assuming a view name that is the same as

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Spring Web Flow

the view state’s ID is convenient. But if you’d rather explicitly
specify the view name, then set it via the <view-state>’s view
attribute:

<view-state id=”welcome” view=”startPage” />

Transitioning away from a view state
More typically, a view state will have one or more transitions
that lead the flow away from the state. Here’s the “welcome”
state with two transitions defined:

<view-state id=”welcome”>
 <transition to=”lookupCustomer” on=”phoneEntered” />
 <transition to=”endState” on=”cancel” />
</view-state>

The to attribute of the <transition> element indicates the
state to which the flow should transition after this state. The
on attribute specifies the name of an event that should trigger
the transition. In this case, the flow will transition to the
“lookupCustomer” state if a “phoneEntered” event occurs
in this state; or to the “endState” state if a “cancel” event is
encountered.

Leaving off the on attribute causes a transition to take place
regardless of what event occurs.

<view-state id=”thankYou”>
 <transition to=”endState” />
</view-state>

In this case, the next stop after the “thankYou” view state will
always be the state whose ID is “endState”.

Firing events from the view
Events can be fired from the view in one of three ways.

1. With a simple link:
Finish

Spring Web Flow provides the ${flowExecutionUrl} variable
with a URL path to the flow. The _eventId parameter specifies
the event to be triggered.

2. Passing the event ID in a hidden field:
<form:form>
 <input type=”hidden” name=”_flowExecutionKey”
 value=”${flowExecutionKey}”/>
 <input type=”hidden” name=”_eventId”
 value=”finished” />
 <input type=”submit” value=”Finished” />
</form:form>

3. Specified in the name of a submit button:
<form:form>
 <input type=”hidden” name=”_flowExecutionKey”
 value=”${flowExecutionKey}”/>
 <input type=”submit” name=”_eventId_finished” value=”Finished” />
</form:form>

Take notice of how the name of the submit button is
structured. Rather than just name it with the event ID, the
event ID is prefixed with “_eventId_”.

Action states
Whereas view states offer the users of the application to be
involved in the flow, action states are where the application
itself goes to work. Action states are defined by the <action-
state> element.

<action-state> Children

<action-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the state.

<evaluate> Evaluates an expression, optionally assigning it to a variable.

Hot
Tip

You can specify multiple evaluations within an action state.
Be aware, however, that Spring Web Flow will evaluate each
evaluation in order and stop when a transition trigger is fired. If
the result of the first evaluation is an event that is handled by
one of the transitions (including global transitions), then the
remaining evaluations will never be evaluated.

Decision states
Decision states represent a binary branch in the flow based on
the result of evaluating a boolean expression. Decision states
are defined by the <decision-state> element.

<exception-handler> References a <bean> (through the bean attribute) that implements
FlowExecutionExceptionHandler that should handle exceptions thrown
in this state.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<on-exit> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed as exiting this state.

<render> Requests that the next view render a fragment of content.

<secured> Used with Spring Security to restrict access to this state given the
current user’s security attributes.

<set> Sets a variable in one of the flow’s scopes.

<transition> Defines a path from this state to another state based on an event or
exception. May optionally execute one or more actions in the course
of the transition.

<action-state> Diagram

Defining a simple action state
As their name suggests, action states do something. The
way to prescribe what action states do is through a nested
<evaluate> element:

<action-state id=”addCustomer”>
 <evaluate expression=”pizzaFlowActions.addCustomer(order.customer)” />
 <transition to=”customerReady” />
</action-state>

The expression attribute is given an expression. Here the
customer property of the flow-scoped order is passed into
the addCustomer() method of a spring bean whose ID is
“pizzaFlowActions”.

Transitioning on action evaluation
Ultimately, the value returned from the evaluation becomes the
event ID that triggers a transition. For example, consider the
following action state:

<action-state id=”cancelOrder”>
 <evaluate expression=”pizzaFlowActions.cancelOrder(phoneNumber)” />
 <transition to=”endState” on=”orderCancelled” />
 <transition to=”cancelForm” on=”orderNotFound” />
</action-state>

In this case, if the cancelOrder() method returns
“orderCancelled”, then the flow will transition to the
state whose ID is “endState”. But if the method returns
“orderNotFound”, then the flow transitions to “cancelForm”
so that the user can specify a different phone number.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Spring Web Flow

<decision-state> Children

<decision-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the state.

<exception-handler> References a <bean> (through the bean attribute) that implements
FlowExecutionExceptionHandler that should handle exceptions
thrown in this state.

<if> Specifies a boolean expression and a state to transition to if the
expression evaluates to true. Optionally may specify a state to
transition to if the expression evaluates to false.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<on-exit> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed as exiting this state.

<secured> Used with Spring Security to restrict access to this state given the
current user’s security attributes.

<decision-state> Diagram

TRANSITIONS

We’ve already seen a few examples of transitions earlier in this
Refcard. Here are a few more things you may want to do with a
transition.

Exception-Triggered Transitions
In addition to transitioning in response to an event, it’s also
possible to transition in response to an exception being thrown
by setting <transaction>’s on-exception attribute to the fully-
qualified name of the exception that should trigger the transition.

<action-state id=”lookupCustomer”>
 <evaluate result=”order.customer” expression=
 “pizzaFlowActions.lookupCustomer(requestParameters.phoneNumber)” />
 <transition to=”registrationForm” on-exception=
 “com.springinaction.pizza.service.CustomerNotFoundException” />
 <transition to=”customerReady” />
</action-state>

Performing Evaluations on Transition
If you’d like to perform some evaluation while leaving a state,
you can specify that evaluation as part of the state’s <on-exit>.

<view-state id=”createPizza” model=”flowScope.pizza”>
...
 <on-exit>
 <evaluate expression=”order.addPizza(flowScope.pizza)” />
 </on-exit>
 <transition on=”addPizza” to=”showOrder” />
 <transition on=”cancel” to=”showOrder” />
</view-state>

But the evaluations in <on-exit> will occur regardless of which
transition is taken to leave that state.

If you want an evaluation to only happen for a specific
transition, you can specify the evaluation within the
<transition> element itself:
<view-state id=”createPizza” model=”flowScope.pizza”>
...
 <transition on=”addPizza” to=”showOrder”>
 <evaluate expression=”order.addPizza(flowScope.pizza)” />
 </transition>
 <transition on=”cancel” to=”showOrder” />
</view-state>

Declaring Global Transitions
You may find that you have some common transitions that are
applicable to all states within a flow. A transition to end the
flow upon a “cancel” event is such a transition. Rather than
declare the “cancel” transition in each state, you can declare it
as a global transition:
<global-transitions>
 <transition on=”cancel” to=”endState” />
</global-transitions>

The <if> element is the heart of a decision state. It evaluates
a boolean expression and then transitions to another state
depending on whether or not the expression is true or false.

<decision-state id=”checkDeliveryArea”>
 <if test=”pizzaFlowActions.isInDeliveryArea(customer.zipCode)”
 then=”addCustomer”
 else=”warnDeliveryUnavailable” />
</decision-state>

If the isInDeliveryArea() returns true, then the flow will transition
to the “addCustomer” state. Otherwise, the flow will transition
to the “warnDeliveryUnavailable” state.

End states
All flows must eventually come to an end. That’s what the end
state is for. End states are defined by the <end-state> element.

<end-state> Children

<end-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the state.

<exception-handler> References a <bean> (through the bean attribute) that implements
FlowExecutionExceptionHandler that should handle exceptions thrown
in this state.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<output> Declares the output of a flow. Useful for passing state out of a subflow
to the invoking flow.

<secured> Used with Spring Security to restrict access to this state given the current
user’s security attributes.

<end-state> Diagram

In it’s simplest (and most common) form, an end state takes the
following form:

<end-state id=”endState”/>

An end state that is defined like this simply ends the flow. Upon
flow termination, the user will be taken to the beginning of the
flow, starting a new instance of the flow.

Alternatively, the end state could navigate out of the flow to
some other URL. All you need to do is specify the view attribute.

<end-state id=”endState” view=”/homePage.jsp” />

In this case, the flow will end and the user will be sent to the
page whose URL is “/homePage.jsp” (relative to the context path).

If a Spring MVC view resolver is registered in the Spring
application context, a logical view name can be used instead
of an explicit view file path:
<end-state id=”endState” view=”homePage” />

SUBFLOWS

Subflows are expressed in much the same way as any other flow.
In fact, most subflows can stand on their own as a full-fledged
flow. To call subflows, the <subflow-state> element represents
the state in a top-level flow where the subflow takes over.

Calling Subflows
The simplest form of a subflow call involves a subflow-state with

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building softwar

with every change committed to a project’s version contr

repository.

CI can be explained via patterns (i.e., a solution to a pr

in a particular context) and anti-patterns (i.e., inef

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

he pattern.
tion he term Continuous Integration

le this Refcar
s

Aldon ®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Commit all fi les to a version-control repository

Develop on a mainline to minimize merging and to manage

e within a system that utilizes multiple

ce code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label the build with unique name

Automate all activities to build software from source without

guration

e-installed tool dependencies to the bare minimum

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Centralize all dependent libraries

eate a single template fi le that all target environment

operties are based on

emote builds into different target environments

Perform a Private Build before committing changes to the

Repository

Perform an Integration Build periodically, continually, etc.

tomated feedback from CI server to development team

hey occur
d based on

brought to you by...

By Andy Harris

HTML BASICS

o
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares

common.) All are essenti
extension H

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anyb d

expected. Early HTML had very limited layo

Browser manufacturers added

web developers cresult

By Daniel Rubio

ABOUT CLOUD COMPUTING

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

Browse our collection of over 85 Free Cheat Sheets
Upcoming Refcardz
Java GUI Development
Adobe Catalyst
Flash Builder 4
Maven 3

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Spring Web Flow

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-84-4
ISBN-10: 1-934238-84-8

9 781934 238844

50795

Craig Walls has been professionally developing software for over 15 years (and
longer than that for the pure geekiness of it). He is a Principal Consultant with Improving
Enterprises in Dallas, TX and is the author of Modular Java (published by Pragmatic
Bookshelf) and Spring in Action and XDoclet in Action (both published by Manning). He’s
a zealous promoter of the Spring Framework, speaking frequently at local user groups
and conferences and writing about Spring and OSGi on his blog. When he’s not slinging
code, Craig spends as much time as he can with his wife, two daughters, 6 birds and 2
dogs.

Blog: http://www.springinaction.com

Publications: Spring in Action, 3rd Edition, 2010 (available for early access from Manning.com);

Modular Java, 2009; Spring in Action 2nd Edition 2007; XDoclet in Action, 2003

Here we’re telling the flow to pass the value of the “order”
variable to the subflow under the name “order”. Then, within
the subflow definition, declare the input within the flow:

<subflow-state id=”customer” subflow=”customer”>
 <input name=”order” value=”order”/>
</subflow-state>

Within the subflow the parameter will be known as “order”.
The required attribute indicates that the parameter is required
and, if it is not passed in or if the value passed in is null, then
an error will be raised.

Returning Data From Subflows
To return data from a subflow declare what is to be returned
with the <output> element.

<output name=”customer” value=”customer”/>

Optionally, you may want to return different values depending
on which <end-state> ends the flow. In that case declare the
<output> element within the <end-state>:

<end-state id=”customerReady”>
 <output name=”customer” value=”customer”/>
</end-state>

On the calling side, prepare the subflow state to receive the
subflow’s output by declaring the <output> element within the
<subflow-state> element:

<subflow-state id=”customer” subflow=”customer”>
 <output name=”customer” />
</subflow-state>

only an id and a subflow attribute:

<subflow-state id=”customer” subflow=”customer” />

As with any other kind of state, the id attribute identifies the
subflow state so that other states can transition to it. The subflow
attribute identifies the subflow to be called by its flow ID.

Transitioning Away From a Subflow
The previous example of a subflow doesn’t include any
transitions. Perhaps one or more global transitions are in
effect and thus there’s no need for the state to declare its own
transitions. But just like action states and view states, subflow
states can declare transitions:

<subflow-state id=”customer” subflow=”customer”>
 <transition on=”cancel” to=”endState” />
 <transition on=”customerReady” to=”order” />
</subflow-state>

When a flow ends, it fires an event that is the same as the
end state’s ID. For example, consider these <end-state>
declarations.

<end-state id=”cancel” />
<end-state id=”customerReady” />

If the Flow ends on the “cancel” end state, then a “cancel” event
will be fired. Otherwise a “customerReady” event will be fired.

Passing Input to a Subflow
To pass input to a subflow, simply provide the <input> element
within the <subflow-state>:

<subflow-state id=”customer” subflow=”customer”>
 <input name=”order” value=”order”/>
</subflow-state>

Spring in Action, Third Edition has been completely revised
to reflect the latest features, tools, practices Spring offers to java
developers. It begins by introducing the core concepts of Spring and
then quickly launches into a hands-on exploration of the framework.
Combining short code snippets and an ongoing example developed
throughout the book, it shows you how to build simple and efficient
J2EE applications.

BUY NOW
http://www.manning.com/walls4/

http://refcardz.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.manning.com/walls4/
http://www.manning.com/walls4/

