S
©)
o
N
O
el
©
O
G
(O}
-
5=
Z
>
N
O
1 S
©
(8]
(el
()
o
()
LS
(o)
=
e
()
O

www.dzone.com

Spring Web Flow

.~ !DZone Refcardz

= About Spring Web Flow

= Distilling Spring Web Flow
® Installing Spring Web Flow
*= Defining a Flow

= States

* Transitions and more...

Spring Web Flow

By Craig Walls

ABOUT SPRING WEB FLOW

Many web sites employ free-form navigation, allowing users to
find their own way around. But sometimes it's better for a web
application to guide the user around, taking them from one
step to the next. A shopping cart on an e-commerce site is a
familiar example of an application leading a user instead of the
other way around.

Based on Spring MVC, Spring Web Flow is a framework for
building flow-based applications. In this Refcard, you'll see how
to add Spring Web Flow to a Spring application and define
flows that initiate conversations between the application and
its users.

DISTILLING SPRING WEB FLOW

All flows are made up of three essential elements: States,
Transitions and Flow Data.

States

Within a flow stuff happens. Either the application performs
some logic, the user answers a question or fills out a form, or
a decision is made to determine the next step to take. The
points in the flow where these things happen are known as
states.

Spring Web Flow defines five different kinds of state: View,
Active, Decision, Subflow, and End. We'll see how all of these
states work together to define a flow later in this Refcard.

Transitions

If you think of states as being the cities, scenic points, or truck
stops of a flow, then transitions are the highways that connect

them. A view state, action state, or subflow state may have any
number of transitions that direct them to other states.

Flow Data

As a flow progresses, data is either collected, created, or
otherwise manipulated. Depending on the scope of the data, it
may be carried around for periods of time to be processed or
evaluated within the flow. (I'm tempted to refer to this data as
the flow’s state, but that the word state is already overloaded,
so I'll just call it flow data.)

Flow data can have varying lifespan, depending on which one
of five scopes it belongs to. Spring Web Flow's scopes are:

Scope Description

Flow Flow scope is created at the beginning of a flow and is destroyed when the flow
ends. Data in flow scope is available to all states within a flow until the flow ends.

Conversation scope is created at the beginning of a top-level flow and is
destroyed when that flow ends. Conversation scope is much like flow scope,
except that where flow scope is only available to the flow which it was created in,
conversation scope is available to the top-level flow and all of its subflows.

Conversation

Request scope is created at the beginning of an HTTP request and destroyed

at the end of the request. Data in request scope is available to all states for the
duration of the request (which may span multiple states and even stretch beyond
view boundaries).

Request

Flash Flash scope is created when a flow begins, wiped clean when a view is rendered,
and destroyed at the end of a flow. Data in flash scope is available to all states
within a flow for the duration of the current request. Flash scope differs from
request scope in that flash scope will be cleared when a view is rendered, but a
request may span multiple views (if a view redirects, for example).

View View scope is created when the flow enters a view state and destroyed when
the view is rendered. Because of its short lifespan, data in view scope is only
available within the view state that it was created.

The following diagram illustrates the lifespan of each scope:

Conversation Scope

Flow \ \ Flow (continued)
Flow (subflow) |
Request Request | Request | Request Request Request | Request Request Request
Flash Flash Flash Flash Flash Flash | Flash Flash Flash Flash Flash Flash
3 3 3 3 H H H 3 H H H 3
3 3 3 3 3 3 3 3 3 3 3 3
= = > > > > > > = = = =

INSTALLING SPRING WEB FLOW

Adding Spring Web Flow to the classpath
Adding Spring Web Flow to your application starts with
making the Spring Web Flow libraries available in your
project’s classpath. At very least, this means the following JAR
files (named as they are distributed in the Spring Web Flow
download):

e org.springframework.Web Flow-2.0.8.RELEASE jar

e org.springframework.binding-2.0.8.RELEASE.jar
The Spring Web Flow distribution also comes with two other
JAR files that you may find useful:

e org.springframework.faces-2.0.8.RELEASE .jar

e org.springframework.js-2.0.8.RELEASE .jar

These libraries support JavaServer Faces and JavaScript/Ajax

= Don’t Miss An Issue!
Get over 70 DZone Refcardz
FREE from Refcardz.com!

Visit Refcardz.com to get them all Free!

DZone, Inc. | www.dzone.com



http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone Refcardz ?

Spring Web Flow

integration resepectively. Although these are interesting topics,
they are outside of the scope of this Refcard and will not be
used.

Spring Web Flow also needs an expression language to help
in defining flows. Spring Web Flow uses OGNL (http://www.
opensymphony.com/ognl) or the Unified EL as an expression
language. For the examples in this Refcard, I'm using OGNL.
That means that ognl.jar needs to be in the classpath.

Adding Spring’s DispatcherServlet

Spring Web Flow is built upon the foundation of Spring MVC.
Therefore, like any Spring MVC web application, all requests
enter the application through Spring MVC's DispatcherServlet.
To configure DispatcherServlet in your web application, add
the following <servlet> to web.xml:

<servlet>
<servlet-name>SpringPizza</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

You'll also need to indicate which requests should be handled
by DispatcherServlet. For our example, DispatcherServlet will
be configured to handle requests whose URL pattern (relative
to the application context path) is “/app/*":

<servlet-mapping>
<servlet-name>SpringPizza</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

The “/app/*” URL pattern helps keep requests for

DispatcherServlet partitioned from requests for other application
artifacts, such as images and style sheets. But the “/app” portion
may seem like extra noise and you may not want it to be seen by
users of the application. To relegate the “/app” portion of the URL

to merely an internal implementation detail, | recommend using
Paul Tuckey’s Url Rewrite Filter (http://tuckey.org/urlrewrite/).

Configuring Spring Web Flow

The next step is to configure Spring Web Flow in the Spring
application context. Spring Web Flow's XML configuration
namespace makes configuring Spring Web Flow simple
work. To use it, add the namespace declaration to the Spring
configuration file:

<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:flow="http://www.springframework.org/schema/Web Flow-config”
xsi:schemalocation="http://www.springframework.org/schema/Web Flow-
config
http://www.springframework.org/schema/Web Flow-config/spring-Web Flow-
config-2.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
// configuration and beans go here
</beans>

Configuring a Flow Executor

The first bit of Spring Web Flow configuration needed is to
wire in the flow executor. Put simply, the flow executor drives
the execution of the flow. It is configured in Spring with the
<flow:flow-executor> element:

<flow: flow-executor id="flowExecutor” />

Configuring the Flow Registry

The flows created with Spring Web Flow are defined in
separate XML files (using a different namespace than the
Spring configuration files). We'll soon see what a flow definition
looks like. But first we'll need to tell Spring Web Flow where

it can find those flow definition files. For that, we'll configure a
flow registry:

<flow:flow-registry id="flowRegistry"”
base-path="/WEB-INF/flows">
<flow:flow-location-pattern value="/**/*-flow.xml” />
</Web Flow:flow-registry>

As shown here, the flow registry is configured to look within the
application’s /WEB-INF/flows directory (recursively) for any files
whose name ends with “-flow.xml”. Those files will define the
flows that will be executed by the flow executor.

All flows are given IDs (which are ultimately used to reference
the flow). Using the URL pattern given here, the flow ID will be
the directory path containing the flow definition file relative to
the base path (the part represented with the double-asterisk).
The following table illustrates a few examples of how the flow
IDs may be derived from the flow location pattern given:

Path to flow definition Flow ID
/WEB-INF/flows/pizza/pizza-flow.xml pizza
/WEB-INF/flows/pizza/some-flow.xml pizza

/WEB-INF/flows/pizza/customer/cust-flow.xml | pizza/customer

Another way to control a flow’s ID is to leave the base-path
off of the <flow:flow-registry> element and to directly identify
a specific flow definition file using the <flow:flow-location>
element. For example:

<flow:flow-registry id="flowRegistry”>
<flow:flow-location path="/WEB-INF/flows/springpizza.xml” />
</Web Flow:flow-registry>

When the base-path isn't used, the rules for determining the
flow ID change so that the base name of the flow definition file
becomes the flow ID. In the example given here, the flow ID
would be “springpizza”.

Or you can be even more explicit about the flow ID by
specifying an id attribute of the <flow:flow-location> element:

<flow:flow-registry id="flowRegistry”>
<flow:flow-location id="pizza"”
path="/WEB-INF/flows/springpizza.xml” />
</Web Flow:flow-registry>

In this case, the flow ID would be “pizza”.

Handling flow requests

Spring Web Flow provides a Spring MVC handler adapter
called FlowHandlerAdapter. This handler adapter is the bridge
between DispatcherServlet and the flow executor, handling
requests and manipulating the flow based on those requests.
To configure FlowHandlerAdapter we need to add the
following <bean> declaration:

<bean class="org.springframework.Web Flow.mvc.servlet.
FlowHandlerAdapter”>

<property name="flowExecutor” ref="flowExecutor” />
</bean>

DispatcherServlet knows how to dispatch requests by
consulting with one or more handler mappings. For web flows,
FlowHandlerMapping helps DispatcherServlet know to send
flow requests to the FlowHandlerAdapter:

<bean class="org.springframework.Web Flow.mvc.servlet.
FlowHandlerMapping”>

<property name="flowRegistry” ref="flowRegistry” />
</bean>

DZone, Inc. |

www.dzone.com



http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Spring Web Flow

Since a web flow application could contain multple flows, the
FlowHandlerMapping needs to be wired with a reference to the
flow registry so that it knows which flow to send requests to.

DEFINING A FLOW

In Spring Web Flow, flows are defined in XML files. But be
careful not to confuse Spring Web Flow’s flow definition XML
files with the configuration we've just done to configure Spring
Web Flow within a Spring application context. Flow definitions
are kept in separate XML files using a different XML schema.
The root of a flow definition XML looks like this:

<flow xmlns="http://www.springframework.org/schema/Web Flow”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://www.springframework.org/schema/Web Flow
http://www.springframework.org/schema/Web Flow/spring-Web Flow-
2.0.xsd”>
// flow definition goes here
</flow>

The flow definition schema is rooted with the <flow> element
and offers several elements for defining a flow, as listed here:

XML Element Description

Performs one or more actions. The outcome of an action may determine
the transition to be taken to the next state in the flow.

<action-state>

<attribute> Along with a nested <value> element, <attribute> declares a meta

attribute to describe or annotate the flow.

<bean-import> Imports user-defined beans that are resolvable using flow expressions.

<decision-state> Evaluates one or more expressions to decide the next step in the flow.

As mentioned before, there are five kinds of state in Spring
Web Flow. These five states are expressed in a flow definition
file using the five XML elements in the following table:

XML Element Description

<action-state> Performs one or more actions. The outcome of an action may determine the

transition to be taken to the next state in the flow.

<decision-state> | Evaluates one or more expressions to decide the next step in the flow.

<end-state> Denotes the final state of a flow. Upon entry to the end state, the flow is

terminated.

<subflow-state> | Starts another flow as a subflow.

<view-state> A state that involves the user in the flow by presenting them with some

output and possibly prompting them for input.

View states

View states are used to display information to a user or to
prompt the user for input. The actual view implementation is
usually a JSP page, but can be any view that is supported by
Spring MVC. View states are defined in the flow definition XML
file with the <view-state> element.

<view-state> Children

<view-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the state.

<binder> Used to configure custom form binding.

References a <bean> (through the bean attribute) that implements

<exception-handler>
FlowExecutionExceptionHandler that should handle exceptions thrown

<end-state>

Denotes the final state of a flow. Upon entry to the end state, the flow
is terminated.

<exception-handler>

Designates a bean that will handle exceptions for this flow.

<global-transitions>

Defines one or more transitions that are available from all states.

<input> Declares an input provided by the caller into this flow.
<on-end> Actions to execute when the flow ends.

<on-start> Actions to execute when the flow starts.

<output> Declares an output to be returned to the caller of this flow.

<persistence-

Allocates a persistence context when the flow starts. Enables flushing of

context> changes when the flow ends. (Used with a transaction manager wired
into a flow execution listener.)
<secured> Used with Spring Security to restrict access to this state given the current

user’s security attributes.

<subflow-state>

Starts another flow as a subflow.

<var>

Declares a flow instance variable.

<view-state>

A state that involves the user in the flow by presenting them with some
output and possibly prompting them for input.

Specifying the start state

By default, the flow executor starts the flow at the first state it
finds in the flow definition XML file. That's a nice convention to
follow, but if you'd rather be more explicit about which state
begins a flow, then set the start-state attribute on the <flow>

element:

in this state.
<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.
<on-exit> Specifies actions (evaluations, setting of variables, and/or fragment

2.0.xsd”

77 oo
</flow>

<flow xmlns="http://www.springframework.org/schema/Web Flow”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemaLocation="http://www.springframework.org/schema/Web Flow
http://www.springframework.org/schema/Web Flow/spring-Web Flow-

start-start="welcome”>

STATES

States are first-class elements of a web flow. As a flow executes,

it transitions from one state to another state, performing some

action, making some decision, or displaying some output at
each step of the way.

render requests) to be performed as exiting this state.

<on-render> Specifies actions (evaluations, setting of variables, and/or fragment

render requests) to be performed as rendering this state’s view.

Used with Spring Security to restrict access to this state given the current
user's security attributes.

<secured>

Defines a path from this state to another state based on an event or
exception. May optionally execute one or more actions in the course of
the transition.

<transition>

<var> Declares a view instance variable.

<view-state> Diagram

—> [ <attribute> || <value- |

N

—>| <on-entry> | <evaluate> |—>

| <on-exit> [ <set> >
<view-state> |——>| <on-render> | <render> |—>

> <binder> [ <binding= |

— <var> | [ <attribute> |

—>[<exception-handler>| ([ <secures> |

L[ <transition> [ <set> > ..

Defining a simple view state
The simplest possible view state involves only the <view-state>
element with its id attribute set:

| <view-state id="welcome” />

With nothing else specified, this view state assumes a logical
view name of “welcome” (the same as the state’s ID). And,
although no transitions are declared here, there may be some
global transitions in play allowing the flow to transition away
from this state.

Explicitly specifying the view
The convention of assuming a view name that is the same as

DZone, Inc.

| www.dzone.com



http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Spring Web Flow

the view state’s ID is convenient. But if you'd rather explicitly
specify the view name, then set it via the <view-state>'s view
attribute:

| <view-state id="welcome” view="startPage” />

Transitioning away from a view state

More typically, a view state will have one or more transitions
that lead the flow away from the state. Here's the "welcome”
state with two transitions defined:

<view-state id="welcome”>
<transition to="lookupCustomer” on="phoneEntered” />
<transition to="endState” on="cancel” />
</view-state>

The to attribute of the <transition> element indicates the
state to which the flow should transition after this state. The
on attribute specifies the name of an event that should trigger
the transition. In this case, the flow will transition to the
“lookupCustomer” state if a “phoneEntered” event occurs

in this state; or to the “endState” state if a “cancel” event is
encountered.

Leaving off the on attribute causes a transition to take place
regardless of what event occurs.

<view-state id="thankYou">
<transition to="endState” />
</view-state>

In this case, the next stop after the “thankYou"” view state will
always be the state whose ID is “endState”.

Firing events from the view
Events can be fired from the view in one of three ways.

1. With a simple link:

| <a href="${flowExecutionUrl}& eventId=finished”>Finish</a>

Spring Web Flow provides the ${flowExecutionUrl} variable
with a URL path to the flow. The _eventld parameter specifies
the event to be triggered.

2. Passing the event ID in a hidden field:

<form:form>
<input type="hidden” name="_flowExecutionKey”
value="${flowExecutionKey}"/>
<input type="hidden” name="_eventId”
value="finished” />
<input type="submit” value="Finished” />
</form:form>

3. Specified in the name of a submit button:

<form:form>
<input type="hidden” name="_flowExecutionKey”
value="${flowExecutionKey}"/>
<input type="submit” name="_eventId finished” value="Finished” />
</form:form>

Take notice of how the name of the submit button is
structured. Rather than just name it with the event ID, the
event ID is prefixed with “_eventld_".

Action states

Whereas view states offer the users of the application to be
involved in the flow, action states are where the application
itself goes to work. Action states are defined by the <action-
state> element.

<action-state> Children

<action-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta
attribute to describe or annotate the state.
<evaluate> Evaluates an expression, optionally assigning it to a variable.

<exception-handler> | References a <bean> (through the bean attribute) that implements

FlowExecutionExceptionHandler that should handle exceptions thrown

in this state.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<on-exit> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed as exiting this state.

<render> Requests that the next view render a fragment of content.

<secured> Used with Spring Security to restrict access to this state given the
current user’s security attributes.

<set> Sets a variable in one of the flow’s scopes.

<transition> Defines a path from this state to another state based on an event or
exception. May optionally execute one or more actions in the course

of the transition.

<action-state> Diagram

[ <vatue> |
N

—| <attribute>

<evaluate>

<set>

| i —
<render>
<action-state>|—1—[__ <on-render>

| <binder>

<attribute> |—»[ <value>

<secured> |
<set> '—b

<render> |—> -

<evaluate>

—» | <exception-handler>

<transition>

Defining a simple action state

As their name suggests, action states do something. The
way to prescribe what action states do is through a nested
<evaluate> element:

<action-state id="addCustomer”>
<evaluate expression="pizzaFlowActions.addCustomer(order.customer)” />
<transition to="customerReady” />

</action-state>

The expression attribute is given an expression. Here the
customer property of the flow-scoped order is passed into
the addCustomer() method of a spring bean whose ID is
“pizzaFlowActions”.

Transitioning on action evaluation

Ultimately, the value returned from the evaluation becomes the
event ID that triggers a transition. For example, consider the
following action state:

<action-state id="cancelOrder”>
<evaluate expression="pizzaFlowActions.cancelOrder(phoneNumber)” />
<transition to="endState” on="orderCancelled” />
<transition to="cancelForm” on="orderNotFound” />

</action-state>

In this case, if the cancelOrder() method returns
“orderCancelled”, then the flow will transition to the

state whose ID is “endState”. But if the method returns
“orderNotFound”, then the flow transitions to “cancelForm”
so that the user can specify a different phone number.

You can specify multiple evaluations within an action state.
Be aware, however, that Spring Web Flow will evaluate each
evaluation in order and stop when a transition trigger is fired. If

the result of the first evaluation is an event that is handled by
one of the transitions (including global transitions), then the
remaining evaluations will never be evaluated.

Decision states

Decision states represent a binary branch in the flow based on
the result of evaluating a boolean expression. Decision states
are defined by the <decision-state> element.

DZone, Inc. | www.dzone.com



http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Spring Web Flow

<decision-state> Children

<decision-state> Child | Description

<attribute> Along with a nested <value> element, <attribute> declares a meta

attribute to describe or annotate the state.

References a <bean> (through the bean attribute) that implements
FlowExecutionExceptionHandler that should handle exceptions
thrown in this state.

<exception-handler>

<if> Specifies a boolean expression and a state to transition to if the
expression evaluates to true. Optionally may specify a state to
transition to if the expression evaluates to false.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<on-exit> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed as exiting this state.

<secured> Used with Spring Security to restrict access to this state given the

current user’s security attributes.

<decision-state> Diagram

<attribute>

o[ |
<secured>
<evaluate>

<on-entry>

<on-exit>
<render>

<exception-handler>

<decision-state>

The <if> element is the heart of a decision state. It evaluates
a boolean expression and then transitions to another state
depending on whether or not the expression is true or false.

<decision-state id="checkDeliveryArea”>
<if test="pizzaFlowActions.isInDeliveryArea(customer.zipCode)”
then="addCustomer”
else="warnDeliveryUnavailable” />
</decision-state>

If the isInDeliveryAreal() returns true, then the flow will transition
to the “addCustomer” state. Otherwise, the flow will transition
to the “warnDeliveryUnavailable” state.

End states
All flows must eventually come to an end. That's what the end
state is for. End states are defined by the <end-state> element.

<end-state> Children

<end-state> Child Description

<attribute> Along with a nested <value> element, <attribute> declares a meta

attribute to describe or annotate the state.

<end-state id="endState” view="/homePage.jsp” /> |

In this case, the flow will end and the user will be sent to the
page whose URL is “/homePage.jsp” (relative to the context path).

If a Spring MVC view resolver is registered in the Spring
application context, a logical view name can be used instead
of an explicit view file path:

<end-state id="endState” view="homePage” />

TRANSITIONS

We've already seen a few examples of transitions earlier in this
Refcard. Here are a few more things you may want to do with a
transition.

Exception-Triggered Transitions

In addition to transitioning in response to an event, it's also
possible to transition in response to an exception being thrown
by setting <transaction>'s on-exception attribute to the fully-
qualified name of the exception that should trigger the transition.

<action-state id="lookupCustomer”>
<evaluate result="order.customer” expression=
“pizzaFlowActions.lookupCustomer (requestParameters.phoneNumber)” />
<transition to="registrationForm” on-exception=
“com.springinaction.pizza.service.CustomerNotFoundException” />
<transition to="customerReady” />
</action-state>

Performing Evaluations on Transition
If you'd like to perform some evaluation while leaving a state,
you can specify that evaluation as part of the state’s <on-exit>.

<view-state id="createPizza” model="flowScope.pizza”>

<on-exit>
<evaluate expression="order.addPizza(flowScope.pizza)” />
</on-exit>
<transition on="addPizza” to="showOrder” />
<transition on="cancel” to="showOrder” />
</view-state>

But the evaluations in <on-exit> will occur regardless of which
transition is taken to leave that state.

If you want an evaluation to only happen for a specific
transition, you can specify the evaluation within the
<transition> element itself:

References a <bean> (through the bean attribute) that implements
FlowExecutionExceptionHandler that should handle exceptions thrown

<exception-handler>

in this state.

<on-entry> Specifies actions (evaluations, setting of variables, and/or fragment
render requests) to be performed upon entry to this state.

<output> Declares the output of a flow. Useful for passing state out of a subflow
to the invoking flow.

<secured> Used with Spring Security to restrict access to this state given the current

user's security attributes.

<end-state> Diagram

[ <attributes [ <vatve |

[ ssecures> ] [ cevaluate  Jo.
<end-state> [ <on-entry> [ <set> b

| <output> | | <render> |—>

In it's simplest (and most common) form, an end state takes the
following form:

| <end-state id="endState”/> |

An end state that is defined like this simply ends the flow. Upon
flow termination, the user will be taken to the beginning of the
flow, starting a new instance of the flow.

Alternatively, the end state could navigate out of the flow to
some other URL. All you need to do is specify the view attribute.

<view-state id="createPizza” model="flowScope.pizza”>

<transition on="addPizza” to="showOrder”>
<evaluate expression="order.addPizza(flowScope.pizza)” />
</transition>
<transition on="cancel” to="showOrder” />
</view-state>

Declaring Global Transitions

You may find that you have some common transitions that are
applicable to all states within a flow. A transition to end the
flow upon a “cancel” event is such a transition. Rather than
declare the “cancel” transition in each state, you can declare it
as a global transition:

<global-transitions>
<transition on="cancel” to="endState” />
</global-transitions>

SUBFLOWS

Subflows are expressed in much the same way as any other flow.
In fact, most subflows can stand on their own as a full-fledged
flow. To call subflows, the <subflow-state> element represents
the state in a top-level flow where the subflow takes over.

Calling Subflows
The simplest form of a subflow call involves a subflow-state with

DZone, Inc.

| www.dzone.com



http://www.dzone.com
http://www.refcardz.com

DZone Refcardz ’ Spring Web Flow

only an id and a subflow attribute: Here we're telling the flow to pass the value of the “order”

| variable to the subflow under the name “order”. Then, within

| <subflow-state id="customer” subflow="customer” />
the subflow definition, declare the input within the flow:

As with any other kind of state, the id attribute identifies the

subflow state so that other states can transition to it. The subflow Sliiln-stae di-ersiEmer Sin=r RSt
. . o i <input name="order” value="order"”/>
attribute identifies the subflow to be called by its flow ID. </subflow-state>

Transitioning Away From a Subflow

. L Within the subflow the parameter will be known as “order”.
The previous example of a subflow doesn't include any

o o ) The required attribute indicates that the parameter is required
transitions. Perhaps one or more global transitions are in

effect and thus there's no need for the state to declare its own
transitions. But just like action states and view states, subflow
states can declare transitions: Returning Data From Subflows
- To return data from a subflow declare what is to be returned
<subflow-state id="customer” subflow="customer”> .
<transition on="cancel” to="endState” /> with the <output> element.
<transition on="customerReady” to="order” />

</subflow-state>
<output name="customer” value="customer”/> |

and, if it is not passed in or if the value passed in is null, then
an error will be raised.

When a flow ends, it fires an event that is the same as the
end state’s ID. For example, consider these <end-state>
declarations.

Optionally, you may want to return different values depending
on which <end-state> ends the flow. In that case declare the
<output> element within the <end-state>:

<end-state id="cancel” />
<end-state id="customerReady” />

<end-state id="customerReady”>
" " " " <output name="customer” value="customer”/>
Ifthe Flow ends on the “cancel” end state, then a “cancel” event B R g

will be fired. Otherwise a “customerReady” event will be fired.

On the calling side, prepare the subflow state to receive the
subflow’s output by declaring the <output> element within the
<subflow-state> element:

Passing Input to a Subflow
To pass input to a subflow, simply provide the <input> element
within the <subflow-state>:

<subflow-state id="customer” subflow="customer”> <subflow-state id="customer” subflow="customer”>
<input name="order” value="order”/> <output name="customer” />
</subflow-state> </subflow-state>
ABOUT THE AUTHOR RECOMMENDED BOOK

Spring in Action, Third Edition has been completely revised
to reflect the latest features, tools, practices Spring offers to java
developers. It begins by introducing the core concepts of Spring and
then quickly launches into a hands-on exploration of the framework.
Combining short code snippets and an ongoing example developed
throughout the book, it shows you how to build simple and efficient
J2EE applications.

Craig Walls has been professionally developing software for over 15 years (and

longer than that for the pure geekiness of it). He is a Principal Consultant with Improving
Enterprises in Dallas, TX and is the author of Modular Java (published by Pragmatic
Bookshelf) and Spring in Action and XDoclet in Action (both published by Manning). He's
a zealous promoter of the Spring Framework, speaking frequently at local user groups
and conferences and writing about Spring and OSGi on his blog. When he's not slinging
code, Craig spends as much time as he can with his wife, two daughters, 6 birds and 2
dogs.

Blog: http://www.springinaction.com BUY NOW
Publications: Spring in Action, 3rd Edition, 2010 (available for early access from Manning.com); htt '//WWW annin com/wa||s4/
Modular Java, 2009; Spring in Action 2nd Edition 2007; XDoclet in Action, 2003 [R5 ° h

Browse our collection of over 85 Free Cheat Sheets

Getting Started with

Cloud Computing

by Daniel Rt

Upcoming Refcardz
Java GUI Development
Adobe Catalyst

Flash Builder 4

Maven 3
DZone, Inc.
. ISBN-13: 978-1-934238-84-Y4
140 Preston Executive Dr. ISBN-10: 1-934238-84-8
Suite 100 50795
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome g
. . refcardz@dzone.com | N

tutorials, cheat sheets, blogs, feature articles, source code and more. 9%81934"23884Y A

"DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, Version 1.0
photocopying, or otherwise, without prior written permission of the publisher.


http://refcardz.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.manning.com/walls4/
http://www.manning.com/walls4/

