S
©)
O
N
JS)
el
©
O
O
(O}
-
=
Z
>
N
©
1 S
©
(8]
(el
()
o
()
L
(o)
=
e
()
O

www.dzone.com

Getting Started with FitNesse

.~ !DZone Refcardz

= About FitNesse

= FitNesse Overview

= Configuring FitNesse

* Formatting Cheat Sheet
= BDD Testing

* Hot Tips and more...

Getting Started with FitNesse

By Erik Pragt

ABOUT FITNESSE

FitNesse is an open source automated framework created

for software testing purposes. It stimulates collaboration in
software development by providing a WIKI powered test
framework which enables customers, testers and programmers
to easily create and edit tests in a platform independent way.
FitNesse is based on Ward Cunninghams’s Framework for
Integrated Test (FIT) and is now further developed by Robert
C. Martin.

FitNesse is designed to support functional testing (also know
as acceptance testing) by being integrated on a business level.
This is different from testing on a User Interface level, where
tools like Selenium, HtmlUnit, Watir and many others are used.

FITNESSE OVERVIEW

Fitnesse

Instructions

Slim : _— System Under

Customer readzble tests defining
business logic

FitNesse works by executing Wiki pages which call custom
written Fixtures. Fixtures are a bridge between the Wiki pages
and the System Under Test (SUT), which is the actual system
to test. These Fixtures can be written in many programming
languages like Java, C#, and Ruby.. Whenever a Wiki test is
executed, the Fixtures works by calling the System Under Test
(SUT) with the appropriate parameters, execute a piece of
business logic in the software system, and pass the results (if
any) of the SUT back to the Wiki front-end, which in turn will
visually indicate if a test has passed or not.

FitNesse has two test systems, SLIM and FIT. FIT is the older
test system, and is no longer actively developed. However,
recent plans indicate that FIT might be further developed.
Because of the complexity to maintain and support FIT on
different platforms, SLIM was created. SLIM is a lightweight
version of the FIT protocol. One of the design goals of SLIM
was to easily port implementations to different languages.
Also, in contrast to FIT, SLIM doesn’t require any dependencies
on the FitNesse framework in the Fixtures code, which makes
writing fixtures more easy.

INSTALLING FITNESSE

While FitNesse is available in multiple languages (see
http://www.fitnesse.org/FrontPage.FitServers), this Refcard will focus on
the most actively developed version, which is the Java variant.

You'll need Java 6 to run the most recent version of FitNesse.

Below are the steps to install FitNesse:
(1) Download the most recent version from
http://www.fitnesse.org/FrontPage.FitNesseDevelopment.DownlLoad
(2) Run “java -jar fitnesse.org”. FitNesse will extract itself
and will try to run itself on port 80.

(3) Note: when running on port 80 fails, e.g. because of
security constraints or the port is already in use, try to run
FitNesse by typing “java -jar fitnesse.jar -p 9090". This
will start FitNesse on port 9090

(4) Access FitNesse by pointing your web browser to
http:/localhost:<port-number> to see the FitNesse Front page

FITNESSE COMMAND LINE OPTIONS

FitNesse requires very little configuration, but does provide
some options, which are displayed below.

Usage: java -jar fitnesse.jar [-pdrleoa]
-p <port number> {80}
<working directory> {.}
<page root directory> {FitNesseRoot}
<log directory> {no logging}
<days> {14} Number of days before page versions expire
omit updates
{user:pwd | user-file-name} enable authentication.
Install only, then quit.
<command> execute single command.

AFDOM~SQa

TESTS AND SUITES

FitNesse has the concept of Suites and Tests. Suites are sets
of Tests, which is a way to organize the Tests. As an additional
benefit, when executing a Suite, all Tests within the Suite are
executed.

CREATING THE SUITE

To create a new FitNesse suite:

® Go to the FitNesse Front page at http://localhost:9090
e Click Edit in the left menu
¢ Type the name of the Suite after the existing text, e.g. JukeboxSuite

= Don’t Miss An Issue!
Get over 90 DZone Refcardz
FREE from Refcardz.com!

Al
oozl D2one Retcands

Visit Refcardz.com to get them all Free!

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone Refcardz

Getting Started with FitNesse

Important: FitNesse will only create links when the text is written in
CamelCase. This means that every page needs to start with an uppercase
character and at least one other letter in the word is written in uppercase.

e Click save

e Click on the question mark [?] next to the JukeboxSuite text

® Press save
An empty Suite has now been created, which is indicated by
the ‘Suite’ text on top of the left menu.

Note: FitNesse marks a page as a Suite automatically when it starts or ends
with Suite. A Wiki page can also manually be set as an Suite in the page
properties by clicking 'Properties’.

CREATING A NEW FITNESSE TEST

The Decision Table is the default test table style used by
FitNesse. When not specifying a table prefix, FitNesse decides it
is a Decision Table. An example Decision Table is used below to
assert the proper conversion of payments into credits.

Creating a Test is similar to creating a new Suite:
® When in a Suite, click 'Edit’" in the left menu
o Clear the text area and type the name of the Test, e.g. PaymentTest
e Click save
e Click on the question mark [?] next to the PaymentTest
e Clear the text area and replace the text by the following:

!4 Story: the amount you pay determines the received credits.

!|credits for payment|
|payment|credits?|

[.25 |1 |
|1 |4 |
[5 120 |

o (There are multiple types of test styles, but the above is a
Decision Table)

® Press 'Save’
Your first test has now been created, including some markup.
This markup is ignored when executing the Test; only tables are
executed. When you execute this test by clicking on ‘Test’ in the
left menu, your test will fail with an error. To get the test to work,
we need to do two more things: write the Fixture and configure
FitNesse correctly.

WRITING THE FIXTURE

The Fixture will be the layer between the production code (the
Subject Under Test) and the FitNesse pages. There are multiple
types of Fixtures, and to support the Test above, a Decision
Table Fixture is needed. Consider the following code to test:

package jukebox.sut;
public class JukeBox {
public int calculateCredits(double payment) {
return payment * 4;
}

}

The Fixture to test this class looks like this:

package jukebox.fixtures;
import jukebox.sut.JukeBox;

public class CreditsForPayment {
private double payment;
private int credits;

public void execute() { // executed after each table row
this.credits = new JukeBox().calculateCredits(payment);

i

public void setPayment(double payment) {
this.payment = payment;

// setter method

public int credits() { // returning function because of question
mark in the test return this.credits;

The Fixture is created from the FitNesse page, and for each row:
e First the setters are called (in this case setPayment),
e Then the execute is called to do call the SUT
e Then the result is retrieved from the Fixture and compared
to the FitNesse expectation.

CONFIGURING FITNESSE

By default, FitNesse uses FIT as it's default Test System. Since
we want to use SLIM instead, this needs to be changed. We
can change this by editing the Test page again, and add the
following line on top of the page:

| !define TEST_SYSTEM {slim}

This line tells FitNesse to use the Slim instead of FIT, and
allows FitNesse to execute our Fixtures correctly.

What we also need to do is set the classpath. Please check
your IDE to see what the output classpath of the project is, and
add that to the following line:

!path <your-classpath-here>

As an example of the above, the following would tell FitNesse
to use the libraries in the development folder:

!path c:\Development\spring.jar
Ipath c:\Development\hibernate.jar

The last thing we need to do is tell FitNesse in which package
to find the Fixture. This can be done either by prefixing the
name of the fixture class in the Wiki, or use a special kind of
Table, the Import Table.

Add the following to your FitNesse Test, above the ‘credits for
payment’ section:

|import|
| jukebox.fixtures|

Pressing the 'Test’ button in the left menu will instruct FitNesse
to execute the Test. The FitNesse Fixture will call the SUT,

and color the Wiki page according to the test results. This will
result in a green Wiki table representing a correctly executed
test as can be seen in the following image.

JavalukeBox,ukeso i

¢ (@ Google)
Snin G i i B (TS Gl |
7 Testresus: I m

800 Tes

(<[] (=] o

[0 52 ArclesUnc. cplesOfood Sonar NideraJRA Fi

JavalukeBox. JukeBox. lukeBoxStories.

PaymentDeterminesCredits

E 03 TesT RESULTS _history]

Test Assertions: 6 right, 0 wrong, 0 ignored, 0 exceptions |
> s s Expand All | Collapse All
> Set JavalukeBox.SetUp (edit)

The amount you pay determines how many credits get added to your balance.
Refactor

[s s

| &

ey

sts

Expand All | Collapse All

credits for payment
| [payment Jeredits?
25 1
10 5
= | [s0 25

Versions. 10 60

[souen

4

RUNNING FITNESSE TESTS

Tests, however well written, can fail due to numerous reasons.
The test can be wrong, the results can be asserted incorrectly,
or the Subject Under Tests is incorrect and returns the

wrong results. To find out what is causing this, tests can be

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

7DZone Refcardz

Getting Started with FitNesse

debugged. When you want to debug a test, start by adding
?responder=test&remote_debug=true to the URL for the test.
After starting the test in FitNesse, start a remote debugging
process in the right port. (Port 8000 if you are using the default
settings for REMOTE_DEBUG_COMMAND, though this can be
changed by customizing the REMOTE_DEBUG_COMMAND in
your Wiki)

ORGANIZING TESTS

To structure your Tests in a good way it's a good idea to create
Suites per area of functionality. For example, a Suite can be
created for Managing Inventory (InventoryManagementSuite),
for Sales (SalesSuite) and for Accounting (AccountingSuite).
The Tests should be organized functionality wise, not
technology wise. So don't create a WebserviceTestSuite, or an
XmlParseTestSuite, because in that way you tie your tests too
much to the implementation and focus less on the business
functionality.

Organizing your tests in a functional way allows you to run the
tests in a finer granularity, where you can choose to either run
all of the Suites, some of the Suites, or just a single Test.

Organizing your tests in a functional way allows you to
run the tests in a finer granularity, where you can choose

to either run all of the Suites, some of the Suites, or just a
single Test.

SLIM TEST TABLE STYLES

The first cell of a slim table determines what kind of Test Table
itis. Here are the table types provided by FitNesse:

Table Name Description

Decision Table Supplies the inputs and outputs for decisions.

Query Table Supplies the expected results of a query.

Subset Query Table Supplies a subset of the expected results of a query.

Ordered query Table | Supplies the expected results of a query. The rows are expected to

be in order.

Script Table A series of actions and checks. Similar to Do Fixture.

Scenario Table A table that can be called from other tables.

Table Table A very flexible table which can be used for almost everything.
Import Add a path to the fixture search path.

Comment A table which will not be executed.

Library Table A table that installs fixtures available for all test pages.

DECISION TABLE

The decision table is the default table style used by FitNesse.
That is, when not specifying a prefix, FitNesse decides it is a
Decision Table. As an alternative, you can prefix the Fixture
name definition in the Test page with 'decision:’ or ‘dt:’, so the
example below would look like: ‘decision:credits for payment’.
An example of a decision table is shown below:

13 Payment test
The amount you pay determines how many credits get added to your balance.

!|credits for payment|
|payment|credits?|

|.25 |1 |
|1.0 |5 |
5.0 |25 |
|10 |60 |

The English text above outside the table is ignored by

FitNesse and only serves a documenting purpose. The (pipe
separated) table however is executed by FitNesse. There are 3
items in the table: the fixture name (credits for payment), the
header (payment & credits), and the data (the rest of the table).

Please note the exclamation mark (!) in the first row. While
not explicitly needed in this example, it prevents FitNesse
from interpreting camel case words as page links. Putting a
exclamation mark in the first row will leave any camel case
words as-is and will not turn them into page links.

The header row consists of two header names, payment and
credits. Normally, each header corresponds to a set function.
The ‘credits’ header contains a ? Decision Tables consider this
to be an output and so calls it as a function. The return value
of that function is compared to the cell contents and the cell is
colored green if it matches the cell, or red if it doesn't.

When executing this Test, FitNesse will look in the classpath
for a fixture named CreditsForPayment. For each line in the
table, FitNesse will call a setter for payment on the Fixture
(setPayment(double payment)). After all ‘set’ functions have
been called, the ‘execute’ method will be called by FitNesse.
In the example below, the ‘execute’ method does the actual
work. After that, the ‘credits’ function will be called (public
int credits()), and the result of that call will be evaluated by
FitNesse and colored accordingly. The code required to make
this work is shown below.

package jukebox.fixtures;
public class CreditsForPayment {
private double payment;
private int credits;
public void setPayment(double payment) {
this.payment = payment;

public void execute() {
this.credits = JukeBox.calaculateCredits(payment)
}

public int credits() {
return credits;

}

Optional Functions

Decision tables have the option to implement optional
functions, which will be called if they are defined in the Fixture.
In the example above, the execute function is used. Decision
tables know 3 optional functions:

Function | Description

reset Called once per row before any set or output functions care called.

execute Called once per row after all set functions have been called, but just before the
first output (if any) is called.

table Is called after the constructor and before any rows are processed. It is passed the
contents of the complete table in the form of a list of lists that contain all the cells
except for the very first row.

QUERY TABLE

Query tables are, as the name implies, meant to query for data.
There are currently 3 kinds of query tables, which are almost
identical, but with some notably exceptions.

Fixture Description

Query A standard query table, which compares the complete set of data in and
unordered way.

Subset query Only those rows defined in the table need to be in the Fixture result.

The order of the rows in the table must be in the same order as the rows
returned by the query.

Ordered query

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Getting Started with FitNesse

A query table is used to compare the results of a query. This
is helpful when you only need to make assertions about data,
instead of also manipulating data in the system. An example:

|Query:songs from artist|Led Zeppelin|
|title|artist|duration]|

|Stairway to Heaven|Led Zeppelin|8:36|
|Immigrant Song|Led Zeppelin|2:25|

The following code describes the fixture:

package jukebox.fixtures;

import static util.ListUtility.list;
import java.util.*;
import jukebox.sut.Song;

public class SongsFromArtist {
String artist;

public SongsFromArtist(String artist) {
this.artist = artist;
}

public List<Object> query() {
List result = new ArrayList();
for (Song song : JukeBox.findSongsFromArtist(artist)) {
result.add(list(
list(“title”, song.getTitle()),
list(“artist”, song.getArtist()),
list(“duration”, song.getDurationInUserFriendlyFormat())

);
}

return result;

}

Note that the list function simply builds an ArrayList from it's
arguments. It's in the ListUtility class, which is included in the
fitnesse.jar.

The Fixture class must have a query method that returns a list
of rows. Each row returned by the query method is a list of
fields. Each field is a two-element list composed of the field
name and it's value as a String.

Each row in the table is checked to see if there is a match in
the query response. The results of the comparison are colored
accordingly, and are checked for extra or missing records. The
order of the rows is irrelevant in the query tables.

If a “table” method is declared in the fixture it will be called
before the query function is called. It will be passed a list of
rows which are themselves lists of cells. This is the same format
as the table method of Decision table.

SCRIPT TABLE EXAMPLE

Script tables are one of the most flexible table styles and can
be used for scenario or story based testing. When using a
Script table, each statement in the FitNesse test will refer to
a method of the fixture used or to an earlier defined scenario.
Each statement can be prefixed by one of the Script Table
keywords (see below). An example:

|script:current account |
check	cash balance should be 10.0	
deposit	.25	
check	cash balance should be	.25
deposit	.75	
check	cash balance should be	1
$balance=	total deposits	
ensure	withdraw	1
note	account should not allow negative balance	

Java code

public class CurrentAccount {
public double cashBalanceShouldBe() { }
public void deposit(double amount) { }
public boolean withdraw(double amount) { }
public double totalDeposits() { }

}

When executing this test, a function alone in a row will turn red

or green if it returns a boolean. Otherwise it will simply remain
uncolored.

Script Table Keywords

check Followed by a function call. The last cell of the row is the expression to expect of
the function call.

check not Followed by a function call. The last cell of the row is the expression to not be
matched by what the function actually returns.

ensure Followed by a function call which return boolean (true for green, red for false)

reject Opposite of ensure, meaning true is red, false is green.

note All other cells in that row will be ignored. Alternatives to note are if the first cell is
blank, or if the first cell begins with # or *.

show Followed by a function call. A new cell is added after the test has run which will
contain the return value of the function. Good for debugging.

start The rest of the row is the name and constructor arguments for a new actor (a
fixture) which replaces the current actor.

If a symbol assignment (see below] is in the first cell, e.g.
$name=, then it should be followed by a function. The

return value of the function is assigned to the symbol and
can be used in later calls to other functions.

IMPORT TABLE

An Import Table is not a test table. Instead, it tell the
underlying test system (the Slim Executor) which classpath
prefixes to use when searching for the Fixtures. This way,
the fully qualified name (the name of the class including the
package name) of the Fixture can be replaced by only the
classname of the Fixture.

An Import Table can be used like the following:

| import|
| com.path.to.fixture|

|ClassNameOfFixture|

COMMENT TABLE

Similar to Import Tables, Comment Tables are not Test Tables.
As the name implies, Comment Tables are used to comment
out tables. Commented tables are not executed.

| comment |
|this table| is not|executed|

LIBRARY TABLE

A Library Table can be used to make functions available for
all pages underneath the page the Library Table is defined
in. Whenever a method is called that is not available on the
Fixture, then all Fixtures defined as libraries are scanned for
that function so that it can be invoked.

Library tables can be defined by creating a Wiki table of which
the first row contains the reserved word Library. All subsequent
rows following the first are the names of fixtures. These
Fixtures are located the same way in the classpath as normal
Fixtures, so the rules of the Import Table apply here also.
Library Tables can be used for common functionality which
should be reused between tests. An example:

|Library|
|song creation|

script	jukebox fixture
create song	Stairway to Heaven
play song	Stairway to Heaven

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Getting Started with FitNesse

And the associated Fixture code:

public class SongCreation {
public void createSongForArtist(String songName) {
// song creation logic here

}

public class JukeboxFixture {
public void playSong(String songName) {
playService.playSong(songName) ;

Plain text table I[my simple
table
1!
Literalized table Il
first:Erik
last:Pragt
|

Links and References

Page links - from root .RootPagel.Childpage]

The lookup strategy of functions is:
(1) First try to find the function in the current Fixture and execute it.
(2) If the function was not found, look it up in the System Under Test.

(3) If the function was not found in the System Under Test, look in the
list of defined libraries, in reversed order of creation. This means that
the function is first looked up in the last defined library Fixture, then in
the one before that, etc.

USING SYMBOLS

If a $<symbolName> appears in an output cell of a table, then
that symbol will be loaded with that output. For example:

|DT:some decision table|
|input |output?|

|3]$V=|

|$V]8]

[9]8V]

The first row above loads the return value of the output

function into the symbol V. The second row will load the
previously stored value of V into the input. The third row
compares the output with the previously stored value of
the symbol.

FORMATTING CHEAT SHEET

FitNesse comes with an extensive set of formatting options to
style the text in Wiki pages.
Character formatting

Page links - sibling SamelevelPage|.ChildPage]

Page links - child or symbolic | >ChildPage[.ChildPage]

Page links - from parent <ParentPagel[.ChildPagel]

Cross-reference Isee AnyPagePath

“In page” label lanchor label-name

text #label-name text
Alabel-name
[[text][#label-name]]

Jump to anchor - in-line
Jump to anchor - left-justified
Jump to anchor - in an alias

External links -web http://url-path

-local http://files/somePath

-alias [[text][/files"/localPath]]

-alias [[textl[AnyPagePath#label-name]]
Picture limg url-to-image-file

- clickable [[!img url-to-image-file]lsome-link]]
Contents List Icontents

Contents Tree Icontents -R

Content Sub-tree lcontents -R2

linclude AnyPagePath

Include page

Variables

Variable Definition Idefine name {value}

Variable Usage ${name}

Expression Evaluation | ${=expression=}

Global Variables
Global variables can be set by placing them in the Wiki pages,
for example:

| !define TEST_SYSTEM { slim }

Variable Definition Idefine name {value}

Variable Usage ${name}

Expression Evaluation

${=expression=}

Comment #text
Italics "text"
Bold "text"!
Style Istyle_<style>(text), e.g. Istyle_pass(passed!)
Strike-through —text—-
Header 11 Title
12 Header
13 Small header
Bullet Lists [space]* Item one

[space]lspace]* Sub item one
[space]lspace]* Sub item two

Numbered lists (numbers will be
incremented automatically)

[space]1 ltem one
[space]l ltem two
[space]l ltem three

FitNesse doesn't have

Centering Ic center this text
"As-is"/escaping I-text-!

“As-is" I<text>!
Formatted “as is” {{{text}}}

provides the right tool

BDD STYLE TESTING

Behavior Driven Development (or BDD) is an Agile software
development technique that encourages collaboration
between participants in a software project. BDD focuses on
exposing internal logic (typically business rules) to review by
stakeholder. As such, it's a perfect match with FitNesse's goals.

special support for Behavior Driven

Development (BDD) style testing in the form of special Test
Tables, but using a combination of Script and Scenario Tables

s to support the popular Given-When-

Line and Block Formatting

Horizontal Line [—

Note Inote text

1* [title]
multi-line Wiki text
*

Collapsible section expanded

1> [title]
multi-line Wiki text
|

Collapsible section collapsed

1*< [title]
this is hidden, but still active

gl

Hidden collapsible section

Then style of testing User Stories.

Consider the following example:

Given a juke box with 0 credits

When | deposit .25

Then the juke box should show 1 credits

Due to the flexible nature of FitNesse and Script Tables, it's
easy to support a story like the one above. There are multiple
ways to implement this in FitNesse, but one of the best ways is
to use a combination of Plain Text Tables and Scenario Tables.

Plain Text Tables
Plain Text Tables can be used to surround plain text with ![

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

/.7 DZone Refcardz

Getting Started with FitNesse

and]! symbols to turn the text into tables. The good thing
about the Plain Text Table is that it can be combined with the
FitNesse tests tables, for example the Script table. This can be
done by adding the ‘script’ tag after the ![symbol. This would
result in the following Wiki text:

'[script

Given a juke box with 0 credits

When I deposit .25

Then the juke box should show 1 credits
1!

As you can see in the story, there is a combination of text and
parameters. Scenario tables with a parameterized style provide
a good way of handling this.

Declaring Scenarios Using Parameterized Style

Instead of using pipe symbols to separate between function
names and parameters, you can also declare a scenario by
embedding underscores within the name of the scenario to
represent variables. Each of the underscores represent an
argument which are named in a comma separated list in the
cell following the scenario name.

#page driver
|script|juke box|

scenario	Given a juke box with _ credits and _ songs	credits,songs
set credits	@credits	
set songs	@songs	

FitNesse will now invoke the scenario instead of looking for
a method in a Fixture. The body of the scenario uses the
supplied parameter names by prefixing them with an '@’ sign.

The body of the scenario type will be invoked against the page

driver. The page driver can be defined by using the script tag.
This needs to be defined before any scenarios are defined.
The page driver is just a normal Script Fixture, and all functions
defined in the scenario are executed against that Fixture.

Creating a Test like this can hide the details of the test and
allows you to focus on a readable test while creating reusable
scenarios in the process.

TRAINING

Neuri Ltd (http://neuri.co.uk) and jWorks (http://www.jworks.nl)
offer training courses for FitNesse and provide professional
training for Test Driven Development and Agile Acceptance
Testing. On a regular basis, jWorks offers free Open Source
Test Workshops to promote the usage of Automated
Acceptance testing.

CONCLUSION

FitNesse provides an Open Source testing framework which is
flexible enough to support most testing needs. An investment
is needed to setup the test framework, but this investment
leads to better software, less bugs and software which is easier
to maintain. FitNesse allows to test quick and often, providing
quick feedback on the health of the software being delivered
without the need for any manual labor. This makes FitNesse

a very valuable tool which would fit nicely in any software
development project!

ABOUT THE AUTHOR

My name is Erik Pragt. I've been a software developer
since the end of the 90's, and | worked for various
companies, including ISP's, Web Designers, a Medical
Software Developer. | focus on Java (JEE, Maven,
Wicket), Distributed Software Development, Agile
Processes, Coaching, SCRUM and Testing (TDD), but
I'm passionate about Groovy and Grails and I'm a strong believer in a
place for Grails in the EE world!

Getting Started with

RECOMMENDED BOOK

Using a realistic case study, Rick Mugridge and Ward
[7ekeeaa] Cunningham--the creator of Fit--introduce each of Fit's
rrrrmEey underlying concepts and techniques, and explain how
you can put Fit to work incrementally, with the lowest

possible risk.

BUY NOW

books.dzone.com/books/fit

- Browse our collection of 100 Free Cheat Sheets

Cloud Computing

Upcoming Refcardz

Apache Ant
Hadoop
re e Spring Security
Subversion
DZone, Inc.
. ISBN-13: 978-1-934238-71-4
140 Preston Executive Dr. ISBN-10: 1-934238-71-k
Suite 100 50795
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome g
. . refcardz@dzone.com i ~
tutorials, cheatsheets, blogs, feature articles, source code and more. 9%781934"238714 @

"DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, Version 1.0
photocopying, or otherwise, without prior written permission of the publisher.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

