

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

iPad

Collect, Manage and
Share All the Answers
Your Team Needs

> Q&A Software for Enterprise Knowledge Sharing

> Mobile-friendly Responsive Design

> Easy to Customize with Themes and Plugins

> Integrates with Your SSO and IT Infrastructure

> Choose Cloud-based or On-premise Hosting

The Enterprise Q&A Platform

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/landingpage
http://answerhub.com/request-demo
http://answerhub.com/pricing
http://answerhub.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#94
G

et
ti

n
g

 S
ta

rt
ed

 w
it

h
 G

it

By: Jordan McCullough

WHY GET GIT?

Since its inception in 2005, Git continues to grow as the de facto standard
for version control in both local and distributed environments. With its
beginnings rooted in the open source community, and Linus Torvald’s
original authorship, Git’s many features encompass social-driven
collaboration that exceeds that of other version control systems.

Git is supported across common platforms and provides a wide-range of
uses, from simple change-tracking to sophisticated collaboration, which
are features attainable for every level of user and objective.

DISTRIBUTED VERSION CONTROL

What sets Git apart from more traditional, centralized version controls
systems is its work-local, commit-often, publish-when-you-can
methodology. With no requirement for a server, Git is liberated from any
network, always retains full history on the user’s machine, and can quickly
be setup to publish and act as a Distributed Version Control System
(DVCS).

The simplicity of creating a new Git repository, tracking history, and sharing
via a service such as GitHub paves the way for limitless content version
control.

GETTING STARTED

Installing Git
Git has a light footprint. For most platforms, you can copy the binaries
to a folder on the executable search $PATH. Git is primarily written in C,
which means there is a unique distribution or installer for each supported
platform.

Check the version using the following command to verify that Git is
installed and successfully operational:

git --version

Hot
Tip

The canonical (and official) reference for Git installers can be found
at http://git-scm.com/download

Establishing User Identity
Once you have a distribution of Git installed for your platform, identify
yourself with a username and email address. This is strictly to credit your
efforts on commits and should be done for each machine on which you’ll
be using Git.

git config --global user.name “Jordan McCullough”
git config --global user.email “jmccullough@github.com”
git config --global color.ui “auto”

Hot
Tip

Git does not directly support repository authentication or
authorization. It delegates this by way of the protocol (SSH or
HTTPS) or operating system (file system permissions) serving the
repository.

These commands store your preferences in a file named .gitconfig inside
your home directory (~ on UNIX and Mac, and %USERPROFILE% on
Windows).

GITHUB

With the advent of Git as the industry-standard DVCS, a remarkable
solution to maximizing its social nature arrived in the form of GitHub.com.

GitHub.com makes storing Git repositories and sharing code simple. Once
published to GitHub, the process of sharing Git repositories, facilitating
code review, and contributing content changes becomes simpler than ever.

Hot
Tip

GitHub promotes open source by providing free accounts for public-
access repositories. Should a repository require private-only access,
private account support is available for a nominal signup fee. Both
account types are available at https://github.com/signup/

CREATING A REPO

A Git repo can be created locally and independent of any network
connection, or via GitHub’s user interface.

Locally
From a command prompt, change directories to an empty folder or an
existing project directory that you want to put under version control.
Then, initialize the directory as a Git repository by typing the following
commands:

git init
git add .
git commit –m “The first commit”

The first command, init, builds a .git directory that contains all the
metadata and repository history. Git uniquely stores everything in just a

CONTENTS INCLUDE:

❱	Why Get Git?

❱	Create a Repo

❱	Typcial Local Workflow

❱	Viewing

❱	Branches

❱	The Remote Workflow... and More!

Getting Started with Git

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://git-scm.com/download
http://answerhub.com/
mailto:info@cloudbees.com

2 Getting Started with Git

DZone, Inc. | www.dzone.com

single directory at the top of the project.
Next, the add command with the dot wildcard instructs Git to begin tracking
all files within and beneath the current directory.

Lastly, the commit function creates the permanent history of all files, with
the -m option supplying a message alongside the history marker.

Via GitHub
Once signed into GitHub, click the “Create a new” repo button to initialize a
repository within your GitHub account. Supply the Repository name field,
and click “Create repository”.

	

Obtain the new GitHub repository locally by performing a clone of the path
provided from the GitHub repo page.

git clone git@github.com:githubtrainer/hellogitworld.git

The clone command performs several subtasks under the hood. Thus, all
GitHub files are copied to your local machine with all Git commit history.

Hot
Tip

Cloning from GitHub establishes a local repository that initially
mirrors the one on GitHub. The new local repo will also be
preconfigured with Git remote “bookmark” for synchronizing code
between local and GitHub repositories.

TYPICAL LOCAL WORKFLOW

Editing
Once you’ve cloned or initialized a new Git project, begin changing files
as needed for your current assignment. There is no locking of files
or a traditional VCS checkout concept. Simply begin editing files in a
progression toward a committable state.

Adding (Staging)
When new or modified files are ready for the next commit, they must first
be staged with the add command. Files can be staged one by one, by folder
name, or by wildcard pattern.

git add index.html
git add javascript/
git add *.js

The -i option activates interactive add mode, a step-by-step set of prompts
that assist in preparing the staging area for the next commit.

git add -i

The -p option is a shortcut for activation of the patch sub-mode of the
interactive prompt, which allows for precise pieces within a file to be
selected for staging.

git add -p

Committing
Once all desired files are added and staged, a commit command
transactionally saves the pending additions to the local repository. The
default text $EDITOR will be opened for entry of the commit message.

git commit

To supply the commit message directly at the command prompt:

git commit –m ”Your commit message”

If you made a mistake in the message for your last commit, you can edit
the text (while leaving the changed file(s) untouched) with:

git commit --amend

Moving
If you need to move a file, Git can detect your manual relocation of the file
and will show it as a pending “move.” However, it is often more prudent
to use the Git-specific command to relocate a file and track its new
destination.

git mv originalfile.txt newsubdir/newfilename.txt

Removing
If you wish to expunge a file from the current state of the branch, simply
tell Git to remove it. It will be put in a pending deletion state and can be
confirmed and completed by the next commit.

git rm filetoremove.txt

Aborting
If you want to abort all current, uncommitted changes and restore all files
to the last committed state, a reset with this specific option will accomplish
this:

git reset --hard

Resetting with the --hard option recursively discards all currently
uncommitted (unstaged or uncommitted staged) changes. Any files with
changes will be overwritten to that of the last commit.

A more targeted means of restoring just one file’s changes is to use the
checkout command.

git checkout modifiedfile.txt

VIEWING

Daily work calls for strong support of viewing current and historical facts
about your repository, often from different points of view. This includes the
state of a current working directory, the changes made compared to past
commit history, and commit history in its entirety.

Status
To check the current status of a project’s local directories and files , such as
modified, new, deleted, or untracked, invoke the following status command:

git status

	

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Getting Started with Git

DZone, Inc. | www.dzone.com

Diff
Git offers a patch-style view of the difference between the currently edited
and committed files. A diff compares the patches between any two points
in history or changes.

git diff
git diff --staged
git diff HEAD

	

git diff outputs a comparison of changes in the uncommitted and unstaged
file changes in the working directory to that in the staging area. Should the
staging area be empty, the comparison passes through to the most recent
commit.

git diff--staged compares any staged (added) files to the most recent
commit.

Lastly, git diff HEAD is an efficient means of circumventing any comparison
of working directory changes to staged ones and directly compared
modified files to the most recent commit.

Log
The full list of changes since the initialization of the repository; since a
certain date, or a limited set from the most recent commit, is right at your
fingertips, even when disconnected from all networks:

git log
git log -3
git log --since=yesterday

	

Blame
When one is trying to discover why and when a certain line was added, cut
to the chase and have Git annotate each line of a source file with the name
and date it came into existence:

git blame <filename>

BRANCHING

Branching in Git appears much the same as it does in other version control
systems, but the difference lies in the fact that Git branches can be targeted
to exist only locally, or be shared with (pushed to) the rest of the team.
The concept of inexpensive local branches increases the frequency in
which developers use branching, thus opening it up to use for quick private
experiments that may be discarded or merged onto a well-known branch
depending on their success.

git branch <new branch name> <from branch>
git branch <new branch name>

Choosing a Branch
Checking out, or switching to, a branch is as simple as providing its name:

git checkout <branch name>

Local and remote git branches are checked out using the same command
in a radical change of operation for users coming from other systems like
Subversion. Remote branches are read-only until “tracked” and copied to a
local branch. Local branches are where new work is performed and code is
committed.

git branch <new branch name> <from branch>
git checkout <new branch name>

or alternatively, in a combined command:

git checkout -b <new branch name> <from branch>

Listing Branches
To list the complete set of current local and remote branches known to Git,
use the following command::

git branch -a

	

The local branches typically have simple names like master and
experiment. Local branches are shown in white by Git’s default syntax
highlighting. Remote branches are prefixed by “remotes” and are shown in
red.

Merging
Like other popular version control systems, Git allows you to merge one or
more branches into the current branch.

git merge <branch one>
git merge <branch one> <branch two>

If any conflicts are encountered, with Git, a notification message is
displayed and the files are internally marked with >>>>>>>>> and <<<<<<<<
around the conflicting portion of the file contents. Once these conflicts are
manually resolved, issue a git add <filename> for the resolved file, then
commit in the usual manner.

Rebase
Rebasing is the rewinding of existing commits on a branch with the intent
of moving the branch start point forward, then replaying the rewound
commits. This allows developers to test their branch changes safely in
isolation on their private branch just as if they were made on top of the
mainline code, including any recent mainline bug fixes.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Getting Started with Git

DZone, Inc. | www.dzone.com

git rebase <source branch name>
git rebase <source branch name> <destination branch name>

COMMIT HASHES & SHORTHAND

Rather than a sequential revision ID, Git marks each commit with a SHA–1
hash that is unique to the user committing the changes, the folders
containing changed files, and the modified files comprising the changeset.
This allows commits to be made independent of any central coordinating
server.

A full SHA–1 hash is 40 hex characters, such as
64de179becc3ed324daab72f7238df1404723672

To efficiently navigate the history of hashes, several symbolic shorthand
notations can be used as listed in the table below. Additionally, any
unique sub-portion of the hash can be used. Git will let you know when
the characters supplied are not enough to be unique. In most cases, 4–5
characters are sufficient.

Shorthand Definition

HEAD Last commit

HEAD^ One commit ago

HEAD^^ Two commits ago

HEAD~1 One commit ago

HEAD~3 Three commits ago

Git shorthand can be used in combination with all Git commands that
accept a specific commit or range of commits. Examples include:

git diff HEAD~3
git checkout HEAD^^ git merge RELEASE–1.0

ADVANCED COMMANDS

In addition to the core Git workflow, many additional commands offer both
shortcuts and productivity improvements for day-to-day development
tasks.

Stashing
Git offers a useful feature for those times when file modifications are in
an incomplete state and not yet ready for a commit. To temporarily return
to the last commit, yet retain any uncommited changes, using stash on
modified files places all uncommitted changes onto a stack.

git stash

When you are ready to write the stashed changes back into the working
copy of the files, simply pop them back off the stack.

git stash pop

Hot
Tip

Stashing will only set aside modified, tracked files. New, untracked
files will remain in untouched and in the working directory.

Tagging
Git provides tagging to mark a specific commit in your timeline of changes,
and serve as a useful identifier in history. A tag can be created for any
commit in history by passing the commit hash. If no commit hash is
provided, the most recent commit (i.e. HEAD) will be used by default.

git tag <tag name>
git tag <tag name> <commithash>

To list all tags of the current Git repository:

git tag

THE REMOTE WORKFLOW

Working with remote repositories is one of the primary features of Git. You
can push or pull, depending on your desired workflow with colleagues and
based on the repository operating system file and protocol permissions.
Git repositories are most typically shared via SSH, though a lightweight
daemon is also provided.

Hot
Tip

Git repository sharing via the simple daemon is introduced at http://
www.kernel.org/pub/software/scm/git/docs/git-daemon.html Sharing
over SSH and Gitosis is documented in the Git Community Book at
http://book.git-scm.com/4_setting_up_a_private_repository.html

Remotes
While full URLs to other repositories can be specified as a source or
destination for the majority of Git commands, this quickly becomes
unwieldy and a shorthand solution is called for. These bookmarks of other
repository locations are called remotes.

The full addresses of your configured remotes can be viewed with:

git remote -v

If a local repository was cloned from another Git source, an “origin” remote
will already be present in the list returned typing this command:

git remote -v

To add a new remote, type:

git remote add <remote name> <remote address>

Push
Pushing with Git is the transmission of local changes to a colleague or
community repository with sufficiently open permissions to allow you to
write to it.

git push <remote name> <branch name>
git push <remote name> <local branch name:remote branch name>

The push command performs a publishing action, and sends the Git
commit history of one or more branches to an upstream Git repository.
Pushed branched are then accessible to anyone with access to this remote
Git repository.

Pull
The action of a Git pull consists of the combination of retrieving (fetching)
a remote repository’s contents and automatically merging the file changes
and commit history into the current branch.

Fetch
An alternative to pulling content, which automatically merges inbound
changes with your local history, is to retrieve the remote (upstream)
changes and store the content conveniently in a cache for evaluation or
selective merging.

git fetch <remotename>
git merge <remotename/branchname>

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Getting Started with Git

DZone, Inc. | www.dzone.com

EXPLORING GITHUB

After successfully cloning, committing, and pushing change history to your
upstream remote GitHub repository, you are ready to begin exploring the
social coding features that uniquely set Git and GitHub apart from other
distributed version control systems.

Forking a Repo
Whether to modify a teammate’s work or an open source project, GitHub
forking provides a full copy of a repository from the original and places it
into your own account. This supplies full Git commit history, full read/write
privileges, and means for modifying and contributing changes back to the
original author.

Fork any accessible GitHub repository by clicking the “Fork” button atop the
repository.

	

Hot
Tip

All forked repositories show the original repository name under the
repository page heading.

Pull Request
Repository forks always maintain an association with their original heritage,
thus simplifying contributions back to the original code by means of a pull
request. GitHub’s pull requests permit forked repository owners to offer
project changes, to the original repository authors by means of commit
history.

To create a pull request, browse to the desired forked repository, choose a
branch with the branch selector, and then click the “Pull Request” button.
Dropdowns specifying the destination repository (parent repo) and branch,
as well as the contributing repository (fork repo) and feature branch control
the contents and destination of the request.

Hot
Tip

Pull Requests can be applied against the same repository, thus
providing issue-tracking and traceability of merges for both the
project owner and team members.

The repository owner receiving the pull request will be notified of the
inbound change and will have the option of merging, commenting, or
closing the pull request. This allows the repo owner to manage and
incorporate contributions.

	

GUIS

Standard Git distributions provide two user interfaces written in Tcl/Tk,
which provides a quick means of making commits and reviewing history in
a unified view.

Git Gui offers a panel by which to select files to add, review a list of staged
changes, and complete the commit with a message.

git gui

Gitk offers a diagram visualization of the project’s commit history and
branching. They both assume that the current working directory is the
repository you wish to inspect.

gitk --all

	
Hot
Tip

Git is incredibly powerful, but its openness can be scary for
enterprise-level projects. To maximize code quality and minimize
potentially harmful effects of DVCS, check out Refcard #179: Git
Patterns and Anti-Patterns: Scaling from Workgroup to Enterprise
(forthcoming).

SUBVERSION & GIT

Git is a highly interoperable version control system, from its composition
of small executables up through the ready-to-use read and write support to
remote Subversion repositories, all while providing the majority of benefits
of Git on the local copy of the repository.

Cloning
To retrieve a local working copy of a Subversion repository that uses
the traditional structure (trunk, tags, branches) and convert it into a Git
repository, use a syntax very similar to that for a traditional Git repository.

git svn clone --stdlayout <svn-repo-url>

Note the progress messages during the operation. Clones of large
Subversion repositories may take hours to complete.

Pushing Git Commits to Subversion
Git commits can be pushed transactionally, one for one, to the cloned
Subversion repository. When the Git commits are at good point for
publishing to the Subversion repository, type:

git svn dcommit

Retrieving Subversion Changes
When changes are made in Subversion and it is necessary to bring the Git
repository up-to-date with those changes, rebase to the latest state of the
Subversion repo.

git svn rebase

Subversion on GitHub
For teams or individual users looking to make the move to hosting projects
on GitHub, yet still maintaining a workflow with Subversion, the move is
simple and easy.

All repositories on GitHub are fully compatible with SVN tools and
operations, including the traditional layouts for trunk and branches.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Getting Started with Git

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

To perform a traditional SVN checkout against a repository on GitHub use
the following:

svn checkout https://github.com/<username>/<project>

Partial checkouts are also available with the typical SVN checkout
operation and partial’s path parameter:

svn checkout https://github.com/<username>/<project> <partial>

Hot
Tip

A GitHub-hosted repository supports mixed-VCS teams. The same
repository interacting with SVN can also be cloned and pushed with
Git.

REFERENCES

Official Git Home Page
Installers, release notes, and documentation pages:

http://git-scm.org
GitHub

Sign Up, Help, & Social Coding Guides

https://github.com

https://github.com/signup/

https://help.github.com

Jordan McCullough is a JavaScript and front-end design
consultant with Ambient Ideas, LLC, a company he
co-founded in 1999. His projects include clients from
around the globe and span industries from television to
transportation and real estate to advertising. Jordan enjoys
sharing his insights throughout the software development
community and can often be found attending technology

conferences and contributing to open source software projects on GitHub.

A B O U T T H E A U T H O R S R E C O M M E N D E D B O O K

Get up to speed on Git for tracking, branching,
merging, and managing code revisions.
Through a series of step-by-step tutorials,
this practical guide takes you quickly from
Git fundamentals to advanced techniques,
and provides friendly yet rigorous advice for
navigating the many functions of this open
source version control system.

 Buy Here

C++
Cypher
Clean Code
Debugging Patterns

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://git-scm.org
https://github.com
https://github.com/signup/
https://help.github.com
http://shop.oreilly.com/product/0636920022862.do?sortby=publicationDate
http://www.amazon.com/gp/product/1430218339?ie=UTF8&camp=1789&creative=9325&creativeASIN=1430218339&linkCode=as2&tag=git-sfconservancy-20

