

DZone, Inc. | www.dzone.com

By James Sugrue

ABOUT JAVA GUI DEVELOPMENT

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

av
a

G
U

I
D

e
ve

lo
p

m
e

n
t

w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#95

Getting Started with
Java GUI Development

CONTENTS INCLUDE:
n	 About Java GUI Development
n	 The Anatomy of a Swing Application
n	 Swing Components
n	 The Anatomy of an SWT Application
n	 SWT Components
n	 Event Handling and more...

For standalone Java desktop application, developers have two
main options. You can use Java Swing, built into the JDK, or
you can use the Standard Widget Toolkit (SWT) from Eclipse.
Both approaches share some commonality, but each has its own
advantages and methods. This DZone Refcard provides a reference
on how to use both technologies; the first half of the Refcard will
cover Swing, with SWT forming the second half.

brought to you by...

JAVA SWING - A HISTORY

Before Swing, the only option that Java GUI developers had
was to use AWT (Abstract Widget Toolkit). However, because
of limitations in AWT, such as the number of components and
portability issues, Sun introduced Swing. Swing is built on AWT
components, and also uses its event model. While AWT provides
heavyweight components, Swing provides lightweight components
and adds advanced controls such as tables because it does not
require the use of native resources within the operating system.

CORE PACKAGES

Package Purpose

javax.swing Provides a set of “lightweight” (all-Java language) components that, to
the maximum degree possible, work the same on all platforms.

javax.swing.border Provides classes and interface for drawing specialized borders around
a Swing component.

javax.swing.colorchooser Contains classes and interfaces used by the JColorChooser component.

javax.swing.event Provides for events fired by Swing components.

javax.swing.filechooser Contains classes and interfaces used by the JFileChooser component.

javax.swing.plaf.basic Provides user interface objects built according to the Basic look and feel.

javax.swing.plaf.metal Provides user interface objects built according to the Java look and feel
(once codenamed Metal), which is the default look and feel.

javax.swing.plaf.multi Provides user interface objects that combine two or more look and feels.

javax.swing.plaf.synth Synth is a skinnable look and feel in which all painting is delegated.

javax.swing.table Provides classes and interfaces for dealing with javax.swing.JTable.

javax.swing.text Provides classes and interfaces that deal with editable and noneditable
text components.

javax.swing.text.html Provides the class HTMLEditorKit and supporting classes for creating
HTML text editors.

javax.swing.text.html.parser Provides the default HTML parser, along with support classes.

javax.swing.text.rtf Provides a class (RTFEditorKit) for creating Rich-Text-Format text editors.

javax.swing.tree Provides classes and interfaces for dealing with
javax.swing.JTree.

javax.swing.undo Allows developers to provide support for undo/redo in applications
such as text editors.

Hot
Tip

Model View Controller
Swing relies a lot on the MVC structure, where a component
consists of a data model, a visual representation and a
controller for event handling.

THE ANATOMY OF A SWING APPLICATION

All Swing components are derived from JComponent, which deals
with the pluggable look & feel, keystroke handling, action object,
borders and accessibility.

A typical Swing application will consist of a main window, with a
menu-bar, toolbar and contents. The main shell for the application
is represented as a JFrame. Within the JFrame, an instance of
JRootPane acts as a container for all other components in
the frame.

Figure 1: The structure of a JFrame

The root pane has four parts:

The glass pane
The glass pane is hidden by default. If it is made visible, then it’s
like a sheet of glass over all the other parts of the root pane. It’s
completely transparent unless you implement the glass pane’s
paintComponent method so that it does something, and it can
intercept input events for the root pane.

The layered pane
The layered pane positions its contents, which consist of the
content pane and the optional menu bar. Can also hold other
components in a specified Z order, as illustrated in Figure 2.

The content pane
The content pane is the container of the root pane’s visible
components, excluding the menu bar.

The optional menu bar
If the container has a menu bar, you generally use the container’s

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/
http://www.instantiations.com/GUItools/

DZone, Inc. | www.dzone.com

2
Getting Started with Java GUI Development

setJMenuBar method to put the menu bar in the appropriate place.

SWING COMPONENTS - CONTAINERS

javax.swing.JFrame
JFrame is the main window component of any Swing application.
To create an application window, you just need to create a class
that extends JFrame.

public class SwingApp extends JFrame
{

 public SwingApp(String title)
 {
 super(title);
 setSize(400, 400);
 }
}

Figure 3: A Swing JFrame

javax.swing.JApplet
JApplet allows the addition of menus and toolbars to applets
hosted in a browser. Since Java 6 Update 10, applets can also be
dragged outside of the browser to run on the desktop.

Construction code for applets go into the init() method, rather than
the applets constructor.

public class SwingApplet extends JApplet {
 public SwingApplet()
 {}

 public void init()
 {
 setSize(100, 100);
 }
}

OTHER SWING CONTAINERS

Container Purpose

javax.swing.JDialog Creates a custom dialog, either modal or modeless. JOptionPane
can be used to create standard dialogs.

javax.swing.JPanel JPanel is a generic lightweight container used to group components
together and add to other windows such as JFrames.

javax.swing.JSrollPane Provides a scrollable view of another lightweight component. The
JScrollPane provides a viewport with optional scrollbars at veritical
and horizontal positions.

javax.swing.JSplitPane Displays two components either side by side (JSplitPane.
HORIZONTAL_SPLIT), or one on top of the other (JSplitPane.
VERTICAL_SPLIT).

javax.swing.JInteralFrame Provides many of the features of a native frame, including dragging,
closing, becoming an icon, resizing, title display, and support for
a menu bar, allowing Swing applications to take on a multiple
document interface.

javax.swing.JLayeredFrame Adds depth to a Swing container, allowing components to overlap
each other when needed. For convenience, JLayeredPane divides
the depth-range into several different layers. Layers available include
DEFAULT_LAYER, PALETTE_LAYER, MODAL_LAYER, POPUP_LAYER,
DRAG_LAYER.

SWING COMPONENTS - BASIC CONTROLS

Components Appearance (for Windows XP default Look & Feel)

javax.swing.JButton

javax.swing.JCheckBox

javax.swing.JComboBox

javax.swing.JList

javax.swing.JMenu

javax.swing.JRadioButton

javax.swing.JSlider
javax.swing.JSpinner

javax.swing.JTextField
javax.swing.JToolbar

javax.swing.JTabbedPane

javax.swing.JPasswordField
javax.swing.JColorChooser

javax.swing.JEditorPane

javax.swing.JTextPane

javax.swing.JFileChooser

javax.swing.JTable

javax.swing.JTextArea

javax.swing.JTree

Figure 2: Layer order in layered pane

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

DZone, Inc. | www.dzone.com

3
Getting Started with Java GUI Development

Hot
Tip

Containment
Each component can only be contained once. If you add
a component to another container, after adding it to a
different one previously, it will be removed from the
previous container, and only added to the last one.

CORE LAYOUT MANAGERS

All layout managers implement one of two interfaces: java.
awt.LayoutManager or its subclass, java.awt.LayoutManager2.
LayoutManager provides methods that give a straight-forward,
organized means of managing component positions and sizes in
a container. LayoutManager2 enhances this by adding methods
intended to aid in managing component positions and sizes using
constraints-based objects. Constraints-based objects store position
and sizing information about one component and implementations
of LayoutManager2 normally store one constraints-based object
per component.

java.awt.FlowLayout
A flow layout arranges components in a directional flow
one after the other, moving onto a new line when no more
components fit on the current line. Direction is determined by
the container’s componentOrientation property and may be
one of two values: ComponentOrientation.LEFT_TO_RIGHT or
ComponentOrientation.RIGHT_TO_LEFT

Flow layout is the default layout manager for AWT and
Swing components.

java.awt.GridLayout
GridLayout lays out a container’s components in a rectangular
grid. The container is divided into equal-sized rectangles, and one
component is placed in each rectangle. Typically, a GridLayout is
constructed by specifying the number of rows and columns.

java.awt.BorderLayout
BorderLayout lays out the components in five regions: NORTH,
SOUTH, EAST, WEST and CENTER. As each component is added
to a container with a border layout, the location is specified similar
to: container.add(component, BorderLayout.CENTER);

java.awt.CardLayout
CardLayout acts as an organisation of stacked components on
a container, with only one card being visible at a time. The first
component added is the visible component when the container is
first displayed. Methods exist to go through the stack sequentially
or to access a particular card.

javax.swing.BoxLayout
BoxLayout allows multiple components to be laid out vertically
(Y_AXIS) or horizontally (X_AXIS). Components do not wrap, so
when the frame is resized the components remain in their initial
arrangement. Components are arranged in the order that they are
added to the layout manager.

java.awt.GridBagLayout
GridBagLayout is the most flexible layout manager, maintaining
a dynamic, rectangular grid of cells. Each component
can occupy one or more cells, and has an instance of
GridBagConstraints to specify how a component should be
displayed in its display area.

The following table illustrates the options in GridBagConstraints:

Variable Name Use

gridx, gridy Specifies the location on the grid to place the component, with gridx=0, gridy=0
as the top left hand corner.

gridwidth,
gridheight

Specifies the number of rows, or columns that will be used for a components
display area. The default value is 1.

fill Used to specify how to fill any unused space in the grid cell. Options are NONE
(default), HORIZONTAL, VERTICAL or BOTH.

ipadx, ipady Specifies how many pixels to pad around the components minimum size in the
x or y direction.

insets Specifies how much should be added to the external padding of the component
out to the edges of its display area.

anchor Specifies where the component should be positioned in its display area.

weightx,
weighty

Determines how to distribute space around a component, for resizing behaviour.

EVENT HANDLING

Standard click events on Swing components are handled
using the java.awt.event.ActionListener interface.
Implemented action handlers need to implement the public
voidactionPerformed(ActionEvent e), provided the component
has registered the action listener using the addActionListener()
method.

Three interfaces are provided to handle mouse events on
components:

Interface Methods

java.awt.event.MouseListener public void mouseClicked(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);

java.awt.event.MouseWheelListener public void mouseWheelMoved(MouseWheelEvent e);

java.awt.event.MouseMotionListener public void mouseDragged(MouseEvent e)
public void mouseMoved(MouseEvent e);

Alternatively, you can extend the java.awt.event.MouseAdapter
class, which packages all three interfaces into a single abstract
class to make it easier to handle particular mouse events.

Attaching Mouse Listeners
Mouse listeners can be added to your component by
simply using the appropriate method (addMouseListener,
addMouseWheelListener, addMouseMotionListener).

THREADING ISSUES IN SWING

Time consuming tasks should not be run on the event dispatch
thread, as this will cause the application to become unresponsive.
Additionally, any components accessed should only be accessed
through the event dispatch thread.

SwingWorker is designed for situations where you need to have a
long running task run in a background thread and provide updates
to the UI either when done, or while processing. Subclasses of
SwingWorker must implement the doInBackground() method to
perform background computation.

ECLIPSE STANDARD WIDGET TOOLKIT - A HISTORY

The Standard Widget Toolkit (SWT) is a widget toolkit that
provides both a portable API and tight integration with the
underlying native OS GUI platform. SWT defines a common API
provided on all supported platforms, allowing the toolkit to take
on the look & feel of the underlying native widgets. JFace provides
a higher level abstraction over SWT, in a similar way to Swing and
AWT. However, most controls are available in SWT, with JFace
providing viewers and actions.

package Purpose

org.eclipse.swt Provides the class SWT which contains all of the constants used by SWT
as well as a small selection of error handling routines and queries such as
getPlatform and getVersion.

org.eclipse.swt.accessibility Contains the classes that support platform accessibility.

CORE PACKAGES

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

DZone, Inc. | www.dzone.com

4
Getting Started with Java GUI Development

THE ANATOMY OF AN SWT APPLICATION

A stand-alone SWT application has the following structure:

 • A Display which represents an SWT session.
 • A Shell that serves as the main window for the application.
 • Other widgets that are needed inside the shell.

In order to create a shell, you need to run the event dispatch loop
continuously until an exit condition occurs, i.e. the shell is closed.
Following this event the display must be disposed.

 public static void main (String [] args) {
 Display display = new Display ();
 Shell shell = new Shell (display);
 //create SWT widgets on the shell
 shell.open ();
 while (!shell.isDisposed ()) {
 if (!display.readAndDispatch ()) display.sleep ();
 }
 display.dispose ();
 }

The Display provides a connection between SWT and the
platform’s GUI system. Displays are used to manage the event
dispatch loop and also control communication between the UI
thread and other threads.

The Shell is a “window” managed by the OS platform window
manager. Top level shells are those that are created as a child
of the display. These windows are the windows that users move,
resize, minimize, and maximize while using the application.
Secondary shells also exist, such as dialogs – these are created as
the child of other shells.
Any widget that is not a top level shell must have a parent shell or
composite. Composite widgets are widgets that can have children.
In SWT the Shell is the root of a widget hierarchy.

Hot
Tip

Native platforms require explicit allocation and freeing of
OS resources. In keeping with the SWT design philosophy
of reflecting the platform application structure in the
widget toolkit, SWT requires that you explicitly free any OS
resources that you have allocated, the Widget.dispose()
method is used to free resources.

SWT COMPONENTS - CONTAINERS

org.eclipse.swt.widgets.Shell
The Shell is the main window, and parent container of all other
widgets in an SWT application.

org.eclipse.swt.widgets.Composite
The Composite is a widget that can contain other composites or

SWT COMPONENTS - BASIC CONTROLS

Components Appearance (various platforms)

org.eclipse.swt.browser.Browser

org.eclipse.swt.widgets.Button

org.eclipse.swt.widgets.Canvas

org.eclipse.swt.widgets.Combo

org.eclipse.swt.widgets.ColorDialog

org.eclipse.swt.widgets.CoolBar

org.eclipse.swt.custom.CTabFolder

org.eclipse.swt.widgets.DateTime

org.eclipse.swt.widgets.ExpandBar

org.eclipse.swt.widgets.Group

org.eclipse.swt.widgets.Label

org.eclipse.swt.widgets.Link

org.eclipse.swt.widgets.List

org.eclipse.swt.awt Contains the SWT_AWT bridge, allowing AWT components to be
embedded in SWT components and vice versa.

org.eclipse.swt.browser Provides the classes to implement the browser user interface metaphor.

org.eclipse.swt.custom Contains the custom widgets which were written to provide the standard
look and feel of the Eclipse platform.

org.eclipse.swt.dnd Contains the classes which make up the public API of the SWT Drag and
Drop support.

org.eclipse.swt.events Provides the typed events and listener interfaces.

org.eclipse.swt.graphics Provides the classes which implement points, rectangles, regions, colors,
cursors, fonts, graphics contexts (that is, GCs) where most of the primitive
drawing operations are implemented.

org.eclipse.swt.layout Contains several standard layout classes which provide automated
positioning and sizing support for SWT widgets.

org.eclipse.swt.opengl Contains widgets for integrating OpenGL graphics into SWT applications.

org.eclipse.swt.printing Contains the classes which provide printing support for SWT.

org.eclipse.swt.program Contains class Program which provides access to facilities for discovering
operating system specific aspects of external program launching.

org.eclipse.swt.widgets Contains the classes which make up the public SWT widget API as well as
the related public support classes.

controls, similar to a JPanel in Swing. Composite is the super class
of all composites, and can also be used directly.

org.eclipse.swt.widgets.Dialog
SWT also provides a Dialog class, which should be modal with a
Shell as its parent.

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

DZone, Inc. | www.dzone.com

5
Getting Started with Java GUI Development

org.eclipse.swt.widgets.Menu

org.eclipse.swt.widgets.ProgressBar

org.eclipse.swt.widgets.Slider

org.eclipse.swt.widgets.Scale

org.eclipse.swt.widgets.Spinner

org.eclipse.swt.custom.StyledText

org.eclipse.swt.widgets.TabFolder

org.eclipse.swt.widgets.Table

org.eclipse.swt.widgets.Text

org.eclipse.swt.widgets.ToolBar

org.eclipse.swt.widgets.Tray

org.eclipse.swt.widgets.Tree

CORE LAYOUT MANAGERS

Just as in Swing, SWT provides a number of core layout managers,
as well as providing the opportunity to create your own custom
layout from the org.eclipse.swt.layout.Layout base class.

org.eclipse.swt.layout.FillLayout
FillLayout lays all widgets in a single continuous row or column. All
widgets are forced to be the same size in this layout. Unlike Swing’s
FlowLayout, FillLayout does not wrap, but you can specify margins
and spacing. FillLayout is useful when a Composite only has one
child, as it can cause the child of the composite to fill the shell.

FillLayout fillLayout = new FillLayout(SWT.VERTICAL); shell.setLayout(fillLayout);

org.eclipse.swt.layout.RowLayout
RowLayout places components in horizontal rows or vertical
columns within the parent Composite. Unlike FillLayout, RowLayout
allows components to wrap and also provides margins and spacing.
Rather than all components being the same size, each control can
have its own parameters using the RowData object. A control can
use this object through its setLayoutData method.

org.eclipse.swt.layout.GridLayout
The most flexible layout manager in SWT is GridLayout, which lays
components out in a grid formation. Each control that is placed

in a composite using this layout can have an associated GridData
object which configures the control. A control can use a GridData
object through it’s setLayoutData method.

Note: GridData objects should not be reused between widgets, as
it must be unique for each widget.

A grid can have a number of columns associated with it. As
widgets are added they are laid out in the columns from left to
right. A new row is created when the previous row has been filled.
The following table illustrates the options in GridData:

Variable Name Use

horizontalAlignment,
verticalAlignment

Specifies the location on the grid to place the component,
with gridx=0, gridy=0 as the top left hand corner.

grabExcessHorizontalSpace,
grabExcessVerticalSpace

Specifies whether the width or height of the widget will
change depending on the size of the parent composite.

horizontalIndent,
verticalIndent

The number of pixels to move in from the left or the top
of the cell.

horizontalSpan, verticalSpan The number of rows or columns that the widget will occupy.

heightHint, widthHint The preferred height or width of this widget.

minimumHeight, minimumWidth The minimum height or width of the widget.

exclude Informs the layout manager to ignore this widget when
sizing and positioning controls

org.eclipse.swt.layout.FormLayout
FormLayout positions children of a composite control by using
FormAttachments to optionally configure the left, top, right
and bottom edges of each child. Each child of a composite
using FormLayout needs to have a FormData object with a
FormAttachment.

Each side of a child control can be attached to a position in the
parent composite, or to other controls within the Composite by
creating instances of FormAttachment and setting them into the
top, bottom, left, and right fields of the child’s FormData. If a side
is not given an attachment, it is defined as not being attached to
anything, causing the child to remain at its preferred size.

If a child is given no attachment on either the left or the right or
top or bottom, it is automatically attached to the left and top of
the composite respectively.

EVENT HANDLING

SWT provides two ways of handling events: using the built in typed
listeners, or using un-typed listeners which provides a framework
for you to create your own listeners.

Un-typed Listeners
Creating un-typed listeners in SWT involves three classes from the
org.eclipse.swt.widgets package:

Event This class provides a description of the event that has been triggered, including
fields for type, widget and time

Listener The listener interface needs to be implemented by any class that listens for events.
The interface simply defines a handleEvent(Event e) method in order to do this.

Widget Each widget object has an addListener(int eventType, Listener handler) method
with a corresponding removeListener method.

The addListener method accepts an eventType method. The
following table lists out the possible values for this field:

Event Type Description

SWT.Activate,
SWT.Deactivate

Control is activated or deactivated.

SWT.Arm The mouse pointer hovers the MenuItem

SWT.Close A Shell is about to close

SWT.DefaultSelection The user selects an item by invoking a default selection action.

SWT.Dispose A widget is about to be disposed.

SWT.DragDetect The user has initiated a possible drag operation.

SWT.EraseItem A TableItem or TreeItem is about to have its background drawn.

SWT.Expand, SWT.Collapse An item in a Tree is expanded or collapsed.

http://www.dzone.com
http://www.refcardz.com
http://www.instantiations.com/GUItools/

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon ®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML pr

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar

Browse our collection of over 90 Free Cheat Sheets
Upcoming Refcardz
Java EE Security
Adobe Flash Catalyst
Network Security
Maven 3

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Java GUI Development

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-71-4
ISBN-10: 1-934238-71-6

9 781934 238714

50795

THREADING IN SWT

In order to keep the UI as responsive as possible, any long running
operations triggered by a UI event should be run in a separate
thread. The application program runs the event loop in its main
thread and dispatches events directly from this thread. The UI
thread is the thread in which the Display was created. All other
widgets must be created in the UI thread.

Hot
Tip

SWT will trigger an SWTException for any calls made from a
non-UI thread that must be made from the UI thread.

Applications that wish to call UI code from a non-UI thread
must provide a Runnable that calls the UI code. The methods
syncExec(Runnable) and asyncExec(Runnable) in the Display class
are used to execute these runnables in the UI thread during the
event loop.

 • syncExec(Runnable) should be used when the application
 code in the non-UI thread depends on the return value
 from the UI code or otherwise needs to ensure that the
 runnable is run to completion before returning to the
 thread. SWT will block the calling thread until the runnable
 has been run from the application’s UI thread.

 • asyncExec(Runnable) should be used when the
 application needs to perform some UI operations, but is
 not dependent upon the operations being completed
 before continuing.

SWT.Help The user has requested help for a widget.

SWT.Iconify, SWT.Deiconify A Shell has been minimized, maximized, or restored.

SWT.ImeComposition Allows custom text editors to implement in-line editing of
international text.

SWT.MeasureItem The size of a custom drawn TableItem or TreeItem is being requested.

SWT.MenuDetect The user has requested a context menu.

SWT.Modify The widget’s text has been modified.

SWT.Move, SWT.Resize A control has changed position or has been resized, either
programmatically or by user.

SWT.Movement An updated caret offset is needed in response to a user action in a
StyledText.

SWT.PaintItem A TableItem or TreeItem is about to have its foreground drawn.

SWT.Selection The user selects an item in the control.

SWT.SetData Data needs to be set on a TableItem when using a virtual table.

SWT.Settings An operating system property, such as a system font or color, has
been changed.

SWT.Show, SWT.Hide A control’s visibility has changed.

SWT.Traverse The user is trying to traverse out of the control using a keystroke.

SWT.Verify A widget’s text is about to be modified.

SWT.FocusIn,
SWT.FocusOut

A control has gained or lost focus.

SWT.KeyDown, SWT.KeyUp The user has pressed or released a keyboard key when the control has
keyboard focus.

SWT.MouseDown,
SWT.MouseUp,
SWT.MouseDoubleClick

The user has pressed, released, or double-clicked the mouse over
the control.

SWT.MouseMove The user has moved the mouse above the control.

SWT.MouseEnter,
SWT.MouseExit,
SWT.MouseHover

The mouse has entered, exited, or hovered over the control.

SWT.MouseWheel The mouse wheel has been rotated.

SWT.Paint Control has been damaged and requires repainting.

James Sugrue has been editor at both Javalobby
and EclipseZone for over two years, and loves every
minute of it. By day, James is a software architect at
Pilz Ireland, developing killer desktop software using
Java and Eclipse all the way. While working on desktop
technologies such as Eclipse RCP and Swing, James also
likes meddling with up and coming technologies such
as Eclipse e4. His current obsession is developing for

the iPhone and iPad, having convinced himself that it’s a turning point for the
software industry.

Building on two internationally best-selling previous editions,
Eclipse Plug-ins, Third Edition, has been fully revised to
reflect the powerful new capabilities of Eclipse 3.4. Leading
Eclipse experts Eric Clayberg and Dan Rubel present
detailed, practical coverage of every aspect of plug-in
development, as well as specific, proven solutions for the
challenges developers are most likely to encounter.

BUY NOW
books.dzone.com/books/eclipseplugins

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://127.0.0.1:1089/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/Display.html
http://127.0.0.1:1089/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/SWTException.html
http://127.0.0.1:1089/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/Display.html
http://www.instantiations.com/GUItools/
http://www.qualityeclipse.com/

