

DZone, Inc. | www.dzone.com

By W. Jason Gilmore

INTRODUCING THE ZEND FRAMEWORK

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 t

h
e

 Z
e

n
d

 F
ra

m
e

w
o

rk

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#89

Getting Started with
the Zend Framework

CONTENTS INCLUDE:
n	 Introducing The Zend Framework
n	 Introducing The MVC Design Pattern
n	 Framework Prerequisites
n	 Installing The Zend Framework
n	 Creating Your First Project
n	 Sending Variables to the View and more...

The Zend Framework (http://framework.zend.com) is an open
source object-oriented Web framework which significantly
reduces the barriers typically encountered when creating
powerful Web applications. It does so by providing developers
with an array of tools which facilitate many of the most
commonplace yet tedious tasks, such as data validation,
database access and manipulation, sending e-mail, user
account management, search engine optimization, and
internationalization.

The Zend Framework developers also place special emphasis
on “the latest Web 2.0 features”, offering simple solutions for
AJAX integration, content syndication, and communication
with popular APIs such as those offered by Amazon.com,
Google, and Yahoo!.

Get over 85 DZone Refcardz
FREE from Refcardz.com!

INTRODUCING THE MVC DESIGN PATTERN

Like most mainstream Web frameworks, the Zend Framework
embraces the MVC design pattern, which encourages the
separation of an application’s data, business logic, and
presentation. Doing so facilitates the creation of more
maintainable, reusable, and testable code.

Figure 1: The MVC pattern isolates application components

Zend Framework applications typically consist of a series of
models, controllers, and views, each of which are managed
within a separate file. But the end user does not access these
files directly! Instead, all requests are routed through the front
controller. See the later section “The Application Structure” for
more information about these files.

FRAMEWORK PREREQUISITES

The Zend Framework uses object-oriented features only
available within PHP 5, with the latest release supporting PHP
5.2.4 and newer. To take advantage of features such as
custom routing you’ll need to implement Apache’s
mod_rewrite module. Finally, you may need to enable specific
PHP extensions in order to take advantage of specific Zend
Framework components. Consult the Zend Framework
documentation for a list of extension dependencies.

INSTALLING THE ZEND FRAMEWORK

You can download the Zend Framework from the following
location: http://framework.zend.com/download/latest

On this page you’ll find several packages, with accompanying
descriptions of the package contents. Unless you have special
requirements I suggest downloading the minimal package.

The Zend Framework can be installed simply by opening the
download file and moving the library directory to a location
accessible by the PHP installation. You can do this by modifying
the php.ini file’s include_path directive to include the location
of your Zend Framework files. For instance you could place the
library directory within a directory named includes found within
the PHP directory on your server, and then set the include_path
directive like so:

include_path = ".:/php/includes"

If you’re unable to modify the php.ini file, then you can set the
include_path directive within an .htaccess file like this:

php_value include_path ".:/php/includes"

	

http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.com

2
Getting Started with the Zend Framework

Configuring Zend_Tool
The Zend Framework includes a component named Zend_Tool
which greatly reduces the amount of time and effort otherwise
required to manage your Zend Framework projects. The Zend
Framework is bundled with a command-line interface to this
tool, but in order to use it you’ll need to make the interface
accessible from anywhere on your operating system, done
by adding the script location to your system path. The script
extension is operating system-dependent, so be sure to
refer to the zf.sh script on Unix-based servers, and zf.bat on
Windows.

The script is located within the downloaded package’s bin
directory. Copy the appropriate operating system-specific file
along with the zf.php file (also found in the bin directory) into a
directory recognized by your system path. It’s common practice
to copy these files into the same directory as your PHP binary.
Next, create the environment variable
ZEND_TOOL_INCLUDE_PATH_PREPEND, assigning it the path
pointing to the location of your Zend Framework
library directory.

CREATING YOUR FIRST PROJECT

With Zend_Tool installed, you can create your first Zend
Framework-powered project in mere seconds. To create a
project, open a command prompt and navigate to the location
where you’d like the project directory to reside. Then execute
the following command, replacing PROJECT_NAME with the
name of your particular project:

%>zf create project PROJECT_NAME

In addition to creating the directory structure and files
necessary to power a Zend Framework-driven Website,
this command will also create an index controller and
corresponding view which will represent the home page.
You can confirm that the project was created successfully by
navigating to the site’s home page from within your browser,
but first you’ll need to set your Web server’s document root
to the project’s public directory (this directory is found in the
project’s root directory, and is autogenerated by Zend_Tool).
This is because all requests are funneled through the project’s
front controller, which is responsible for processing the request
and returning the response. You don’t have to create the
front controller, it’s automatically created when you create a
new project using Zend_Tool. Once the document root is set,
restart your Web server and navigate to the site’s home page,
and you’ll see the welcome message displayed in Figure 2.

Figure 2: The default home page

Creating a Controller
Zend_Tool also supports the ability to create controllers from
the command-line using the following syntax:

%>zf create controller NAME

Creating Actions
Controllers are simply PHP classes which typically consist of
a series of public methods, known as actions. Each action
is responsible for processing the logic associated with a
corresponding page. For instance, an action named contact
found in the About controller would by default be associated
with the url:

www.example.com/about/contact

Zend_Tool supports the ability to create an action using the
following syntax:

%>zf create action NAME CONTROLLER-NAME

Be sure to replace NAME with the name of your action, and
CONTROLLER-NAME with the name of the controller where you’d
like this action to be placed.

Creating a View
Each action is accompanied by a view, which contains the
HTML used to render the page associated with the action.
For instance, the view associated with the About controller’s
contact action would be named contact.phtml, and would
reside in the following directory:

application/views/scripts/about/

Zend_Tool does not support the creation of view skeletons,
likely because it’s probably more efficient to simply create
them using an IDE in the first place. However if you’ve already
used Zend_Tool to create the corresponding action, then the
default behavior is to create an associated view. See the Zend_
Tool documentation for more information.

Creating a Template
By default any rendered view will comprise the whole of
the Web page displayed within the browser. Because you’ll
probably want to wrap a template around the views which
contains elements such as a header and footer. Configure
your application to recognize the template by opening the
application/configs/application.ini file and adding the
following lines:

; Configure the layout template
resources.layout.layout = "layout"
resources.layout.layoutPath = APPLICATION_PATH "/views/layouts"

The application.ini configuration file is introduced in the later
section “The Configuration File”.

Next, create a file named layout.phtml and place it within
application/views/layouts. You’ll need to first create the layouts
directory.

The Application Structure
Based on the tasks we’ve carried out so far, the project’s
directory structure will look like this:

	

http://www.dzone.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.com

3
Getting Started with the Zend Framework

application/
 configs/
 application.ini
 controllers/
 ErrorController.php
 IndexController.php
 models/
 views/
 helpers/
 layouts/
 layout.phtml
 scripts/
 error/
 error.phtml
 index/
 index.phtml
 Bootstrap.php
library/
public/
 .htaccess
 index.php
tests/

Let’s take a moment to examine those directories and files
which haven’t already been introduced.

The configs directory contains the application’s configuration
file, application.ini. This file is introduced in the later section
“The Configuration File”.

The ErrorController.php file is automatically created when
creating a project using Zend_Tool. It handles any errors of
codes such as 404 and 500 which are generated when using the
application.

The views/helpers directory contains the application’s view
helpers. This feature is introduced in the later section “View
Helpers.”

The Bootstrap.php file is responsible for initializing the
resources used by your application.

The public directory contains files which are directly accessible
by the user, such as the application’s images, javascript files,
and CSS. You’re free to organize these files within the public
directory as you see fit, however I prefer to simply place
them within directories named images, javascript, and css,
respectively. The public directory also contains an .htaccess
file, which is responsible for rewriting all incoming requests
(save for anything stored in the public directory) to the index.
php file, which is the application’s front controller.

The tests directory contains any PHPUnit tests you’ve created
to test your application

SENDING VARIABLES TO THE VIEW

Because much of the data found in the application views will
likely be dynamically generated, you’ll need to regularly pass
variables from actions to views. Known as instance properties,
these variables are assigned within the action like this, where
NAME is the name of your variable:

$this->view->NAME

Within the view, you’ll be able to access this variable like this:

$this->NAME

VIEW HELPERS

Within your views you’ll often need to repeatedly manipulate
data in a specific way. For instance, if you were creating a
weight loss application, then you’ll regularly want to refer to a
user according to gender, such as:

He has lost 4.25 lbs this week.

Because the user could be male or female, you’ll need a way
to dynamically change the string to use He or She, accordingly.
Such decision making will likely occur throughout your
application, therefore rather than repeatedly use if or ternary
statements, you can create a view helper and use it like this:

<?= $this->Gender($user); ?> has lost 4.25 lbs. this week.

This Gender view helper is defined next:

class My_View_Helper_Gender extends
 Zend_View_Helper_Abstract
{
 public function Gender($user)
 {
 return $user->Gender == "m" ? "he" : "she";
 }
}

Save this helper to a file named Gender.php and store it within
the application/views/helpers directory.

THE CONFIGURATION FILE

The Zend Framework makes it easy to centrally manage your
application’s configuration data such as database connection
parameters, Web service API keys, and e-mail addresses.
Although it’s possible to manage this information from
data sources such as a database, the most commonplace
solution is via the default application.ini file, located within
the application’s configs directory. The file is organized using
the common INI format used by many applications, with each
configuration variable assignment performed like this:

email.support = "support@example.com"

Recognizing the need to often adjust configuration data based
on the phase of development (development, testing, staging,
and production are commonplace phase monikers), this file is
broken into four sections, with each representing a phase, like
so:

[production]
phpSettings.display_startup_errors = 0
email.support = "support@example.com"

[staging : production]
phpSettings.display_startup_errors = 1

[testing : production]
phpSettings.display_startup_errors = 1

[development : production]
email.support = "admin@example.com"
phpSettings.display_startup_errors = 1

Setting the Application Phase
To switch an application from one phase to another, open up
the project’s .htaccess file and set the APPLICATION_ENV
variable to the desired phase. By default APPLICATION_ENV is
set to development, as shown here:

http://www.dzone.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.comDZone, Inc. | www.dzone.com

4
Getting Started with the Zend Framework

CUSTOM ROUTING

Although the Zend Framework’s default routing behavior is
to deconstruct the URL path, identifying the controller and
action by the order of URL segments (for instance /about/
contact/ maps to the About controller’s contact method,
you’ll inevitably want to override this default behavior and
create your own custom routes. To do this you’ll invoke the
Zend_Controller_Router_Route() class, passing along the
URL pattern, and destination controller and action. These
custom routes are defined within a method typically named
_initRouter() (I say typically because this particular name is
optional although usual) found in the Bootstrap.php file. For
instance to override the destination of the /about/contact URL
path, instead invoking the Help controller’s support method,
you would add the following method to your
Bootstrap.php file:

FORMS PROCESSING

In the previous section you learned how to access URL
parameters using the $this->_request->getParam() method.
Accessing data passed via a Web form is similarly trivial using
the $this->_request->getPost() method. For instance, if a

USING THE init() METHOD

Because your actions will often call upon the same code to
carry out certain tasks, such as accessing the configuration file
as demonstrated in the previous example, it makes sense to
consolidate that code within a single location. You can do this
using a special init() method, typically placed at the top of a
controller class. Within this method you can place for instance
the code used to retrieve the configuration data:

public function init()
{
 $bootstrap = $this->getInvokeArg('bootstrap');
 $configArray = $bootstrap->getOptions();
 $this->config = new Zend_Config($configArray);
}

Notice the subtle difference between the snippet used to
retrieve the configuration variables and the previous snippet
shown in the previous section. When creating variables which
will be accessed throughout the controller, you’ll need to make
them instance properties via $this.

SetEnv APPLICATION_ENV development

Accessing Configuration Data
To access your configuration data within a controller, define the
following lines within the action:

$bootstrap = $this->getInvokeArg('bootstrap');
$configArray = $bootstrap->getOptions();
$config = new Zend_Config($configArray);

All of the configuration variables will be made available as
attributes via the $config object. For instance, you would
access a configuration variable named email.support like this:

$config->email->support

If you’re managing user-facing data such as corporate e-mail
addresses within the configuration file, then all you need to
do is assign the e-mail address to an instance property as
demonstrated in the section “Sending Variables to the View”:

$this->view->email->support = $this->config->email->support;

protected function _initRouter()
{
 $frontController = Zend_Controller_Front::getInstance();
 $router = $frontController->getRouter();

 // Product view route
 $route = new Zend_Controller_Router_Route(
 '/about/contact',
 array(
 'controller' => 'help',
 'action' => 'support'
)
);
 $router->addRoute('contactus', $route);
}

You can add as many other custom routes as you pleae to
this method, just be sure to define the route and then assign
the route a unique name using the addRoute() method, as
demonstrated above.

Passing Variables to the Action
It’s common practice to build pages dynamically based on the
values of parameters passed via the URL. You can perform this
task right out of the box using the Zend Framework simply by
stringing parameter names and their corresponding values
together following the controller and action, like this:

/account/confirm/key/7dugpl97812fjkl

You can then access the key parameter from within the confirm
action like this:

$key = $this->_request->getParam('key');

But what if you wanted to construct a URL which flouted this
convention? For instance, you might want to string together
parameters sans their keys in order to create a more compact
URL which looks like this:

/tutorials/php/zend_framework/

You can perform such tasks easily using custom routes. For
instance, to retrieve the php and zend framework parameters,
passing them to the tutorials controller’s index action, define
the following custom route:

$route = new Zend_Controller_Router_Route(
 '/tutorials/:parent_category/:child_category',
 array(
 'controller' => 'tutorials',
 'action' => 'categories'
)
);
$router->addRoute('confirm-account', $route);

You can then access the values represented by the :parent_
category and :child_category placeholders using the following
syntax:

$parent = $this->_request->getParam('parent_category');
$child = $this->_request->getParam('child_category');

http://www.dzone.com
http://www.dzone.com
http://refcardz.dzone.com

DZone, Inc. | www.dzone.comDZone, Inc. | www.dzone.com

5
Getting Started with the Zend Framework

The Zend_Db component provides developers with an object-
oriented interface which makes it trivially easy to retrieve
and manipulate database data. Supporting all of the major
database solutions, among them MySQL, Oracle, and SQLite,
you can begin taking advantage of Zend_Db with minimal
configuration, and gradually extend its capabilities to fit even
the most complex databasing requirements.

Connecting to the Database
To use Zend_Db you’ll need to configure your database
connection within the application.ini file using the following
variables:

resources.db.adapter = PDO_MYSQL
resources.db.params.dbname = "easyphpwebsites"
resources.db.params.username = "webuser"
resources.db.params.password = "secret"
resources.db.params.hostname = "www.easyphpwebsites.com"
resources.db.isDefaultTableAdapter = true

The purpose of each variable should be apparent save for
resources.db.adapter, which defines the specific supported
database adapter which you’ll be using, and resources.
db.isDefaultTableAdapter, which makes it possible to directly
call the adapter from within your application.

Remember that one of the great features of the application.ini
file is your ability to override parameters, so feel free to define
these parameters within each phase section in order to easily
connect to multiple databases.

Using Zend_Db_Table as a Concrete Class
The easiest way to use the Zend_Db component is by
instantiating the Zend_Db_Table class directly (this feature is
available as of version 1.9). This example will retrieve the name
of the country associated with the primary key 233:

$country = new Zend_Db_Table('countries');
echo $country->find(233)->current()->title;

Using Zend_Db_Table in this fashion is useful when you’re only
interested in carrying out the most straightforward database
operations, such as data retrieval, insertion, modification, and
deletion. For instance, to delete the row associated with the
primary key 233, you can call the update() method like this:

$country = new Zend_Db_Table('country');

$data = array (
 'title' => "United States of America"
);

$where = $country->getDefaultAdapter()->quoteInto('id = ?',
233);

$country->update($data, $where);

Creating a Model
With the database connection established, you can next create
a model which will serve as an object-oriented interface to
a specific table. For instance, to connect to a table named
country which contains information about the world’s countries,
you can define a class named Default_Model_Country which

TALKING TO THE DATABASE
form’s text field is assigned the name email, then this value can
be accessed via the form’s action destination in the following
fashion:

$email = $this->_request->getPost('email');

Of course, you’ll want to thoroughly validate any user-supplied
data before carrying out further actions. The Zend_Validate
component greatly reduces the time and code required to
perform these validations.

Validating Data with Zend_Validate
The Zend_Validate component contains more than two dozen
validation classes capable of vetting a wide variety of data,
including e-mail and IP addresses, URLs, credit cards, and
barcodes, in addition to determining whether a value falls
within a certain range, is of a certain length, or whether two
values are identical.

Further, it’s possible to chain validators together, allowing you
to conveniently consider multiple aspects of a particular value,
such as whether it’s both of a certain length and consisting of
alphanumeric characters. While these validators can be used
anywhere within your application controllers, you’ll most often
seen them used in conjunction with validating user input.
Consult the Zend_Validate documentation for a complete list
of available classes and capabilities.

Validating an E-mail Address
Validating an e-mail address is a notoriously difficult task,
accomplished using a fairly complex regular expression.
Thanks to Zend_Validate’s EmailAddress validator, carrying out
this task is trivial:

$email = "jason@example.com";
$validator = new Zend_Validate_Email_Address();
if ($validator->isValid($email)) {
 echo "Valid e-mail address!"
} else {
 echo "Invalid e-mail address!";
}

It’s possible to take the e-mail validation process one step
further by attempting to verify whether the address actually
exists. See the documentation to learn how both the domain
and MX records can be verified for existence.

Chaining Validators Together
Suppose you wanted to determine whether a username
consists of not only at least five characters, but also of only
alphanumeric characters (letters and numbers). You could
use Zend_Validate’s StringLength and Alnum validators
separately to examine both attributes, however Zend_Validate
also supports a concept known as validator chaining which
streamlines the code:

$username = "45!";
$validatorChain = new Zend_Validate();
$validatorChain->addValidator(new Zend_Validate_Alnum())
 ->addValidator(new Zend_Validate_StringLength(6);
if ($validatorChain->isValid($username)) {
 echo "Valid username!");
}

It’s possible to take the e-mail validation process one step
further by attempting to verify whether the address actually
exists. See the documentation to learn how both the domain
and MX records can be verified for existence.

http://www.dzone.com
http://www.dzone.com
http://refcardz.dzone.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building softwar

with every change committed to a project’s version contr

repository.

CI can be explained via patterns (i.e., a solution to a pr

in a particular context) and anti-patterns (i.e., inef

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

he pattern.
tion he term Continuous Integration

le this Refcar
s

Aldon ®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Commit all fi les to a version-control repository

Develop on a mainline to minimize merging and to manage

e within a system that utilizes multiple

ce code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label the build with unique name

Automate all activities to build software from source without

guration

e-installed tool dependencies to the bare minimum

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Centralize all dependent libraries

eate a single template fi le that all target environment

operties are based on

emote builds into different target environments

Perform a Private Build before committing changes to the

Repository

Perform an Integration Build periodically, continually, etc.

tomated feedback from CI server to development team

hey occur
d based on

brought to you by...

By Andy Harris

HTML BASICS

o
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares

common.) All are essenti
extension H

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anyb d

expected. Early HTML had very limited layo

Browser manufacturers added

web developers cresult

By Daniel Rubio

ABOUT CLOUD COMPUTING

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

Browse our collection of over 85 Free Cheat Sheets
Upcoming Refcardz
Java GUI Development
Adobe Catalyst
Flash Builder 4
Maven 3

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with the Zend Framework

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-84-4
ISBN-10: 1-934238-84-8

9 781934 238844

50795

extends the framework’s Zend_Db_Table_Abstract class in
order to be endowed with Zend_Db’s special features:

class Model_Country extends Zend_Db_Table_Abstract {
 protected $_name = 'country';
}

The $_name attribute can be used to override Zend_Db’s
presumption that the model and corresponding table name are
identical. For instance if the table name is actually countries
but you preferred to use singular form for model names, then
$_name can be used to rectify this discrepancy.

With the model defined, you’re free to add methods capable
of abstracting the data query and management processes
pertinent to the associated table in any way you please.

Creating Table Relations
Because your table data will likely be interrelated, Zend_Db
offers a great way to formally define these relations, and use
convenience methods to query for interrelated data. Suppose
you created a member table which includes a foreign key
named country_id. This key maps to the primary key of a
table named country. Because you’ll not only want to know
what country a member lives in, but also what members live

in a particular country, you’ll need to define the relationship
within both models. Within the member name you’ll define the
dependency like this:

protected $_referenceMap = array (
 'Country' => array (
 'columns' => array('country_id'),
 'refTableClass' => 'Model_Country'
)
);

Within the country model you’ll define the associated
relationship like this:

protected $_dependentTables = array('Model_Member');

With these relationships formalized, you’re able to easily
retrieve the member’s country using the findParentRow()
method. Likewise, you can retrieve an array containing
all members belonging to a specific country using the
findDependentRowset() method.

Zend_Db has grown into a quite complex and capable
component, perhaps worthy of its own RefCard at some
point in the future. What is introduced here is but a taste
of its capabilities. Be sure to consult the Zend Framework
documentation for a complete overview.

Easy PHP Websites with the Zend Framework
shows you how to build websites fast using
PHP and MySQL, two of the world’s most
popular Web development technologies. What’s
more, you’ll learn how to supercharge these
technologies by taking advantage of a powerful,
free web development solution known as the
Zend Framework, which helps developers build

websites with amazing speed and efficiency.

W. Jason Gilmore is founder of a W.J. Gilmore,
LLC, a publishing and consulting firm based out of
Columbus, Ohio. He’s the author of several books,
including the best-selling “Beginning PHP and
MySQL: From Novice to Professional”, “Easy PHP
Websites with the Zend Framework”, and “Easy
PayPal with PHP”. Jason is cofounder of the
CodeMash Conference, has over 100 articles to

his credit within prominent publications such as PHPBuilder.com,
Developer.com, and Linux Magazine.

BUY NOW
books.dzone.com/books/zendframework

http://refcardz.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://refcardz.dzone.com
http://books.dzone.com/books/zendframework

