Get More Refcardz! Visit refcardz.com

www.dzone.com

)
=
o
€
Q.

9
Q
>
@

(a]

>

O
©
>
()

-

-

=
2

=o)
0]
put
©
4=
wn
(0)]
[
=
0]
Q

brought to you by...

@ DZone Refcardz .zt instantiations

Eclipse Productivity. Enterprise Quality.

= About Java GUI Development

= The Anatomy of a Swing Application
= Swing Components

* The Anatomy of an SWT Application
= SWT Components

= Event Handling and more...

Getting Started with
Java GUI Development

By James Sugrue

ABOUT JAVA GUI DEVELOPMENT

For standalone Java desktop application, developers have two
main options. You can use Java Swing, built into the JDK, or

you can use the Standard Widget Toolkit (SWT) from Eclipse.

Both approaches share some commonality, but each has its own
advantages and methods. This DZone Refcard provides a reference
on how to use both technologies; the first half of the Refcard will
cover Swing, with SWT forming the second half.

JAVA SWING - A HISTORY

Before Swing, the only option that Java GUI developers had

was to use AWT (Abstract Widget Toolkit). However, because

of limitations in AWT, such as the number of components and
portability issues, Sun introduced Swing. Swing is built on AWT
components, and also uses its event model. While AWT provides
heavyweight components, Swing provides lightweight components
and adds advanced controls such as tables because it does not
require the use of native resources within the operating system.

CORE PACKAGES

Package Purpose

javax.swing Provides a set of “lightweight" (all-Java language) components that, to

the maximum degree possible, work the same on all platforms.

javax.swing.border Provides classes and interface for drawing specialized borders around

a Swing component.

javax.swing.colorchooser Contains classes and interfaces used by the JColorChooser component.

javax.swing.event Provides for events fired by Swing components.

javax.swing filechooser Contains classes and interfaces used by the JFileChooser component.

javax.swing.plaf.basic Provides user interface objects built according to the Basic look and feel.

javax.swing.plaf.metal Provides user interface objects built according to the Java look and feel

(once codenamed Metal), which is the default look and feel.

javax.swing.plaf.multi Provides user interface objects that combine two or more look and feels.

javax.swing.plaf.synth Synth is a skinnable look and feel in which all painting is delegated.

javax.swing.table Provides classes and interfaces for dealing with javax.swing.JTable.

Provides classes and interfaces that deal with editable and noneditable
text components.

javax.swing.text

javax.swing.text.html Provides the class HTMLEditorKit and supporting classes for creating

HTML text editors.

javax.swing.text.html.parser | Provides the default HTML parser, along with support classes.

javax.swing.text.rtf Provides a class (RTFEditorKit) for creating Rich-Text-Format text editors.

javax.swing.tree Provides classes and interfaces for dealing with

javax.swing.JTree.

javax.swing.undo Allows developers to provide support for undo/redo in applications

such as text editors.

Model View Controller
Swing relies a lot on the MVC structure, where a component

consists of a data model, a visual representation and a
controller for event handling.

THE ANATOMY OF A SWING APPLICATION

All Swing components are derived from JComponent, which deals
with the pluggable look & feel, keystroke handling, action object,
borders and accessibility.

A typical Swing application will consist of a main window, with a
menu-bar, toolbar and contents. The main shell for the application
is represented as a JFrame. Within the JFrame, an instance of
JRootPane acts as a container for all other components in

the frame.

Layered Pane

!/

_

k/GIass Pane

Root Pane

Content Pane

Figure 1: The structure of a JFrame
The root pane has four parts:

The glass pane

The glass pane is hidden by default. If it is made visible, then it's
like a sheet of glass over all the other parts of the root pane. It's
completely transparent unless you implement the glass pane’s
paintComponent method so that it does something, and it can
intercept input events for the root pane.

The layered pane

The layered pane positions its contents, which consist of the
content pane and the optional menu bar. Can also hold other
components in a specified Z order, as illustrated in Figure 2.

The content pane
The content pane is the container of the root pane’s visible
components, excluding the menu bar.

The optional menu bar
If the container has a menu bar, you generally use the container’s

_-“instantiations e

Eclipse Productivity. Enterprise Quality.

WindowBuilder™ Pro
WindowTester™ Pro

Quickly Develop and Test Java GUIs
for Swing and SWT

Download FREE TRIALS »

www.instantiations.com/G

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/
http://www.instantiations.com/GUItools/

nstantiations 2 - .
Dzone Refcardz Getting Started with Java GUI Development
setJMenuBar method to put the menu bar in the appropriate place.
SWING COMPONENTS - BASIC CONTROLS
Frame Content
Components Appearance (for Windows XP default Look & Feel)
javax.swing.JButton
javax.swing.JCheckBox
javax.swing.JComboBox
Figure 2: Layer order in layered pane
SWING COMPONENTS - CONTAINERS
javax.swing.JList A
javax.swing.JFrame
JFrame is the main window component of any Swing application.
To create an application window, you just need to create a class
that extends JFrame.
public class SwingApp extends JFrame
1 .
l{JUbliC SwingApp(String title) javax.swing.JMenu B apptication
super(title); m
setSize(400, 400);
}
}
javax.swing.JRadioButton .
! ® () Radio One
B Application A=
javax.swing.JSlider 1
javax.swing.JSpinner
javax.swing.JTextField i
javax.swing.JToolbar
Figure 3: A Swing JFrame
javax.swi ng .JAppIet javax.swing.JTabbedPane B Appiication
JApplet allows the addition of menus and toolbars to applets 1o onelfeh ol
hosted in a browser. Since Java 6 Update 10, applets can also be) —
dragged outside of the browser to run on the desktop.
. . . javax.swing.JColorChooser o
Construction code for applets go into the init() method, rather than
the applets constructor.
public class SwingApplet extends JApplet {
public SwingApplet()
{}
public void init() javax.swing.JEditorPane
, setSize(100, 100); Google
. =
javax.swing.JTextPane '
OTHER SWING CONTAINERS
javax.swing.JFileChooser
Container Purpose
javax.swing.JDialog Creates a custom dialog, either modal or modeless. JOptionPane -
can be used to create standard dialogs.
javax.swing.JTable — T
javax.swing.JPanel JPanel is a generic lightweight container used to group components . .
together and add to other windows such as JFrames. o
javax.swing.JSrollPane Provides a scrollable view of another lightweight component. The - res
JScrollPane provides a viewport with optional scrollbars at veritical
and horizontal positions.
javax.swing.JTextArea
javax.swing.JSplitPane Displays two components either side by side (JSplitPane.
HORIZONTAL_SPLIT), or one on top of the other (JSplitPane.
VERTICAL_SPLIT).
javax.swing.JInteralFrame Provides many of the features of a native frame, including dragging,
closing, becoming an icon, resizing, title display, and support for X)
amenu bar, allowing Swing applications to take on a multiple javax.swing.JTree ;
document interface. (2 Music
[+ 2) Classical
javax.swing.JLayeredFrame Adds depth to a Swing container, allowing components to overlap B Jazz
each other when needed. For convenience, JLayeredPane divides g @
the depth-range into several different layers. Layers available include [Rock
DEFAULT_LAYER, PALETTE_LAYER, MODAL_LAYER, POPUP_LAYER,
DRAG_LAYER.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

,<*instantiations
PP e ———

DZone Refcardz

Getting Started with Java GUI Development

Containment

Each component can only be contained once. If you add
a component to another container, after adding it to a
different one previously, it will be removed from the

previous container, and only added to the last one.

CORE L MANAGE

All layout managers implement one of two interfaces: java.
awt.LayoutManager or its subclass, java.awt.LayoutManager2.
LayoutManager provides methods that give a straight-forward,
organized means of managing component positions and sizes in

a container. LayoutManager2 enhances this by adding methods
intended to aid in managing component positions and sizes using
constraints-based objects. Constraints-based objects store position
and sizing information about one component and implementations
of LayoutManager2 normally store one constraints-based object
per component.

java.awt.FlowLayout

A flow layout arranges components in a directional flow

one after the other, moving onto a new line when no more
components fit on the current line. Direction is determined by
the container’'s componentOrientation property and may be
one of two values: ComponentOrientation.LEFT TO RIGHT or
ComponentOrientation.RIGHT TO LEFT

Flow layout is the default layout manager for AWT and
Swing components.

java.awt.GridLayout

GridLayout lays out a container’s components in a rectangular
grid. The container is divided into equal-sized rectangles, and one
component is placed in each rectangle. Typically, a GridLayout is
constructed by specifying the number of rows and columns.

java.awt.BorderLayout

BorderlLayout lays out the components in five regions: NORTH,
SOUTH, EAST, WEST and CENTER. As each component is added
to a container with a border layout, the location is specified similar
to: container.add(component, BorderLayout.CENTER);

java.awt.CardLayout

CardLlayout acts as an organisation of stacked components on

a container, with only one card being visible at a time. The first
component added is the visible component when the container is
first displayed. Methods exist to go through the stack sequentially
or to access a particular card.

javax.swing.BoxLayout

BoxLayout allows multiple components to be laid out vertically
(Y_AXIS) or horizontally (X_AXIS). Components do not wrap, so
when the frame is resized the components remain in their initial
arrangement. Components are arranged in the order that they are
added to the layout manager.

java.awt.GridBagLayout

GridBagLayout is the most flexible layout manager, maintaining
a dynamic, rectangular grid of cells. Each component

can occupy one or more cells, and has an instance of
GridBagConstraints to specify how a component should be
displayed in its display area.

The following table illustrates the options in GridBagConstraints:

fill Used to specify how to fill any unused space in the grid cell. Options are NONE
(default), HORIZONTAL, VERTICAL or BOTH.

ipadx, ipady Specifies how many pixels to pad around the components minimum size in the

x ory direction.

insets Specifies how much should be added to the external padding of the component
out to the edges of its display area.

anchor Specifies where the component should be positioned in its display area.

weightx, Determines how to distribute space around a component, for resizing behaviour.

weighty

EVENT HANDLING

Standard click events on Swing components are handled

using the java.awt.event.ActionListener interface.

Implemented action handlers need to implement the public
voidactionPerformed(ActionEvent e), provided the component
has registered the action listener using the addActionListener()
method.

Three interfaces are provided to handle mouse events on
components:

Interface Methods

public void mouseClicked(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);

java.awt.event.MouseListener

java.awt.event.MouseWheelListener public void mouseWheelMoved(MouseWheelEvent e);

java.awt.event.MouseMotionListener | public void mouseDragged(MouseEvent e)
public void mouseMoved(MouseEvent e);

Alternatively, you can extend the java.awt.event.MouseAdapter
class, which packages all three interfaces into a single abstract
class to make it easier to handle particular mouse events.

Attaching Mouse Listeners

Mouse listeners can be added to your component by
simply using the appropriate method (addMouselListener,
addMouseWheelListener, addMouseMotionListener).

THREADING ISSUES IN SWING

Time consuming tasks should not be run on the event dispatch
thread, as this will cause the application to become unresponsive.
Additionally, any components accessed should only be accessed
through the event dispatch thread.

SwingWorker is designed for situations where you need to have a
long running task run in a background thread and provide updates
to the Ul either when done, or while processing. Subclasses of
SwingWorker must implement the doInBackground() method to
perform background computation.

ECLIPSE STANDARD WIDGET TOOLKIT - A HISTORY

The Standard Widget Toolkit (SWT) is a widget toolkit that
provides both a portable APl and tight integration with the
underlying native OS GUI platform. SWT defines a common API
provided on all supported platforms, allowing the toolkit to take
on the look & feel of the underlying native widgets. JFace provides
a higher level abstraction over SWT, in a similar way to Swing and
AWT. However, most controls are available in SWT, with JFace
providing viewers and actions.

CORE PACKAGES

Variable Name Use

package Purpose

gridx, gridy Specifies the location on the grid to place the component, with gridx=0, gridy=0

as the top left hand corner.

gridwidth,
gridheight

Specifies the number of rows, or columns that will be used for a components
display area. The default value is 1.

org.eclipse.swt Provides the class SWT which contains all of the constants used by SWT
as well as a small selection of error handling routines and queries such as

getPlatform and getVersion.

org.eclipse.swt.accessibility | Contains the classes that support platform accessibility.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

/-1 DZone Refcardz

Getting Started with Java GUI Development

org.eclipse.swt.awt Contains the SWT_AWT bridge, allowing AWT components to be

embedded in SWT components and vice versa.

org.eclipse.swt.browser Provides the classes to implement the browser user interface metaphor.

org.eclipse.swt.custom Contains the custom widgets which were written to provide the standard

look and feel of the Eclipse platform.

org.eclipse.swt.dnd Contains the classes which make up the public APl of the SWT Drag and

Drop support.

org.eclipse.swt.events Provides the typed events and listener interfaces.

Provides the classes which implement points, rectangles, regions, colors,
cursors, fonts, graphics contexts (that is, GCs) where most of the primitive
drawing operations are implemented.

org.eclipse.swt.graphics

controls, similar to a JPanel in

Swing. Composite is the super class

of all composites, and can also be used directly.

org.eclipse.swt.widgets.Dialog
SWT also provides a Dialog class, which should be modal with a

Shell as its parent.

SWT COMPONENTS

BASIC CONTROLS

Contains several standard layout classes which provide automated

org.eclipse.swt.layout
positioning and sizing support for SWT widgets.

org.eclipse.swt.openg| Contains widgets for integrating OpenGL graphics into SWT applications.

org.eclipse.swt.printing Contains the classes which provide printing support for SWT.

org.eclipse.swt.program Contains class Program which provides access to facilities for discovering

operating system specific aspects of external program launching.

org.eclipse.swt.widgets Contains the classes which make up the public SWT widget APl as well as

the related public support classes.

THE ANATOMY OF AN T APPLICATION

A stand-alone SWT application has the following structure:

¢ A Display which represents an SWT session.
e A Shell that serves as the main window for the application.
e Other widgets that are needed inside the shell.

In order to create a shell, you need to run the event dispatch loop
continuously until an exit condition occurs, i.e. the shell is closed.
Following this event the display must be disposed.

public static void main (String [] args) {
Display display = new Display ();
Shell shell = new Shell (display);
//create SWT widgets on the shell
shell.open ();
while (!shell.isDisposed ()) {
if (!display.readAndDispatch ()) display.sleep ();

}
display.dispose ();
}

The Display provides a connection between SWT and the
platform’s GUI system. Displays are used to manage the event
dispatch loop and also control communication between the Ul
thread and other threads.

The Shell is a “window” managed by the OS platform window
manager. Top level shells are those that are created as a child

of the display. These windows are the windows that users move,
resize, minimize, and maximize while using the application.
Secondary shells also exist, such as dialogs — these are created as
the child of other shells.

Any widget that is not a top level shell must have a parent shell or
composite. Composite widgets are widgets that can have children.
In SWT the Shell is the root of a widget hierarchy.

Native platforms require explicit allocation and freeing of
0S resources. In keeping with the SWT design philosophy
of reflecting the platform application structure in the
widget toolkit, SWT requires that you explicitly free any 0S

resources that you have allocated, the Widget.dispose()
method is used to free resources.

SWT COMPONENTS - CONTAINERS

org.eclipse.swt.widgets.Shell
The Shell is the main window, and parent container of all other
widgets in an SWT application.

org.eclipse.swt.widgets.Composite
The Composite is a widget that can contain other composites or

Components Appearance (various platforms)
org.eclipse.swt.browser.Browser
HTMLa
org.eclipse.swt.widgets.Button
b
v One
One © om O o eve
B =)0
org.eclipse.swt.widgets.Canvas
/
| o
\ ~
AL LI
org.eclipse.swt.widgets.Combo
org.eclipse.swt.widgets.ColorDialog
org.eclipse.swt.widgets.CoolBar P
B-0> aen
org.eclipse.swt.custom.CTabFolder —
org.eclipse.swt.widgets.DateTime

Today: 11/2/2006

org.eclipse.swt.widgets.ExpandBar

org.eclipse.swt.widgets.Group

Title Text

org.eclipse.swt.widgets.Label

Jack and M went up
the hil to fetch a pal
of water, Jack fel
Gomn and beoke his
crown and M came
tumblng after!

org.eclipse.swt.widgets.Link

Vion the Lcligacacs project

org.eclipse.swt.widgets.List

The Longest Strng

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

,<*instantiations
PP e ———

DZone Refcardz

Getting Started with Java GUI Development

org.eclipse.swt.widgets.Menu

org.eclipse.swt.widgets.ProgressBar

el
org.eclipse.swt.widgets.Slider S—
org.eclipse.swt.widgets.Scale
org.eclipse.swt.widgets.Spinner
a2l |7
org.eclipse.swt.custom.StyledText e e 3

org.eclipse.swt.widgets.TabFolder
T0 Taby |Teb2
Tabtem Cortart: 0

org.eclipse.swt.widgets.Table

org.eclipse.swt.widgets. Text
The quick brown fox jum

The quck brown fox kros o
tary dog. Cre Tws Throe|

org.eclipse.swt.widgets.ToolBar

org.eclipse.swt.widgets.Tray

org.eclipse.swt.widgets.Tree
Nare Type
b (V] Cynode 1 dlasses

V] Caode 2.1 databal
| CiNods 2.2 databal

CORE LAYOUT MANAGERS

Just as in Swing, SWT provides a number of core layout managers,
as well as providing the opportunity to create your own custom
layout from the org.eclipse.swt.layout.Layout base class.

org.eclipse.swt.layout.FillLayout

FillLayout lays all widgets in a single continuous row or column. All
widgets are forced to be the same size in this layout. Unlike Swing’s
FlowLayout, FillLayout does not wrap, but you can specify margins
and spacing. FillLayout is useful when a Composite only has one
child, as it can cause the child of the composite to fill the shell.

| FillLayout fillLayout = new FillLayout(SWT.VERTICAL); shell.setLayout(fillLayout);

org.eclipse.swt.layout.RowLayout

Rowlayout places components in horizontal rows or vertical
columns within the parent Composite. Unlike FillLayout, RowLayout
allows components to wrap and also provides margins and spacing.
Rather than all components being the same size, each control can
have its own parameters using the RowData object. A control can
use this object through its setLayoutData method.

org.eclipse.swt.layout.GridLayout
The most flexible layout manager in SWT is GridLayout, which lays
components out in a grid formation. Each control that is placed

in a composite using this layout can have an associated GridData
object which configures the control. A control can use a GridData
object through it's setLayoutData method.

Note: GridData objects should not be reused between widgets, as
it must be unique for each widget.

A grid can have a number of columns associated with it. As
widgets are added they are laid out in the columns from left to
right. A new row is created when the previous row has been filled.
The following table illustrates the options in GridData:

Variable Name Use

horizontalAlignment,
verticalAlignment

Specifies the location on the grid to place the component,
with gridx=0, gridy=0 as the top left hand corner.

grabExcessHorizontalSpace,
grabExcessVerticalSpace

Specifies whether the width or height of the widget will
change depending on the size of the parent composite.

horizontalIndent,
verticalIndent

The number of pixels to move in from the left or the top
of the cell.

horizontalSpan, verticalSpan | The number of rows or columns that the widget will occupy.

heightHint, widthHint The preferred height or width of this widget.

minimumHeight, minimumwWidth The minimum height or width of the widget.

exclude Informs the layout manager to ignore this widget when

sizing and positioning controls

org.eclipse.swt.layout.FormLayout

FormLayout positions children of a composite control by using
FormAttachments to optionally configure the left, top, right
and bottom edges of each child. Each child of a composite
using FormLayout needs to have a FormData object with a
FormAttachment.

Each side of a child control can be attached to a position in the
parent composite, or to other controls within the Composite by
creating instances of FormAttachment and setting them into the
top, bottom, left, and right fields of the child’s FormData. If a side
is not given an attachment, it is defined as not being attached to
anything, causing the child to remain at its preferred size.

If a child is given no attachment on either the left or the right or
top or bottom, it is automatically attached to the left and top of
the composite respectively.

EVENT HANDLING

SWT provides two ways of handling events: using the built in typed
listeners, or using un-typed listeners which provides a framework
for you to create your own listeners.

Un-typed Listeners
Creating un-typed listeners in SWT involves three classes from the
org.eclipse.swt.widgets package:

Event This class provides a description of the event that has been triggered, including
fields for type, widget and time

Listener | The listener interface needs to be implemented by any class that listens for events.
The interface simply defines a handleEvent(Event e) method in order to do this.

Widget | Each widget object has an addListener(int eventType, Listener handler) method

with a corresponding removeListener method.

The addListener method accepts an eventType method. The
following table lists out the possible values for this field:

Event Type Description

SWTActivate, Control is activated or deactivated.

SWT.Deactivate

SWT.Arm The mouse pointer hovers the Menultem

SWT.Close A Shell is about to close

SWT.DefaultSelection The user selects an item by invoking a default selection action.
SWT.Dispose A widget is about to be disposed.

SWT.DragDetect The user has initiated a possible drag operation.
SWT.Eraseltem A Tableltem or Treeltem is about to have its background drawn.
SWT.Expand, SWT.Collapse | An item in a Tree is expanded or collapsed.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

SWT.Help The user has requested help for a widget.
THREADING IN SWT
SWT.Iconify, SWT.Deiconify A Shell has been minimized, maximized, or restored.

SWT.ImeComposition Allows custom text editors to implement in-line editing of

DZOHG Refcal‘dz pstantiations Getting Started with Java GUI Development

Aok v ko In order to keep the Ul as responsive as possible, any long running
SWT.Measureltem The size of a custom drawn Tableltem or Treeltem is being requested. operat|ons trlgge.red‘by a Ul event should be runin a ‘separate‘
thread. The application program runs the event loop in its main
SWTMenuDetect Wi UEER e et O T BE thread and dispatches events directly from this thread. The Ul
SWT.Modify The widgets text has been modified. thread is the thread in which the Display was created. All other
SWT.Move, SWT Resize A control has changed position or has been resized, either WidQEtS must be created in the Ul thread.

programmatically or by user.

SWT.Movement An updated caret offset is needed in response to a user action in a
StyledText.
SWT.Paintltem A Tableltem or Treeltem is about to have its foreground drawn. SWT will trlgger an SWTException for ziny calls made from a
non-Ul thread that must be made from the Ul thread.
SWT.Selection The user selects an item in the control.
SWT.SetData Data needs to be set on a Tableltem when using a virtual table.
SWT Settings An operating system property, such as a system font or color, has Applications that wish to call Ul code from a non-Ul thread

been changed.

must provide a Runnable that calls the Ul code. The methods

SWT.Show, SWT.Hid A control’s visibility has ch d. . .

o e e el syncExec(Runnable) and asyncExec(Runnable) in the Display class
SWT.Traverse The user is trying to traverse out of the control using a keystroke. are used to execute these runnables in the Ul thread during the
SWT.Verify A widget's text is about to be modified. event |OOp.

SRR, Acontrolhas gained orlost focus. ¢ syncExec(Runnable) should be used when the application
code in the non-Ul thread depends on the return value
SWT.KeyDown, SWT.KeyUp | The user has pressed or released a keyboard key when the control has .
keyboard focus. from the Ul code or otherwise needs to ensure that the
SWT.MouseDown, The user has pressed, released, or double-clicked the mouse over runnable is runA to Completlon before returmhg to the
SWTMouseUp, the control. thread. SWT will block the calling thread until the runnable

SWT.MouseDoubleClick . PN’
has been run from the application’s Ul thread.

SWT.MouseMove The user has moved the mouse above the control.

e asyncExec(Runnable) should be used when the
SWT.MouseEnter, The mouse has entered, exited, or hovered over the control.
SWTMouseExit, application needs to perform some Ul operations, but is
S olsshioe not dependent upon the operations being completed
SWT.MouseWheel The mouse wheel has been rotated. before continuin g.
SWT.Paint Control has been damaged and requires repainting.

ABOUT THE AUTHOR RECOMMENDED BOOK

= Building on two internationally best-selling previous editions,
Eclipse Plug-ins, Third Edition, has been fully revised to
minute of it. By day, James is a software architect at reflect the powerful new capabilities of Eclipse 3.4. Leading
Pilz Ireland, developing killer desktop software using : Eclipse experts Eric Clayberg and Dan Rubel present

Java and Eclipse all the way. While working on desktop Plug-ins detailed, practical coverage of every aspect of plug-in
technologies such as Eclipse RCP and Swing, James also development, as well as specific, proven solutions for the
likes meddling with up and coming technologies such challenges developers are most likely to encounter.

as Eclipse e4. His current obsession is developing for
the iPhone and iPad, having convinced himself that it's a turning point for the BUY NOW

software industry. books.dzone.com/books/eclipseplugins

James Sugrue has been editor at both Javalobby
and EclipseZone for over two years, and loves every

& o Dtone Refcards Browse our collection of over 90 Free Cheat Sheets

Getting Started with

Cloud Comp

Upcoming Refcardz

Java EE Security

Adobe Flash Catalyst
F re e P D F Network Security

Maven 3
DZone, Inc.
. ISBN-13: 978-1-934238-71-4
140 Preston Executive Dr. ISBN-10: 1-934238-71-b
one e 10 5079:
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome '5‘03
refcardz@dzone.com i ~
tutorials, cheat sheets, blogs, feature articles, source code and more. 9%781934"238714 @

"DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, Version 1.0
photocopying, or otherwise, without prior written permission of the publisher.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://127.0.0.1:1089/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/Display.html
http://127.0.0.1:1089/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/SWTException.html
http://127.0.0.1:1089/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/Display.html
http://www.instantiations.com/GUItools/
http://www.qualityeclipse.com/

