
This DZone Refcard is brought to you by:

Visit refcardz.com to browse and download the entire DZone Refcardz collection

http://www.caucho.com/

DZone, Inc. | www.dzone.com

By Emil Ong

ABOUT RESIN

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 C

au
ch

o
 R

e
si

n

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#88

Getting Started with

Caucho Resin
CONTENTS INCLUDE:
n	 About Resin
n	 Downloading Resin
n	 Installing Resin
n	 Resin Directory Layout
n	 Starting Resin
n	 Configuring Resin and more...

Hot
Tip

Resin 4.0 now requires Java SE 6. This latest version
of Java introduces a number of API improvements and
Caucho’s internal testing shows performance benefits as
well. Make sure to get the JDK, not just the JRE.

Caucho Technology’s Resin® is a Java Application Server with
a reputation for being lightweight and fast, yet reliable and
scalable enough to power the most demanding enterprise
sites. Beginning as a Servlet and JSP engine in 1998, Resin
has since evolved to support the Java EE 6 Web Profile within
highly integrated implementations of Servlet 3.0, CDI, and EJB
3.1 Lite. In addition to the Web Profile standards, Resin also
includes a high performance JTA transaction manager, a JMS
provider, clustering, connection pooling, and a management
console.

Resin is available in two flavors: Resin Open Source and
Resin Professional. Resin Open Source is licensed under the
GPL and has all the features necessary for Java EE 6 Web
Profile development. Resin Professional builds on Resin Open
Source and offers advanced features such as clustering (both
traditional and cloud), fast native I/O, proxy caching, and
OpenSSL integration.

brought to you by...

DOWNLOADING RESIN

Resin is maintained in two branches: stable and development.
At the time of writing, the stable branch is Resin 3.1 and the
development branch is Resin 4.0. Users should note that
despite the name, each release of the development branch is
production ready. It’s termed “development” because all new
features and APIs go into this branch, but core technologies
like Web Profile APIs are stable. This Refcard will deal entirely
with Resin 4.0 because it contains the Java EE 6 Web Profile
implementation (Resin 3.1 focused on Java EE 5) and has many
new exciting features that are useful for emerging technologies
such as cloud deployment.

All currently available versions of Resin are listed for download
at http://caucho.com/download. Most users will want to
download Resin Professional, even if they haven’t purchased
a license. Without the license, Resin Professional operates
just like Resin Open Source. If you decide to upgrade later, all
you have to do is drop in a license file. Developers who want a
purely GPL version can download Resin Open Source.

INSTALLING RESIN

Resin is available in tar.gz and .zip formats for Unix, Mac OS X,
and Windows users. While Resin can run in a pure Java mode,
it also features some native (JNI) code that offers functionality
like dropping root privileges in Unix and OpenSSL integration.
Because of these features, you’ll need to compile the JNI
code if you’re running on Unix or Mac OS X. Windows DLLs

are provided in the distribution. Ubuntu Linux users can use
Caucho’s Ubuntu repository to install Resin as a .deb.

Unix and Mac OS X installation
To install Resin on Unix and Mac OS X, you’ll need to compile
the JNI code for Resin. Before you compile, you’ll need an
environment capable of compiling C code (gcc, etc.). You’ll
probably also want OpenSSL, though this isn’t strictly required.
Once you’ve unpacked Resin, it should create a directory with
the full Resin version name (e.g. resin-pro-4.0.4). Change to
this directory and run the following commands:

$./configure
$ make
$ sudo make install

You’ll need to run the last command (make install) as root so
you can install Resin system wide. By default, this installs Resin
in /usr/local/resin-<version>, but you can change this behavior
by passing the --prefix= to the configure command. For more
options, pass -- help to the configure command.

Windows Installation
Resin includes precompiled DLLs for the native code, so no
compilation is necessary. Simply unpack the Resin .zip file
directly where you’d like to install Resin and you’re done.
Typically, we recommend C:\Resin.

Once you have Resin installed, you should see two .exe files
in the top-level Resin directory, resin.exe and setup.exe. resin.
exe launches Resin from the command line, but is used for
backwards compatibility. setup.exe installs Resin as a Windows
Service, which we will discuss in a later section.

Caucho Technology
858.456.0300
sales@caucho.com
http://caucho.com

Maximize your web application potential using
Resin Web Profile and Cloud Computing support.

the Web Profile solution for
Java EE applications.

http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com
http://www.caucho.com/
http://www.caucho.com/

DZone, Inc. | www.dzone.com

2
Getting Started with Caucho Resin

Ubuntu Installation
Ubuntu users can use Caucho’s Ubuntu repository to install
Resin. Add the following lines to your /etc/apt/sources.list:

deb http://caucho.com/download/debian/ unstable universe
deb http://caucho.com/download/debian/ unstable multiverse

After adding these lines, then run

$ sudo apt-get update

This command will update your Ubuntu database with
information about the latest Resin releases. To install Resin, run:

$ sudo apt-get install resin-pro

This will install Resin Professional. Use “resin” instead of
“resin-pro” if you’d prefer to install Resin Open Source. This
installation will start Resin for you automatically on startup.

RESIN DIRECTORY LAYOUT

Resin uses a number of directories for the server itself,
application files, and logging. These are all configurable (as
you saw in the installation section), but we’ll need to refer to
them by name later. The following table will give the names,
descriptions, and standard locations of commonly used Resin
directories:

Directory Description Recommended

Resin Home Contains Resin server jars, JNI, and
licenses.

/usr/local/resin-<version> (Unix)
C:\Resin (Windows)

Root Directory Contains application content, log
files, and server data

/var/www (Unix)
C:\www (Windows)

Web App Deploy
Directory

Contains applications (.war files
and exploded applications)

webapps/ (Subdirectory of root
directory)

Log Directory Contains server and access log files log/ (Subdirectory of root directory)

Resin separates the Resin Home directory, where Resin’s
libraries and licenses are contained, from the root directory,
where your applications and logs are maintained. This structure
makes it easier for you to upgrade Resin without disturbing
your applications. In other words, you can just replace your
Resin Home directory with the new Resin installation to
upgrade.

STARTING RESIN

Resin command line
Resin can be started from the command line for debugging
and development purposes. To run Resin with its output sent to
the console, use the following command:

$ java -jar $RESIN_HOME/lib/resin.jar console

Resin can also open a standard Java debugging port on startup
using the -debug-port option:

$ java -jar $RESIN_HOME/lib/resin.jar -debug-port 8000 console

Similarly, you can have Resin open a JMX port using the –jmx-
port option:

$ java -jar $RESIN_HOME/lib/resin.jar -jmx-port 9000 console

To have Resin run in the background with its log output placed
in the log directory, run:

$ java -jar $RESIN_HOME/lib/resin.jar start

You may also want to set the root directory of Resin and a
specific configuration file on the command line as well:

$ java -jar $RESIN_HOME/lib/resin.jar
 --root-directory /var/www --conf /etc/resin/resin.xml start

If you need to stop Resin, you can run:

$ java -jar $RESIN_HOME/lib/resin.jar stop

This command stops the Resin instance, but the Resin
Watchdog will still be running. The Resin Watchdog (see the
Hot Tip below for more info) and all Resin processes can be
stopped by running:

$ java -jar $RESIN_HOME/lib/resin.jar shutdown

Starting Resin at Boot
Once you have installed Resin system-wide, you may want to
have it start when your server boots up. Resin provides start
scripts for Unix and Windows.

Unix boot-time start up
Resin provides an init.d script and installs it in /etc/init.d/resin.
This script is editable and essentially just starts the Resin server
using the command line interface shown above. For standard
installations, it shouldn’t be necessary to modify this file, but
you can configure alternate directories.

Windows Server Installation
Resin includes a Windows installation program called setup.
exe to create a Windows Service. You can set parameters
such as the Resin Home, Resin Root, and Log Directory for
the service. You can also set the Service name or remove an
existing service.

Hot
Tip

Even though we showed Resin run as a single Java
process above, there are actually two processes being
run, Resin and a Watchdog. The Watchdog is in charge
of launching and monitoring the Resin process. This
architecture provides additional reliability by restarting
Resin if there’s an error.

Configuring the Resin Server
Resin’s server configuration is XML-based and contained largely
within one file called resin.xml. The default resin.xml should
work fine for most users with single-server deployments or
developers. For more advanced configurations however, you’ll
want to understand and modify the resin.xml file.

Structure of resin.xml
The XML structure of the resin.xml file models the organization
of Resin. At the top level there is the full Resin deployment,

CONFIGURING RESIN

http://www.dzone.com
http://refcardz.dzone.com
http://www.caucho.com/

DZone, Inc. | www.dzone.com

3
Getting Started with Caucho Resin

With this hierarchical structure, you can share resources and
policies across applications. For example, you could configure
a database pool shared by all applications in a single host or a
distributed cache shared by all servers in a cluster.

Configuring JVM parameters
One of the most common tasks that administrators first do
when setting up a new server is to configure JVM parameters.
Because of Resin’s Watchdog architecture, you can configure
these parameters directly in your resin.xml file. When the
Watchdog launches (or relaunches) a server, it will start a new
JVM with these parameters:

<resin>
 <cluster>
 <server id=”a”>
 <jvm-arg>-Xmx512m</jvm-arg>
 </server>
…

Configuring Applications with resin-web.xml
Resin supports a number of features for applications
that go beyond what Java EE standards specify, such as
database pooling, custom logs and log rotation, and security
authenticators. All of these facilities can be configured in
the top-level resin.xml or in a Resin-specific application
deployment descriptor file named WEB-INF/resin-web.xml.
This file is recognized by Resin and can be used alongside of
the portable web.xml descriptor file to configure Resin-specific
resources. You can think of the resin-web.xml file as providing
the <web-app> configuration in the resin.xml structure above.
The sections below will discuss how to configure resources in
the resin-web.xml file.

MONITORING AND ADMINISTRATION

Setting up an administrator password
Once you’ve started Resin, one of the first tasks you’ll want to
do is set up a password for administration tasks. To do this, just
browse to http://localhost:8080/resin-admin (replace localhost
with the host on which you’ve installed Resin if it’s different).
There you should see a login page with a section called “Don’t
have a login yet?” Enter a username and password, then
submit and follow the directions on the next page for copying
the generated password file to your Resin installation.

Once you’ve installed the password file, Resin will restart
automatically and you can login with the password you’ve
set up. The administration application features a number of
monitoring resources for web applications, the proxy cache,
server configuration, cluster status, memory usage, CPU usage,
sampling-based profiling, and post-mortem failure analysis.

DEPLOYING APPLICATIONS

File system deployment
Resin offers file system-based “hot deployment” with which
you can deploy an application by copying it to the Resin
“webapps” directory. The application can be either in .war
form or an “exploded” war. If you deploy the application as a
.war, Resin will expand and start it automatically by default.

Many developers may also prefer to copy their application
in “exploded” form for development. Resin is able to detect
changes to the code base (both JSPs and Java files) within
the application and automatically recompile and redeploy.
This feature can help developers iterate quickly to see code
changes in their application.

While file system-based deployment is great for developing
applications and deploying applications on a single machine,
it can be difficult to manage when deploying to multiple
machines in a cluster. Resin offers a distributed deployment
mechanism for these cases.

Distributed Deployment
Resin 4.0 introduced a new clustering mechanism and a new
deployment tool for distributed applications. This tool lets
users deploy their application once and have it distributed
across all servers in a cluster, even dynamic servers that are
added after the application is deployed! (See the Clustering
section for more information about dynamic servers.)

This tool is accessible via Ant and Maven. To use the Resin
Maven plugin to deploy, add Caucho’s Maven repository to
your pom.xml:

<pluginRepositories>
 <pluginRepository>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>ignore</checksumPolicy>
 </snapshots>

 <id>caucho</id>
 <name>Caucho</name>
 <url>http://caucho.com/m2-snapshot</url>
 </pluginRepository>
</pluginRepositories>

Once you have the plugin available, add it to your build
configuration and specify the administrator username and
password that you setup in the administration application:

which contains clusters. Each cluster is a set of servers and
(virtual) hosts. (Note that even when running a single server,
Resin considers this to be a cluster with one server.) Each host
contains web applications.

http://www.dzone.com
http://refcardz.dzone.com
http://www.caucho.com/

DZone, Inc. | www.dzone.com

4
Getting Started with Caucho Resin

<build>
 <finalName>foo</finalName>
 <plugins>
 <plugin>
 <groupId>com.caucho</groupId>
 <artifactId>resin-maven-plugin</artifactId>
 <version>4.0.4</version>
 <configuration>
 <server>127.0.0.1</server>
 <port>80</port>
 <user>admin</user>
 <password>my-admin-pass</password>
 </configuration>
 </plugin>
 </plugins>
</build>

Once you have this configuration in your pom.xml, you can
deploy to Resin simply by using the upload .war goal:

$ mvn resin:upload-war

For more Maven options, see http://wiki.caucho.com/Maven2
For the related Ant plugin, see http://wiki.caucho.com/Ant

CONNECTING DATABASES

Resin features a built-in database pool which allows multiple
database servers, load balancing, and connection checking.
Resin’s database pools are integrated with Resin’s CanDI (CDI
implementation) so that developers can use annotations to
inject the database easily into their code.

The following code shows a sample database pool
configuration that you might include in your resin-web.xml for a
pool of up to 150 simultaneous connections:

<web-app xmlns=”http://caucho.com/ns/resin”>
 <database jndi-name=”jdbc/myDb”>
 <driver type=”org.postgresql.Driver”>
 <url>jdbc:postgresql://localhost/test</url>
 <user>myUser</user>
 <password>myPassword</password>
 </driver>
 <max-connections>150</max-connections>
 </database>
</web-app>

Once you’ve configured the pool in your resin-web.xml, you
can either use JNDI to access the DataSource or use CDI
annotations as in the following class:

public class MyBusinessLogic {
 @javax.inject.Inject
 DataSource myDatabase;
 …
}

LOGGING

Resin uses standard java.util.logging facilities for all its
internal logging and implements several custom log handlers
to manage log output and log rotation. The default logging
configuration in the resin.xml file provides INFO-level logging
for all Resin output. The XML for this configuration is:

<log-handler name=”” level=”all” path=”stdout:”
 timestamp=”[%y-%m-%d %H:%M:%S.%s] {%{thread}} “/>
<logger name=”com.caucho” level=”info”/>

You can configure additional loggers for your classes simply
by adding another <logger> tag either to resin.xml or your
application’s resin-web.xml. The default log-handler will
output all log messages to the log directory (or standard
output, if running in console mode). You can also configure
additional log-handlers to deal specifically with your classes’
log messages. For example, if all of your packages started with
“com.example”, you could configure a logger and log-handler:

THE RESIN HTTP SERVER

Resin includes its own powerful HTTP server which features
comparable performance to C-based servers such as Apache
or nginx without the overhead of requiring multiple processes.
Using the Resin HTTP server is recommended. In addition to
its solid performance, the Resin HTTP server also has a number
of convenient features for configuring SSL, rewriting requests,
and managing virtual hosts.

OpenSSL
One of Resin Professional’s most useful features is OpenSSL
integration which offers far faster SSL performance than pure
Java solutions. To configure OpenSSL, add an <http> tag with
an <openssl> tag to your server configuration:

<resin xmlns=”http://caucho.com/ns/resin”
 xmlns:resin=”urn:java:com.caucho.resin”>
 <cluster id=”app-tier”>
 <server id=”” address=”192.168.0.10” port=”6800”>
 <http port=”443”>
 <openssl>
 <certificate-file>example.crt</certificate-file>
 <certificate-key-file>example.key</certificate-key-file>
 <password>my-password</password>
 </openssl>
 </http>
 </server>
 </cluster>
 …
</resin>

Rewrite Dispatch
Resin offers a URL rewriting mechanism similar to Apache’s
mod_rewrite in its HTTP server. Rules for rewriting URLs can be
configured on an application, host, server, or cluster level. For
example, you may want to allow all requests for specific static
resources (such as images, CSS, JavaScript, etc.) to be served
as usual, but redirect all other requests to a central controller
Servlet. You could achieve that within your resin-web.xml with
the following configuration:

<web-app xmlns=”http://caucho.com/ns/resin”
 xmlns:resin=”urn:java:com.caucho.resin”>
 <resin:Dispatch regexp=”\.(php|js|gif|png|css|html)$”/>
 <resin:Dispatch regexp=”^” target=”/controller”/>
</web-app>

The <resin:Dispatch> tag here is an internal redirection (i.e. the
request is passed within the server without an HTTP redirect).
You can use tags for HTTP forwarding, FastCGI integration,
load balancing, and more:

Tag Behavior

<resin:Dispatch> Redirect a request internally

<resin:Redirect> Send an HTTP redirect

<resin:Forbidden> Send an HTTP forbidden response

<resin:Forward> Send an HTTP forward

<resin:FastCgiProxy> Redirect requests to a backend FastCGI process

<log-handler name=”com.example” level=”all” path=”example.log”
 archive-format=”example-%Y%m%d.log.gz”
 rollover-period=”1D”/>
<logger name=”com.example” level=”info”/>

Notice that the names of both the logger and log-handler are
“com.example”. We also changed the path to an explicit file
name. We also added a rollover-period and an archive format.
In this case, the log will be rolled over (rotated) once a day and
the old log will be stored as example-%Y%m%d.log.gz, where
the %Y%m%d will be replaced with the year, month, and date
when the log was rolled over. The .gz extension also indicates
to Resin that this log should be gzipped.

http://www.dzone.com
http://refcardz.dzone.com
http://www.caucho.com/

DZone, Inc. | www.dzone.com

5
Getting Started with Caucho Resin

<resin:HttpProxy> Redirect requests to a backend HTTP service

<resin:LoadBalance> Redirect the request to a backend cluster for processing

Virtual Hosts
For many deployments, you may not need to use specialized
virtual hosts (e.g. you only use example.com and www.example.
com). In these cases, you can deploy to the standard web
app deploy directory and Resin will serve all your applications
regardless of the virtual host specified by the client.

If you have a deployment with more virtual hosts however
(store.example.com, blog.example.com, etc.), you’ll need to
organize your applications in the appropriate virtual hosts.
Virtual hosts are a native concept to Resin and you can create
them two different ways:

 • Use Resin’s host deploy directory
 • Create an explicit host with the <host> tag in resin.xml

The host deploy directory allows you to create a directory
structure such as:

/var/www/hosts/store.example.com/webapps

Then any applications deployed in this webapps directory will
be served from Resin as store.example.com.

You may prefer to use an explicit <host> tag in your resin.xml.
This approach allows you to create a custom directory structure
and make your hosts explicit in configuration.

SECURITY

Resin provides two aspects of security for web applications:
authorization and authentication.

Authentication
Resin provides an authentication framework that allows
applications to authenticate users from a wide variety of
sources including LDAP, a JDBC database, JAAS, or a simple
XML database.

Authenticator Description

XmlAuthenticator For basic applications with few users (such as the Resin administration
console).

LdapAuthenticator Can reference an LDAP database for users and passwords. Specify a
distinguished name prefix and/or suffix to select users.

JdbcAuthenticator Specify a table and columns against which users, passwords, and roles will
be authenticated.

JaasAuthenticator Use any JAAS plugin to authenticate users.

For example, to configure the XmlAuthenticator, you might add
this XML to your resin.xml or resin-web.xml:

<web-app xmlns=”http://caucho.com/ns/resin”
 xmlns:resin=”urn:java:com.caucho.resin”>
 <resin:XmlAuthenticator>
 <password-digest>md5-base64</password-digest>
 <user name=’myuser’ password=’IXiMnz7P2cJU18MSJjKiaA==’>
 <role>user</role>
 <role>foo</role>
 </user>
 </resin:XmlAuthenticator>
</web-app>

Authorization
While Resin supports the Servlet standard <security-
constraint> mechanism, it also provides an easy-to-use,
yet powerful alternative that is integrated with the Rewrite
Dispatch architecture. This integration makes it possible to
handle requests for authorized and unauthorized users with
custom logic.

As an example, you may want to allow all accesses to an “/
admin” application only if the user is in the proper “admin” role:

<web-app xmlns=”http://caucho.com/ns/resin”
 xmlns:resin=”urn:java:com.caucho.resin”>
 <resin:Forbidden regexp=”^/admin”>
 <resin:Not>
 <resin:IfUserInRole role=”admin”/>
 </resin:Not>
 </resin:Forbidden>

 <resin:Dispatch regexp=”^/admin”>
 <resin:IfUserInRole role=”admin”/>
 <resin:AddHeader name=”Cache-Control” value=”no-cache”/>
 </resin:Dispatch>
</web-app>

Notice that we also changed the caching behavior of the
response to indicate that browsers should not cache this
secure content.

DEVELOPING WITH RESIN

Eclipse Integration
Resin features a development plugin for Eclipse based on the
WTP framework. With this plugin, developers have all of the
facilities of the WTP environment with the ability to deploy to
Resin using a variety of file system and remote deployment
options.

The plugin includes built-in configuration files for the
development environment, but you can use any configuration
file as well.

To download and install the Eclipse plugin for Resin, add
http://caucho.com/eclipse as an update site within Eclipse and
install the Caucho Resin plugin.

Testing Resin
Resin features an embedded server interface which can be
used in test frameworks such as JUnit. The following example
code shows how this API can be used to test a service injected
using Resin CDI implementation, CanDI:

package qa;

import org.junit.*;
import org.junit.runner.RunWith;
import static org.junit.Assert.*;
import com.caucho.junit.ResinBeanContainerRunner;

@RunWith(ResinBeanContainerRunner.class)
@TestConfiguration(beanXML=”beans-test.xml”)
public class AccountServiveTest {
 @Inject
 private AccountService accountService;

 @Test
 public void testGetAccount()
 throws Exception
 {
 Account account = accountService.getAccount(1007);
 assertNotNull(account);
 }
}

http://www.dzone.com
http://refcardz.dzone.com
http://www.caucho.com/

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building softwar

with every change committed to a project’s version contr

repository.

CI can be explained via patterns (i.e., a solution to a pr

in a particular context) and anti-patterns (i.e., inef

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

he pattern.
tion he term Continuous Integration

le this Refcar
s

Aldon ®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Commit all fi les to a version-control repository

Develop on a mainline to minimize merging and to manage

e within a system that utilizes multiple

ce code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label the build with unique name

Automate all activities to build software from source without

guration

e-installed tool dependencies to the bare minimum

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Centralize all dependent libraries

eate a single template fi le that all target environment

operties are based on

emote builds into different target environments

Perform a Private Build before committing changes to the

Repository

Perform an Integration Build periodically, continually, etc.

tomated feedback from CI server to development team

hey occur
d based on

brought to you by...

By Andy Harris

HTML BASICS

o
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares

common.) All are essenti
extension H

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anyb d

expected. Early HTML had very limited layo

Browser manufacturers added

web developers cresult

By Daniel Rubio

ABOUT CLOUD COMPUTING

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

Browse our collection of over 85 Free Cheat Sheets
Upcoming Refcardz
Java GUI Development
Adobe Catalyst
Flash Builder 4
Maven 3

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Caucho Resin

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-68-4
ISBN-10: 1-934238-68-6

9 781934 238684

50795

Resin provides clustering capabilities for both traditional
clusters and cloud deployments. This functionality includes:
 • Smart load balancing
 • Distributed session replication
 • Distributed object caching
 • Dynamic server addition and removal

 • Distributed application deployment

To get started with Resin clustering, you can add <server>
configurations to a <cluster>:

<resin xmlns=”http://caucho.com/ns/resin”
 xmlns:resin=”urn:java:com.caucho.resin”>
 <cluster id=”app-tier”>
 <server id=”app-a” address=”192.168.0.10” port=”6800”/>
 <server id=”app-b” address=”192.168.0.11” port=”6800”/>
 ...
 </cluster>

The default resin.xml file has distributed sessions already
enabled, so by adding these servers you’ve already got a
cluster that can share data.

The start up procedure for Resin changes a bit when you have
a cluster. When you have multiple servers configured in your
resin.xml, you need to specify which of the servers you will use:

$ java -jar $RESIN_HOME/lib/resin.jar -server app-a start

In this case, you would run this command from the machine
with the network interface assigned the IP 192.168.0.10, as per
the configuration above.

Load Balancing
Once you’ve got a backend cluster set up as we did above,
you’ll probably want to add load balancing. In the same
resin.xml as the app-tier cluster, add the following cluster
configuration for a web-tier:

<resin xmlns=”http://caucho.com/ns/resin”
 xmlns:resin=”urn:java:com.caucho.resin”>
 <cluster id=”app-tier”>
 …
 </cluster>

 <cluster id=”web-tier” root-directory=”web-tier”>
 <server id=”web-a” address=”123.45.67.89” port=”6800”>
 <http address=”*” port=”80”/>
 </server>

 <host id=””>
 <web-app id=”/”>
 <resin:LoadBalance regexp=”” cluster=”app-tier”/>
 </web-app>
 </host>
 </cluster>
</resin>

This configures a third Resin instance that will load balance
requests from the outside world back to the app-tier servers.
Because the <resin:LoadBalance> tag is part of the Rewrite
Dispatch architecture, you can route load balanced requests
with custom dispatch rules.

Emil Ong is the Chief Evangelist and a lead
developer of Caucho Technology. He comes from
an academic research background, having studied
security, systems, and peer-to-peer technology to gain
his M.S. in Computer Science at UC Berkeley. When
Emil joined Caucho in 2006, he began by working
on Quercus, Caucho’s 100% Java implementation
of PHP, and Resin, Caucho’s screamingly fast

Java application server. In 2007, Emil became the Chief Evangelist
of Caucho, adding public speaking engagements, community
management, and press relations to his engineering duties. Emil is
based in the San Francisco Bay Area.

CLUSTERING RESIN

A comprehensive tutorial on EJB 3 co-authored by
Caucho’s Reza Rahman, this book features code
samples, performance tips, and design patterns for
using EJB and JPA. Novice and experienced Java
programmers alike will find this book useful and
informative.

BUY NOW
books.dzone.com/books/ejb3

http://refcardz.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://refcardz.dzone.com
http://www.caucho.com/
http://books.dzone.com/books/ejb3

