

DZone, Inc. | www.dzone.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

C
o

n
ti

n
u

o
u

s
In

te
g

ra
ti

o
n

:
S

e
rv

e
rs

 a
n

d
 T

o
o

ls

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#87

Continuous Integration:
Servers and Tools

CONTENTS INCLUDE:
n	 About Continuous Integration
n	 Configuring the Machine
n	 Installing the CI Server
n	 Configuring a Hudson Job
n	 Running Tests
n	 Tools and more...

When implementing automated Continuous Integration (CI),
you have a number of CI servers and tools from which to
choose. Here, one server (Hudson) and many tools/platforms
(e.g., Linux, Java, Ant, Subversion, MySQL and Sonar) are
covered and linked to CI Patterns and Antipatterns (see
CI Patterns and Antipatterns Refcard #84). The goal is to
demonstrate how you can use a CI server to create working
software with every change. Furthermore, team members need
to be notified when something goes wrong, a vital element
to CI. It is important to note that while this Refcard uses the
Java platform and Linux for example purposes, servers and
tools do exist that support other development platforms (e.g.,
CruiseControl.NET, cruisecontrol.rb, MSBuild and so on).

Relevant Patterns
The patterns below are from the CI patterns and anti-patterns
Refcard (#84) that are relevant to ci servers and tools and are
covered in this Refcard.

Pattern Description

Repository Commit all files to a version-control repository

Automated Build Automate all activities to build software from source
without manual configuration

Minimal Dependencies Reduce pre-installed tool dependencies to the bare
minimum

Label Build Label the build with unique name

Continuous Feedback Send automated feedback from CI server to
development team

Independent Build Separate build scripts from the IDE

Dedicated Machine Run builds on a separate dedicated machine

Continuous Inspection Run automated code analysis to find common
problems

Build Threshold Use thresholds to notify team members of code
aberrations

Headless Execution Securely interface with multiple machines without
typing a command

Protected
Configuration

Files are shared by authorized team members only

Automated Tests Write an automated test for each unique path

Get over 85 DZone Refcardz
FREE from Refcardz.com!

CONFIGURING THE MACHINE

Minimal Dependencies Pattern: Reduce pre-installed
tool dependencies to the bare minimum. Reduce required
environment variables from the Automated Build and Scripted
Deployment to the bare minimum.

Antipatterns: Requiring developer to define and configure
environment variables. Requiring developer to install numerous
tools in order for the build/deployment to work.

Configure the Operating System and Servers
Configuring Environment Variables
Download the Java development kit zip distribution to a
temporary directory on your workstation and extract the file to
a directory such as /usr.

http://www.java.com/en/download/manual.jsp

Download Ant build tool zip distribution to a temporary
directory on your machine and extract the file to a directory
such as usr/local.

http://ant.apache.org/bindownload.cqi

Create or open your user profile by using the vi editor as shown
below to open/create a .bash_profile file.

vi .bash_profile

Add environment information to the .bash_profile file.
Examples are shown below.

ANT_HOME=/usr/local/ant-1.7.0
JAVA_HOME=/usr/jdk1.5.0_10/
HUDSON_HOME=$HOME/hudson_data
export ANT_HOME JAVA_HOME HUDSON_HOME
export PATH=$ANT_HOME/bin:$JAVA_HOME/bin:$PATH

Save the profile to the system by sourcing the profile as shown
below.

. .bash_profile

Test Java and Ant were installed by typing:

http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.com

2
Continuous Integration: Servers and Tools

java –version

ant -version

Install MySQL using yum as shown here. If you are using
another flavor of Linux that doesn’t support yum, you can
use rpm. Or, if you’re using Windows, you can download the
MySQL installation from http://dev.mysql.com/downloads/ and
ensure MySQL is available in your system path.

yum -y install mysql mysql-server

Start the MySQL server. An example is shown below.

/etc/init.d/mysqld start

Test MySQL was installed by typing:

mysql –help

Install Version-Control System Client
Install Subversion client software using yum.

yum -y install subversion

Test svn client installation by typing:

svn help

Install Tomcat Web Container
Download Tomcat by visiting Apache Tomcat’s download site at:

http://tomcat.apache.org/download-60.cgi

Save the zip file to the machine where Tomcat will be hosted
(e.g. apache-tomcat-6.0.20.zip). Go to the command prompt on
the machine and type:

unzip apache-tomcat-6.0.20.zip

Start the Tomcat server by typing:

cd [tomcat-download-location]/apache-tomcat-6.0.20/bin

chmod ugo+rx *.sh

./startup.sh

Test Tomcat is running by launching your browser and typing:

http://localhost:8080/

Build-tool integration In choosing a CI server, you need to consider
which build tools you already use or will be
using. For Java™ programming, there are a
couple of clear favorites, Ant and Maven, and
most all CI tools support them. If your build
system isn’t either Ant or Maven, does the CI
tool support the ability to run a program from
the command line?

Feedback and reporting Consider the old adage, “If a tree falls in the
forest, does anyone hear it?” If a build fails, does
anyone hear about it? If no one does, what’s the
purpose of having a CI tool? All CI tools offer
some notification mechanism, but which one will
work best for you? E-mail? Instant messenger?
RSS?

Labeling Some development teams like to track builds by
giving them unique labels so they can refer to
a particular build instance at a later date. If this
is important to you, be aware that only some CI
servers provide this capability.

Project dependencies In some cases, after you build one project, you
may need to build another dependent project.
Certain CI servers support this feature and some
don’t.

Ease of extensibility How easy is it to extend the current functionality
of the tool? Are there plug-ins that allow for
simple extension or is it always a code change?

One CI server that satisfies these criteria well is Hudson, which
will be the focus here. Below you will learn how to download,
install, configure Hudson, and configure a Hudson job with CI
patterns in mind.

Download Hudson
Hudson is free and openly available at hudson-ci.org. Hudson
supports numerous version-control systems, including
Subversion (see Repository Pattern in Refcard #84).

http://hudson-ci.org/

Download the latest from the website to your machine where
Hudson will be hosted. An example is shown below:

http://hudson-ci.org/latest/hudson.war

Install Hudson
To install Hudson you will need Java version 1.5 or higher and
the Hudson installation file, which is a Java EE Web archive
(WAR) file. Typically, you can use a web container, such as
Tomcat, and deploy the hudson.war file to the web container.

Copy the Hudson.war to Tomcat.

cd ~/hudson/application/webapps/apache-tomcat-6.0.20/webapps

cp [hudson-download-location]/hudson.war ~/hudson/
application/webapps/apache-tomcat-6.0.20/webapps

Restart the Tomcat container.

cd ~/hudson/application/webapps/apache-tomcat-6.0.20/bin

./shutdown.sh

./startup.sh

Verify the Hudson CI server is running by launching a web
browser and typing:

http://localhost:8080/hudson

The Hudson server dashboard should be displayed and look
similar to the following figure.

INSTALLING THE CI SERVER

Dedicated Machine Pattern: Run builds on a separate
dedicated machine.

Antipatterns: Existing environmental and configuration
assumptions can lead to the “but it works on my machine”
problem.

When considering which CI server to use, consider the
following server evaluation features:

Feature Explanation

Version-control system
integration

If a tool doesn’t support your particular version-
control system, do you really want to write a
custom integration for it?

http://www.dzone.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.com

3
Continuous Integration: Servers and Tools

CONFIGURING A HUDSON JOB

After installing and configuring a Hudson server, you can
create one or more Hudson jobs. A job polls a version-control
repository for changes and runs a build to create software. The
corresponding CI patterns are described below.

Automated Build Pattern: Automate all activities to build
software from source without manual configuration. Create
build scripts that are decoupled from IDEs. Later, these build
scripts will be executed by a CI system so that software is built
at every repository change.

Antipatterns: Continually repeating the same processes
with manual builds or partially automated builds requiring
numerous manual configuration activities.

Headless Execution Pattern: Securely interface with multiple
machines without typing a command.

Antipatterns: People manually access machines by logging
into each of the machines as different users; then they copy
files, configure values, and so on.

Independent Build Pattern: Separate build scripts from the
IDE. Create build scripts that are decoupled from IDEs. Later,

these build scripts will be executed by a CI system so that
software is built at every repository change.

Antipatterns: Automated Build relies on IDE settings. Build
cannot run from the command line.

Protected Configuration Pattern: Using the repository, files
are shared by authorized team members only.

Antipatterns: Files are managed on team members’ machines
or stored on shared drives accessible by authorized team
members.

Continuous Inspection Pattern: Run automated code analysis
to find common problems. Have these tools run as part of
continuous integration or periodic builds.

Antipatterns: Long, manual code reviews or no code reviews.

Configure Version-Control Repository
From the Hudson dashboard, select the job you are
configuring, then select the Configure link. One of the
configuration options is called Source Code Management.
From this section, select the Subversion radio button. Then,
you will enter the Subversion URL where that contains the build
file you’re using to run your build in the Repository URL field.
To indicate the directory name where this repository will be
represented locally on the Hudson server, enter a value in the
Local module directory field. Enter this information and click
the Save button. The figure below demonstrates these actions.

Set the Polling Frequency
From the Hudson dashboard, select the job you are
configuring, and then select the Configure link. One of the
configuration options is called Build Triggers. Select the Poll
SCM checkbox and enter the 0,10,20,30,40,50 * * * * in
the Schedule text area and click the Save button. This means
that Hudson will check for any changes to your Subversion
repository every 10 minutes. If no changes are found, it won’t
run a build. If it discovers changes, it runs the build file and
targets described in the next section.

Configure Hudson CI server
You will need to configure Hudson to refer to the Java
JDK and Ant installation on the machine where you have
installed Hudson. Go to the main Hudson page and click
on the Manage Hudson link. Click Configure System. To
configure JDK and Ant instances click on the Add button
under the relevant sections, which will display a set of fields for
configuration.

Configuring the Email Server Information
An example of configuring how email is sent from your Hudson
server for all jobs is shown below. After applying the changes,
click the Save button.

http://www.dzone.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.com

4
Continuous Integration: Servers and Tools

Continuous Inspection
The Continuous Inspection pattern is an approach to running
automated code analysis as part of a build in order to find
code quality problems. Continuous Inspection can help
reduce the time spent in Long, manual code review sessions.
While there are numerous tools you can use to implement this
pattern, this example shows a tool called Sonar, which collects
the information from several code quality analysis tools into
comprehensive graphs and reports.

Using Sonar
Sonar provides code quality reports and graphs using several
of the widely used open source static analysis tools on the
market. The benefit is that Sonar aggregates the data and
displays it as information in an easy-to-understand way. Using
Sonar is quite simple in Hudson by downloading Hudson’s
Sonar Plugin.

Add the Sonar plugin to Hudson
From the main Hudson dashboard, Select the Manage Hudson
link, then Manage Plugins. From Manage Plugins, select the
Available tab. From the numerous plugins, select the Hudson
Sonar Plugin checkbox and select the Install button.

Restart the Tomcat container
Go back to the Manage Hudson link and select the Prepare for
Shutdown option. This prevents any other jobs from running
while you restart the server. Because the Tomcat server is
hosting the Hudson CI application, you will access the host
where Tomcat is installed and go to the Tomcat bin directory.

cd ~/hudson/application/webapps/apache-tomcat-6.0.20/bin

./shutdown.sh

./startup.sh

Configure Sonar
To verify the Sonar Plugin was installed. Go back to the main
Hudson dashboard and Select the Manage Hudson link, then
select Manage Plugins. From here, select the Installed tab. You
should see the Sonar Plugin listed on this tab.

An example of a dashboard report provided by Sonar is shown
below.

RUNNING TESTS

Automated tests Pattern: Write an automated test for each
unique path.

Antipatterns: Not running tests, no regression tests, manual
testing

Once you’ve written some texts, you can configure your CI
server – Hudson, in this case – to display the unit test results.
The figure below shows the checkbox to select and an example
of the fileset include – it uses the xml file to display the test
reports on the Hudson dashboard.

Configure the Build Target and Build File location
From the Hudson dashboard, select the job you are
configuring, then select the Configure link. One of the
configuration options is called Build. Under Invoke Ant, enter
values in the Targets and Build File fields. The targets are a
space-delimited list of targets you wish to call for a particular
build file the build file name is relative to the Repository URL
you configured in the configure version-control repository
section above. Enter this information and click the Save button.

To configure Sonar for a particular job, select a specific Hudson
job and then select Configure. From the Post-build Actions
section on this page, you will see a Sonar checkbox. Select
this checkbox and click the Save button. Typically, you will also
need to configure other project-specific options as well. This is
illustrated in the screenshot below.

http://www.dzone.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.com

5
Continuous Integration: Servers and Tools

Code Coverage
Once you’ve written some automated tests, you can use a
CI server tool like Hudson to determine your overall code
coverage - either in the form of line or branch coverage. There
are several code coverage tools including Emma, Cobertura,
NCover, Clover, etc. This example shows how to configure
Hudson to run your existing Cobertura reports. The example
below assumes that you have already installed the Cobertura
plugin for Hudson. Once this plugin has been installed, the
Publish Cobertura Coverage Report checkbox is displayed.
NOTE: Sonar aggregates Cobertura results as well.

Build Thresholds
Build Threshold Pattern: Notify team members of code
aberrations such as low code coverage or high cyclomatic
complexity. Fail a build when a project rule is violated. Use
continuous feedback mechanisms to notify team members.

Antipatterns: waiting for numerous code quality issues to
go undiscovered or build up to the point where software
maintenance increases or functional features are affected.

Hudson provides a way to fail the build based on specific
thresholds. This is an implementation of the build threshold
pattern. In the example below, you can see that Hudson lets
you configure method, line and conditional code coverage
targets. If the code in the build doesn’t meet these criteria,
the build fails. This is an effective to discover and fix potential
problems earlier in the development process.

SENDING EMAIL NOTIFICATIONS

Continuous Feedback Pattern: Sending automated feedback
from CI server to development team. Setting up the server
to send email notifications will be covered here, but there are
other notification mechanisms available (e.g., RSS, SMS, X10,
Monitors, Web Notifiers).

Antipatterns: Minimal feedback, which prevents action from
occurring. Receiving spam feedback, which causes people to
ignore messages.

From the Hudson dashboard, select the job you are
configuring, then select the Configure link. One of the
configuration options is called Post-build Actions. Then, select
the E-mail Notification checkbox. Here you can enter the email
addresses for the people who will receive emails after builds
are run. You can choose to send an email for every unstable
build and/or to send separate emails to individuals who broke
the build. The latter option requires you configure your domain
suffix in the Hudson system configuration (See the configuring
the email server information section above).

TOOLS

The following are not recommended tools, but recommended
tool types - with example tools that you might use. There are
many more tools available than the list provided here. It’s
important to realize that you need numerous types of tools to
effectively create working software in a single command with
every change applied to the version-control repository.

Tool Name Tool Type Platform

CruiseControl
Hudson
CruiseControl.net

Continuous Integration Server Java
.Net
Others

Checkstyle
PMD
FindBugs
JavaNCSS
FxCop
NCover
Cobertura
Ratproxy

Code Quality Static Analysis Java
.Net

JUnit
DbUnit
Selenium
AntUnit
JMeter

Automated Unit, Database
Seeding, Functional, Build,
Load, Web Services Testing

Java

http://www.dzone.com
http://refcardz.dzone.com

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Vaadin
Continuous Integration 2
Spring Web Flow
Integrating Zend and PHP
Resin
Flash Builder 4.0
Maven 3

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Continuous Integration: Servers and Tools

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-67-7
ISBN-10: 1-934238-67-8

9 781934 238677

50795

Paul M. Duvall is the CEO of Stelligent, a company that provides
products and services to help customers create production-ready
software every day. A featured speaker at many leading software
conferences, he has worked in virtually every role on software
projects: developer, project manager, architect, and tester. He is
the principal author of Continuous Integration: Improving Software
Quality and Reducing Risk (Addison-Wesley, 2007) and a 2008 Jolt
Award Winner. Paul contributed to the UML 2 Toolkit (Wiley, 2003),
wrote a series for IBM developerWorks called Automation for the

People, and contributed a chapter to No Fluff Just Stuff Anthology: The 2007 Edition
(Pragmatic Programmers, 2007). His company provides a cloud-based product called
CI as a Service, which recently released its beta version at http://ciasaservice.com/.
He is passionate about automating software development and release processes and
actively blogs at http://blog.stelligent.com/

	

For any software developer who has spent days in
“integration hell,” cobbling together myriad software
components, Continuous Integration: Improving Software
Quality and Reducing Risk illustrates how to transform
integration from a necessary evil into an everyday part
of the development process. The key, as the authors
show, is to integrate regularly and often using continuous
integration (CI) practices and techniques.

BUY NOW
books.dzone.com/books/continuous-integrations

Some of the concepts and material in this Refcard were adapted from Continuous
Integration: Improving Software Quality and Reducing Risk (Addison-Wesley, 2007) -
http://www.amazon.com/gp/product/0321336380/?tag=integratecom-20

Ant
Maven
Buildr
NAnt
MSBuild

Build Tool Java
.Net
Ruby
Others

Ivy
Artifactory

Dependency Manager,
Repository

Ant
Java

Liquibase Automated Database
Upgrades

Java
Others

Java Secure Channel Deployment Java

Grand Build Diagrams Ant

UMLGraph UML Documentation Java

SchemaSpy ERD Documentation Any

JDepend Dependency Analysis Java

Sonar Code Quality Reporting &
Aggregation

Java

Subversion
Perforce
Accurev
TFS
Git

Version-Control Any

IzPack GUI Installer Java
Ant

Email
X10
SMS
Jabber (IM)

Feedback Mechanisms Any

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/continuous-integration
http://refcardz.dzone.com

