

DZone, Inc. | www.dzone.com

By Curt Hibbs, Steve Jewett, and Mike Sullivan

ABOUT LEAN SOFTWARE DEVELOPMENT

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 L

e
an

 S
o

ft
w

ar
e

 D
e

ve
lo

p
m

e
n

t

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#93

Getting Started with
Lean Software Development

CONTENTS INCLUDE:
n	 About Lean Software Development
n	 Getting Started
n	 Zero Practices
n	 Daily Standup
n	 Automated Testing
n	 Continuous Integration and more...

Lean Software Development is an outgrowth of the larger Lean
movement that includes areas such as manufacturing, supply
chain management, product development, and back-office
operations. Its goal is the same: deliver value to the customer
more quickly by eliminating waste and improving quality.
Though software development differs from the manufacturing
context in which Lean was born, it draws on many of the same
principles.

Seven Principles of Lean Software Development
Lean Software Development embodies seven principles,
originally described in the book Implementing Lean Software
Development: From Concept to Cash1, by Mary and Tom
Poppendieck. Each of these seven principles contributes to the
“leaning out” of a software development process.

Eliminate Waste
Waste is anything that does not contribute value to the
final product, including inefficient processes, unnecessary
documentation, and features that won’t be used. Eliminating
waste is the guiding principle in Lean Software Development.

Build Quality In
Building quality into a product means preventing defects,
rather than using post-implementation integration and testing
to detect them after the fact.

Create Knowledge
The knowledge necessary to develop a project, including
requirements, architecture, and technologies, is seldom
known or understood completely at project startup. Creating
knowledge and recording it over the course of the project
ensures the final product is in line with customer expectations.

Defer Commitment
Making irreversible decisions at the last reasonable moment
allows time for the creation of more knowledge, which
results in better decisions. Deferring commitment is positive
procrastination.

Deliver Fast
Delivering fast puts the product in front of the customer
quickly so they can provide feedback. Fast delivery is
accomplished using short iterations, which produce software
in small increments by focusing on a limited number of the
highest priority requirements.

Respect People
Respecting people means giving the development team’s most
important resource, its members, freedom to find the best way

brought to you by...

to accomplish a task, recognizing their efforts, and standing by
them when those efforts are unsuccessful.

Optimize the Whole
Optimizing the whole development process generates better
results than optimizing local processes in isolation, which is
usually done the expense of other local processes.

Lean vs. Agile
Comparing Lean and Agile software development reveals
they share many characteristics, including the quick delivery
of value to the customer, but they differ in two significant
ways: scope and focus. The narrow scope of Agile addresses
the development of software and focuses on adaptability to
deliver quickly. Lean looks at the bigger picture, the context
in which development occurs, and delivers value quickly by
focusing on the elimination of waste. As it turns out, they are
complementary, and real world processes often draw
from both.

GETTING STARTED

Newcomers to Lean Software Development sometimes have
trouble implementing a Lean process. The Lean principles
don’t describe an “out-of-the-box” solution, so one approach
is to start with an Agile methodology. However, a number
of methodologies exist, and choosing the right one can be
difficult.

One Step at a Time
All is not lost. What follows is a set of inter-related practices
organized in a step-by-step fashion to allow projects to
implement Lean Software Development one step at a time.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://pm.versionone.com/TeamEdition.html
http://pm.versionone.com/TeamEdition.html

DZone, Inc. | www.dzone.com

2
Getting Started with Lean Software Development

The following practices can stand-alone, and implementing
any of them will have a positive effect on productivity. Lean
Software Development relies on prioritization, so the practices
are prioritized to generate the highest return on investment.
While implementing any one practice will help lean out a
process, doing them in order will return the most
“bang for the buck.”

The list of six practices is preceded by two prerequisites, or
“zero practices”, every software project should be doing,
whether Lean, Agile or something more traditional. If your
project doesn’t do these things, this is the best place to start.

ZERO PRACTICES

Source Code Management and Scripted Builds are
prerequisites for other practices outlined here. They are
referred to as zero practices because they need to be in place
before taking the first step toward Lean Software Development.

Source Code Management
Source code management (SCM) is a shared repository for all
artifacts needed to build the project from scratch, including
source code, build scripts, and tests. SCM maintains the latest
source code so developers and build systems have
up-to-date code.

Figure 1: Centralized Repository

Source code management is the first practice described
because it is the foundation for a practical development
environment, and it should be implemented before going any
further.

 • Select an appropriate SCM system. Subversion is a
 popular open source option. Git is a newer distributed
 SCM system useful for large projects and
 distributed teams.

 • Put everything needed to build the product from scratch
 into the SCM system so critical knowledge isn’t held only
 by specific individuals.

Scripted Builds
Scripted builds automate a build process by executing a set

of commands (a script) that creates the final product from the
source code stored in SCM. Scripts may be simple command
files, make files, or complex builds within a tool such as
Maven or Ant.

Scripted builds eliminate the potential errors of manual builds
by executing the same way each time. They complete the basic
development cycle of making changes, updating the SCM
repository, and rebuilding to verify there are no errors.
Select an appropriate build tool for your project. Integrated
development environments like Visual Studio or Eclipse have
build managers or integrate with 3rd party build managers.
Create a script that builds the product from scratch, starting
with source code from SCM.

Figure 2: Zero Practices

Lean Principles
 • Create Knowledge: SCM consolidates project knowledge
 in a single place.

 • Eliminate Waste: Manual work is eliminated by
 automating builds.

 • Build Quality In: Automating builds eliminates a source
 of errors.

DAILY STANDUP

Daily standup meetings allow each team member to provide
status and point out problems or issues. The meetings are
short and not intended to resolve problems, rather they
serve to make all team members aware of the state of the
development effort.

Borrowing from the Scrum methodology, standups are
conducted by having each member of the team answer three
questions:

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/TeamEdition.html

DZone, Inc. | www.dzone.com

3
Getting Started with Lean Software Development

What did I do yesterday?

What will I do today?

What problems do I have?

Effective daily standups result from adhering to several
simple rules:

 • Require all team members to attend. Anyone who cannot
 attend must submit their status via a proxy (another team
 member, email, etc.).

 • Keep the meeting short, typically less than 15 minutes.
 Time-boxing the meeting keeps the focus on the
 three questions.

 • Hold the meeting in the same place at the same time,
 everytime.

 • Avoid long discussions. Issues needing further discussion
 are addressed outside the meeting so only the required
 team members are impacted.

Hot
Tip

The Japanese word tsune roughly translated means “daily
habits.” It refers to things such as taking a shower that are
so ingrained into a daily routine that skipping them leaves
one feeling that something is missing2. Make the daily
standup part of the team’s tsune so that a day without a
standup feels incomplete.

Lean Principles
 • Respect People: Standups foster a team-oriented
 attitude; team members know what other members are
 doing and can get or give help as needed to move the
 project forward.

 • Create Knowledge: Sharing information regularly creates
 group knowledge from individual knowledge.

AUTOMATED TESTING

Automated testing is the execution of tests using a single
command. A test framework injects pre-defined inputs,
validates outputs against expected results, and reports the
pass/fail status of the tests without the intervention of a human
tester. Automated testing ensures tests are run the same way
every time and are not subject to the errors and variations
introduced by testers.

While automated testing can be applied to all types of
testing from unit and integration tests to user acceptance and
performance/load tests, unit and integration testing is the best
place to start.

 • Identify an appropriate test framework for the language in
 use. JUnit (for Java) and NUnit (for Microsoft .NET
 languages) are common frameworks.

 • Require all new code modules to have a unit test suite
 before being included in the build.

 • Retrofit unit test suites to existing legacy code only
 when the code is modified (writing unit tests for code
 which is already written and functional usually is not
 cost effective).

Hot
Tip

Developing automated tests alongside production code
may be a paradigm shift for many developers. One way
to help developers adjust is to define testing standards
calling out both what to test and how to do it. Adherence to
the standards will create a culture where automated tests
are the norm and will pay off in higher quality software.

Figure 3: Automated Testing

Test Execution
Each developer runs unit tests on individual code modules
prior to adding them to the source code repository, ensuring
all code within the repository is functional. An automated build
runs both unit and integration tests to ensure changes do not
introduce errors. The next practice, continuous integration, will
make use of the build scripts and test suites to test the entire
system automatically each time changes are checked into the
repository.

Lean Principles
 • Build Quality In: Automated tests executed regularly and
 in a consistent manner prevent defects.

 • Eliminate Waste: Defects detected early are easier to
 correct and don’t propagate.

 • Create Knowledge: Tests are an effective way to
 document how the code functions.

CONTINUOUS INTEGRATION

Continuous integration (CI) is the frequent integration of small
changes during implementation. It seeks to reduce, or even
eliminate, the long, drawn-out integration phase traditionally
following implementation. Integrating small changes doesn’t

 • Develop integration tests by combining code modules
 and testing the modules together.

 • Use stubs and mock objects to stand in for code which
 has not yet been developed.

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/TeamEdition.html

DZone, Inc. | www.dzone.com

4
Getting Started with Lean Software Development

Hot
Tip

The “big design up front”, or BDUF, approach to design
can lead to overdesign and unused code. The opposite
approach, sometimes referred to as “you ain’t gonna
need it” or YAGNI, creates only what is needed at the
moment, but it can lead to brittle designs and inefficient
code. A compromise that creates only what currently is
necessary, but tempers that with some thought for the
future, is a better approach. Scott Bain’s book Emergent
Design2 describes such an approach.

just spread the effort out over the whole cycle, it reduces the
amount of integration time because small changes are easier to
integrate and aid debugging by isolating defects to small areas
of code.

CI systems use a source code repository, scripted builds,
and automated tests to retrieve source code, build software,
execute tests, and report results each time a change is made.

 • Use a dedicated build machine to host the CI system.
 Refer to the Continuous Integration: Servers and Tools
 Refcard (#87) for details on setting up a CI system.

 • Check code changes into the repository a minimum of
 once a day (per developer); once an hour or more is
 even better.

 • Immediately address any failures in the build. Fixing the
 build takes precedence over further implementation.

Hot
Tip

While the use of a dedicated computer, or build machine, to
host the CI system may seem obvious for a large project, it
provides advantages on small projects as well:

 • Dedicated machines don’t compete for resources,
 so builds are quicker and the results get back to the
 developers sooner.

 • Dedicated machines have a stable, well-known
 configuration. Builds don’t fail because a new version
 of a library was loaded or the runtime environment
 was changed.

A CI system can also check coding standards, analyze code
coverage, create documentation, create deployment packages,
and deploy the packages. Anything that can be automated can
be included in a CI system.

Figure 4: Continuous Integration

Lean Principles
 • Build Quality In: Continuous build and test ensures code
 is always functional.

 • Eliminate Waste: Frequent, small integrations are more
 efficient than an extended integration phase.

LESS CODE

Less code is not about writing less software, it’s about
implementing required functionality with a minimum amount

of code. Large code bases mean more implementation,
integration, and debugging time, as well as higher long term
maintenance costs. All of these are non-value added work (i.e.,
waste) when the code base contains unneeded or
inefficient code.

All aspects of software development can affect the code base
size. Requirements analysis resulting in features with little
likelihood of use and overly generic, all-encompassing designs
generate extra code. Scope creep and unnecessary features
increase the amount of code. Even testing can generate
unnecessary code if the code under test is itself unnecessary.

Minimizing code base size requires two actions: identify
and eliminate unnecessary code, and write efficient code.
Minimizing code base size is not unlike a fitness program: diet
to eliminate the excess, and exercise to shape up what’s left.

Eliminate Unnecessary Code
Eliminating unnecessary code means identifying the code, or
the forces that create it, and removing it.

 • Adopt a fierce, minimalist approach. Every bit of code
 added to the code base must be justifiable. Remove
 excessive requirements, simplify designs, and eliminate
 scope creep.

 • Reuse code and employ libraries to reduce the amount of
 new code that must be written.

 • Prioritize requirements so developers implement
 important features first. As customers adjust the priorities
 over the course of development, they drive development
 of only useful features; unused features never get
 implemented.

 • Develop only for the current iteration. Working too
 far ahead risks doing work that will be thrown away as
 requirements and design change over time.

Improve Code Efficiency
Code efficiency doesn’t refer to creating small, compact code
by using arcane tricks and shortcuts. In fact, the opposite is
true; efficient code uses coding standards and best practices.

 • Use coding standards to write readable and
 understandable code. Use best practices and proven
 techniques that are well understood by other developers.

 • Develop flexible, extensible code. Design and implement
 code with design patterns, refactoring, and
 emergent design.

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/TeamEdition.html

DZone, Inc. | www.dzone.com

5
Getting Started with Lean Software Development

Hot
Tip

Teams struggling to complete iterations successfully
are often tempted to lengthen their iterations; however,
longer iterations tend to hide problems. Instead, struggling
teams should reduce the iteration length, which reduces
the scope, focuses the team on a smaller goal, and brings
impediments to the surface more quickly so they can
be resolved.

Figure 5: Course Corrections

Using Short Iterations
Several techniques aid in the implementation of a process
using short iterations:

 • Work requirements in priority order. High priority
 requirements typically are well-defined, easiest to
 implement, and provide the most functionality in a short
 period of time.

 • Define a non-negotiable end date for the iteration;
 sacrifice functionality to keep the team on schedule. End
 dates focus the team on delivering the required
 functionality. Even if some features are not completed,
 delivering those that are ensures customers get new
 functionality on a regular basis.

 • Mark the end of the iteration with a demo and an official
 handoff to the customer. Demos foster pride in the
 product by allowing the team to show off its work.

SHORT ITERATIONS

Iterations are complete development cycles resulting in
the release of functional software. Traditional development
methodologies often have iterations of six months to a year,
but Lean Software Development uses much shorter iterations,
typically 2 to 4 weeks. Short iterations generate customer
feedback, and more feedback means more chances to adjust
the course of development.

Feedback and Course Corrections
Feedback from the customer is the best way to discover
what’s valuable to them. Each delivery of new functionality
creates a new opportunity for feedback, which in turn drives
course corrections due to clarification of the customer’s
intent or actual changes to the requirements. Short iterations
produce more feedback opportunities and allow more course
corrections, so developers can hone in on what the
customer wants.

Lean Principles
 • Eliminate Waste: Frequent, small integrations are more
 efficient than an extended integration phase.

 • Deliver Fast: New, functional software is delivered to the
 customer in closely-spaced intervals.

CUSTOMER PARTICIPATION

Customer participation in traditional projects typically is
limited to requirements specification at the beginning of the
project and acceptance testing at the end. Collaboration
between customers and developers in the intervening time is
limited, typically consisting of status reports and the occasional
design review.

Lean Software Development approaches customer
participation as an on-going activity spanning the entire
development effort. Customers write requirements and
developers produce functional software from those
requirements. Customers provide feedback on the software
and developers act on that feedback, ensuring developers are
producing what the customer really wants.

Involve the Customer
Key to establishing effective customer collaboration is
involving the customer in the entire development process,
not just at the beginning and end. Engaging the customer,
reporting status, and providing a feedback path all help keep
the customer involved.

 • Engage the customer by having them write and prioritize
 the requirements. Customers get a sense of ownership,
 and they can direct the course of development.

 • Have the customers write the acceptance tests (or at least
 specify their content), and, if possible, run the tests as
 well. Involvement in testing the product allows customers
 to specify exactly what it means to satisfy a requirement.

 • Provide useful, easily-accessible status. For example, a
 list of the requirements in work and the status of each.
 Include status on problems affecting development to
 avoid surprises.

 • Provide access to the product so the customer can see for
 themselves how it works, and provide a simple, direct
 feedback path so customers can input feedback easily.

Lean Principles
 • Eliminate Waste: Frequent, small integrations are more
 efficient than an extended integration phase.

 • Build Quality In: Automated tests executed regularly and
 in a consistent manner prevent defects.

 • Deliver the product to the customer, whether it’s a
 ready-for-deployment application or an interim release.
 Getting the product in the customer’s hands for in-depth
 evaluation is the best way to generate feedback.

http://www.dzone.com
http://www.refcardz.com
http://pm.versionone.com/TeamEdition.html

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon ®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML pr

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar

Browse our collection of over 90 Free Cheat Sheets
Upcoming Refcardz
Java GUI Development
Adobe Flash Catalyst
Network Security
Maven 3

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Lean Software Development

RECOMMENDED BOOKABOUT THE AUTHORS

ISBN-13: 978-1-934238-74-5
ISBN-10: 1-934238-74-0

9 781934 238745

50795

Collaborate
Collaborating directly with the customer is necessary for
developers to refine the requirements and understand exactly
what the customer wants.

 • Designate a customer representative. The representative
 writes and/or collects requirements and prioritizes them.
 The representative clarifies requirements for developers.

 • Schedule face-to-face time with the customer. At the very
 least, include a demo at the end of each iteration.

Hot
Tip

Actual customers make the best customer
representatives, but when customer representatives are
not available a customer proxy can fill the role. A customer
proxy should be from the development team’s organization
and must have a good understanding of the customer’s
needs and business environment.

Lean Principles
 • Create Knowledge: Through collaboration, requirements
 are discovered and refined over time.

 • Defer Commitment: Involving customers throughout the
 process eliminates the need to make decisions up front.

SUMMARY

Most discussions of Lean Software Development don’t define
specific practices for implementing the process, and the large
number of Agile methodologies to choose from can leave
newcomers confused and uncertain where to start. The specific
practices outlined here provide a step-by-step approach to
implementing a Lean Software Development process. Adopt
one, several, or all the practices and take your first step into
the world of Lean Software Development.

References
1Implementing Lean Software Development: From Concept to Cash,
 Poppendieck/Poppendieck, Addison-Wesley Professional, 2006

2Moving Toward Stillness, Lowry, Tuttle Publishing, 2000.

3Emergent Design: The Evolutionary Nature of Professional Software
 Development, Bain, Addison-Wesley Professional, 2008

Some of the concepts and material in this Refcard were
adapted from The Art of Lean Software Development, Hibbs/
Jewett/Sullivan, O’Reilly Media, 2009.

Curt Hibbs co-leads the Boeing team responsible for the adoption of Lean and

Agile software engineering practices across Boeing’s Defense, Space & Security

business unit. He has been a software engineer for 30+ years, and during that time

he has done just about everything related to developing software products, from

working for WordStar, Hewlett Packard, the C.I.A, and more, to being the CTO of

several startups. He has worked for Boeing since 2003.

	

Mike Sullivan has over 6 years of experience teaching at the university level, and

has spent the last 5+ years working with software teams in small companies and

large corporations to drive valuable solutions and improve team dynamics. He is

currently working in a small research team within a large corporation, implementing

Lean techniques to improve the software his team delivers.

Steve Jewett is a software developer with the Boeing Company, where he is

involved in the development of cognitive decision support systems. Over a 25 year

career he has developed software for automated test equipment, weapon/aircraft

integration, embedded systems and desktop and web applications. He currently

leads an agile software development team and works to promote Lean-Agile soft-

ware development at Boeing.

This succinct book explains how you can apply the

practices of Lean software development to dramatically

increase productivity and quality. The Art of Lean

Software Development is ideal for busy people who

want to improve the development process but can’t

afford the disruption of a sudden and complete

transformation. The Lean approach has been yielding

dramatic results for decades, and with this book,

you can make incremental changes that will produce

immediate benefits.

BUY NOW
books.dzone.com/books/leansd

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://pm.versionone.com/TeamEdition.html
http://books.dzone.com/books/leansd

