

DZone, Inc. | www.dzone.com

By Erik Pragt

ABOUT FITNESSE

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 F

it
N

e
ss

e

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#100

Getting Started with FitNesse
CONTENTS INCLUDE:
n	 About FitNesse
n	 FitNesse Overview
n	 Configuring FitNesse
n	 Formatting Cheat Sheet
n	 BDD Testing
n	 Hot Tips and more...

FitNesse is an open source automated framework created
for software testing purposes. It stimulates collaboration in
software development by providing a WIKI powered test
framework which enables customers, testers and programmers
to easily create and edit tests in a platform independent way.
FitNesse is based on Ward Cunninghams’s Framework for
Integrated Test (FIT) and is now further developed by Robert
C. Martin.

FitNesse is designed to support functional testing (also know
as acceptance testing) by being integrated on a business level.
This is different from testing on a User Interface level, where
tools like Selenium, HtmlUnit, Watir and many others are used.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

FITNESSE OVERVIEW

FitNesse works by executing Wiki pages which call custom
written Fixtures. Fixtures are a bridge between the Wiki pages
and the System Under Test (SUT), which is the actual system
to test. These Fixtures can be written in many programming
languages like Java, C#, and Ruby.. Whenever a Wiki test is
executed, the Fixtures works by calling the System Under Test
(SUT) with the appropriate parameters, execute a piece of
business logic in the software system, and pass the results (if
any) of the SUT back to the Wiki front-end, which in turn will
visually indicate if a test has passed or not.

FitNesse has two test systems, SLIM and FIT. FIT is the older
test system, and is no longer actively developed. However,
recent plans indicate that FIT might be further developed.
Because of the complexity to maintain and support FIT on
different platforms, SLIM was created. SLIM is a lightweight
version of the FIT protocol. One of the design goals of SLIM
was to easily port implementations to different languages.
Also, in contrast to FIT, SLIM doesn’t require any dependencies
on the FitNesse framework in the Fixtures code, which makes
writing fixtures more easy.

INSTALLING FITNESSE

While FitNesse is available in multiple languages (see
http://www.fitnesse.org/FrontPage.FitServers), this Refcard will focus on
the most actively developed version, which is the Java variant.
You’ll need Java 6 to run the most recent version of FitNesse.

FITNESSE COMMAND LINE OPTIONS

FitNesse requires very little configuration, but does provide
some options, which are displayed below.

Usage: java -jar fitnesse.jar [-pdrleoa]
 -p <port number> {80}
 -d <working directory> {.}
 -r <page root directory> {FitNesseRoot}
 -l <log directory> {no logging}
 -e <days> {14} Number of days before page versions expire
 -o omit updates
 -a {user:pwd | user-file-name} enable authentication.
 -i Install only, then quit.
 -c <command> execute single command.

TESTS AND SUITES

FitNesse has the concept of Suites and Tests. Suites are sets
of Tests, which is a way to organize the Tests. As an additional
benefit, when executing a Suite, all Tests within the Suite are
executed.

CREATING THE SUITE

To create a new FitNesse suite:
 • Go to the FitNesse Front page at http://localhost:9090
 • Click Edit in the left menu
 • Type the name of the Suite after the existing text, e.g. JukeboxSuite

Below are the steps to install FitNesse:
 (1) Download the most recent version from
 http://www.fitnesse.org/FrontPage.FitNesseDevelopment.DownLoad
 (2) Run “java -jar fitnesse.org”. FitNesse will extract itself
 and will try to run itself on port 80.
 (3) Note: when running on port 80 fails, e.g. because of
 security constraints or the port is already in use, try to run
 FitNesse by typing “java -jar fitnesse.jar -p 9090”. This
 will start FitNesse on port 9090
 (4) Access FitNesse by pointing your web browser to
 http:/localhost:<port-number> to see the FitNesse Front page

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with FitNesse

CREATING A NEW FITNESSE TEST

The Decision Table is the default test table style used by
FitNesse. When not specifying a table prefix, FitNesse decides it
is a Decision Table. An example Decision Table is used below to
assert the proper conversion of payments into credits.

Creating a Test is similar to creating a new Suite:
 • When in a Suite, click ‘Edit’ in the left menu
 • Clear the text area and type the name of the Test, e.g. PaymentTest
 • Click save
 • Click on the question mark [?] next to the PaymentTest
 • Clear the text area and replace the text by the following:

!4 Story: the amount you pay determines the received credits.

!|credits for payment|
payment	credits?
.25	1
1	4
5	20

 • (There are multiple types of test styles, but the above is a
 Decision Table)
 • Press ‘Save’

Your first test has now been created, including some markup.
This markup is ignored when executing the Test; only tables are
executed. When you execute this test by clicking on ‘Test’ in the
left menu, your test will fail with an error. To get the test to work,
we need to do two more things: write the Fixture and configure
FitNesse correctly.

WRITING THE FIXTURE

The Fixture will be the layer between the production code (the
Subject Under Test) and the FitNesse pages. There are multiple
types of Fixtures, and to support the Test above, a Decision
Table Fixture is needed. Consider the following code to test:

package jukebox.sut;

public class JukeBox {
 public int calculateCredits(double payment) {
 return payment * 4;
 }
}

The Fixture to test this class looks like this:
package jukebox.fixtures;

import jukebox.sut.JukeBox;

public class CreditsForPayment {
 private double payment;
 private int credits;

 public void execute() { // executed after each table row
 this.credits = new JukeBox().calculateCredits(payment);
 }

 public void setPayment(double payment) { // setter method
 this.payment = payment;
 }

 public int credits() { // returning function because of question
 mark in the test return this.credits;
 }
}

The Fixture is created from the FitNesse page, and for each row:
 • First the setters are called (in this case setPayment),
 • Then the execute is called to do call the SUT
 • Then the result is retrieved from the Fixture and compared
 to the FitNesse expectation.

CONFIGURING FITNESSE

By default, FitNesse uses FIT as it’s default Test System. Since
we want to use SLIM instead, this needs to be changed. We
can change this by editing the Test page again, and add the
following line on top of the page:

!define TEST_SYSTEM {slim}

This line tells FitNesse to use the Slim instead of FIT, and
allows FitNesse to execute our Fixtures correctly.

What we also need to do is set the classpath. Please check
your IDE to see what the output classpath of the project is, and
add that to the following line:

!path <your-classpath-here>

As an example of the above, the following would tell FitNesse
to use the libraries in the development folder:

!path c:\Development\spring.jar
!path c:\Development\hibernate.jar

The last thing we need to do is tell FitNesse in which package
to find the Fixture. This can be done either by prefixing the
name of the fixture class in the Wiki, or use a special kind of
Table, the Import Table.

Add the following to your FitNesse Test, above the ‘credits for
payment’ section:

|import|
|jukebox.fixtures|

Pressing the ‘Test’ button in the left menu will instruct FitNesse
to execute the Test. The FitNesse Fixture will call the SUT,
and color the Wiki page according to the test results. This will
result in a green Wiki table representing a correctly executed
test as can be seen in the following image.

Important: FitNesse will only create links when the text is written in
CamelCase. This means that every page needs to start with an uppercase
character and at least one other letter in the word is written in uppercase.
 • Click save
 • Click on the question mark [?] next to the JukeboxSuite text
 • Press save

An empty Suite has now been created, which is indicated by
the ‘Suite’ text on top of the left menu.
Note: FitNesse marks a page as a Suite automatically when it starts or ends
with Suite. A Wiki page can also manually be set as an Suite in the page
properties by clicking ‘Properties’.

	

RUNNING FITNESSE TESTS

Tests, however well written, can fail due to numerous reasons.
The test can be wrong, the results can be asserted incorrectly,
or the Subject Under Tests is incorrect and returns the
wrong results. To find out what is causing this, tests can be

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with FitNesse

ORGANIZING TESTS

To structure your Tests in a good way it’s a good idea to create
Suites per area of functionality. For example, a Suite can be
created for Managing Inventory (InventoryManagementSuite),
for Sales (SalesSuite) and for Accounting (AccountingSuite).
The Tests should be organized functionality wise, not
technology wise. So don’t create a WebserviceTestSuite, or an
XmlParseTestSuite, because in that way you tie your tests too
much to the implementation and focus less on the business
functionality.

Organizing your tests in a functional way allows you to run the
tests in a finer granularity, where you can choose to either run
all of the Suites, some of the Suites, or just a single Test.

SLIM TEST TABLE STYLES

The first cell of a slim table determines what kind of Test Table
it is. Here are the table types provided by FitNesse:

Table Name Description

Decision Table Supplies the inputs and outputs for decisions.

Query Table Supplies the expected results of a query.

Subset Query Table Supplies a subset of the expected results of a query.

Ordered query Table Supplies the expected results of a query. The rows are expected to
be in order.

Script Table A series of actions and checks. Similar to Do Fixture.

Scenario Table A table that can be called from other tables.

Table Table A very flexible table which can be used for almost everything.

Import Add a path to the fixture search path.

Comment A table which will not be executed.

Library Table A table that installs fixtures available for all test pages.

Hot
Tip

Organizing your tests in a functional way allows you to
run the tests in a finer granularity, where you can choose
to either run all of the Suites, some of the Suites, or just a
single Test.

The decision table is the default table style used by FitNesse.
That is, when not specifying a prefix, FitNesse decides it is a
Decision Table. As an alternative, you can prefix the Fixture
name definition in the Test page with ‘decision:’ or ‘dt:’, so the
example below would look like: ‘decision:credits for payment’.
An example of a decision table is shown below:

!3 Payment test

The amount you pay determines how many credits get added to your balance.

!|credits for payment|
payment	credits?
.25	1
1.0	5
5.0	25
10	60

The English text above outside the table is ignored by

DECISION TABLE

debugged. When you want to debug a test, start by adding
?responder=test&remote_debug=true to the URL for the test.
After starting the test in FitNesse, start a remote debugging
process in the right port. (Port 8000 if you are using the default
settings for REMOTE_DEBUG_COMMAND, though this can be
changed by customizing the REMOTE_DEBUG_COMMAND in
your Wiki)

FitNesse and only serves a documenting purpose. The (pipe
separated) table however is executed by FitNesse. There are 3
items in the table: the fixture name (credits for payment), the
header (payment & credits), and the data (the rest of the table).

Please note the exclamation mark (!) in the first row. While
not explicitly needed in this example, it prevents FitNesse
from interpreting camel case words as page links. Putting a
exclamation mark in the first row will leave any camel case
words as-is and will not turn them into page links.

The header row consists of two header names, payment and
credits. Normally, each header corresponds to a set function.
The ‘credits’ header contains a ? Decision Tables consider this
to be an output and so calls it as a function. The return value
of that function is compared to the cell contents and the cell is
colored green if it matches the cell, or red if it doesn’t.

When executing this Test, FitNesse will look in the classpath
for a fixture named CreditsForPayment. For each line in the
table, FitNesse will call a setter for payment on the Fixture
(setPayment(double payment)). After all ‘set’ functions have
been called, the ‘execute’ method will be called by FitNesse.
In the example below, the ‘execute’ method does the actual
work. After that, the ‘credits’ function will be called (public
int credits()), and the result of that call will be evaluated by
FitNesse and colored accordingly. The code required to make
this work is shown below.

package jukebox.fixtures;

public class CreditsForPayment {
 private double payment;
 private int credits;

 public void setPayment(double payment) {
 this.payment = payment;
 }

 public void execute() {
 this.credits = JukeBox.calaculateCredits(payment)
 }

 public int credits() {
 return credits;
 }
}

Optional Functions
Decision tables have the option to implement optional
functions, which will be called if they are defined in the Fixture.
In the example above, the execute function is used. Decision
tables know 3 optional functions:

Function Description

reset Called once per row before any set or output functions care called.

execute Called once per row after all set functions have been called, but just before the
first output (if any) is called.

table Is called after the constructor and before any rows are processed. It is passed the
contents of the complete table in the form of a list of lists that contain all the cells
except for the very first row.

QUERY TABLE

Query tables are, as the name implies, meant to query for data.
There are currently 3 kinds of query tables, which are almost
identical, but with some notably exceptions.

Fixture Description

Query A standard query table, which compares the complete set of data in and
unordered way.

Subset query Only those rows defined in the table need to be in the Fixture result.

Ordered query The order of the rows in the table must be in the same order as the rows
returned by the query.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with FitNesse

A query table is used to compare the results of a query. This
is helpful when you only need to make assertions about data,
instead of also manipulating data in the system. An example:

Query:songs from artist	Led Zeppelin	
title	artist	duration
Stairway to Heaven	Led Zeppelin	8:36
Immigrant Song	Led Zeppelin	2:25

The following code describes the fixture:
package jukebox.fixtures;

import static util.ListUtility.list;
import java.util.*;
import jukebox.sut.Song;

public class SongsFromArtist {
 String artist;

 public SongsFromArtist(String artist) {
 this.artist = artist;
 }

 public List<Object> query() {
 List result = new ArrayList();
 for (Song song : JukeBox.findSongsFromArtist(artist)) {
 result.add(list(
 list(“title”, song.getTitle()),
 list(“artist”, song.getArtist()),
 list(“duration”, song.getDurationInUserFriendlyFormat())
)
);
 }
 return result;
 }
}

Note that the list function simply builds an ArrayList from it’s
arguments. It’s in the ListUtility class, which is included in the
fitnesse.jar.

The Fixture class must have a query method that returns a list
of rows. Each row returned by the query method is a list of
fields. Each field is a two-element list composed of the field
name and it’s value as a String.

Each row in the table is checked to see if there is a match in
the query response. The results of the comparison are colored
accordingly, and are checked for extra or missing records. The
order of the rows is irrelevant in the query tables.

If a “table” method is declared in the fixture it will be called
before the query function is called. It will be passed a list of
rows which are themselves lists of cells. This is the same format
as the table method of Decision table.

SCRIPT TABLE EXAMPLE

Script tables are one of the most flexible table styles and can
be used for scenario or story based testing. When using a
Script table, each statement in the FitNesse test will refer to
a method of the fixture used or to an earlier defined scenario.
Each statement can be prefixed by one of the Script Table
keywords (see below). An example:

|script:current account |
check	cash balance should be	0.0
deposit	.25	
check	cash balance should be	.25
deposit	.75	
check	cash balance should be	1
$balance=	total deposits	
ensure	withdraw	1
note	account should not allow negative balance	

Java code
public class CurrentAccount {
 public double cashBalanceShouldBe() { }
 public void deposit(double amount) { }
 public boolean withdraw(double amount) { }
 public double totalDeposits() { }
}

When executing this test, a function alone in a row will turn red

Hot
Tip

If a symbol assignment (see below) is in the first cell, e.g.
$name= , then it should be followed by a function. The
return value of the function is assigned to the symbol and
can be used in later calls to other functions.

An Import Table is not a test table. Instead, it tell the
underlying test system (the Slim Executor) which classpath
prefixes to use when searching for the Fixtures. This way,
the fully qualified name (the name of the class including the
package name) of the Fixture can be replaced by only the
classname of the Fixture.

An Import Table can be used like the following:
|import|
|com.path.to.fixture|

|ClassNameOfFixture|

or green if it returns a boolean. Otherwise it will simply remain
uncolored.

Script Table Keywords

check Followed by a function call. The last cell of the row is the expression to expect of
the function call.

check not Followed by a function call. The last cell of the row is the expression to not be
matched by what the function actually returns.

ensure Followed by a function call which return boolean (true for green, red for false)

reject Opposite of ensure, meaning true is red, false is green.

note All other cells in that row will be ignored. Alternatives to note are if the first cell is
blank, or if the first cell begins with # or *.

show Followed by a function call. A new cell is added after the test has run which will
contain the return value of the function. Good for debugging.

start The rest of the row is the name and constructor arguments for a new actor (a
fixture) which replaces the current actor.

IMPORT TABLE

Similar to Import Tables, Comment Tables are not Test Tables.
As the name implies, Comment Tables are used to comment
out tables. Commented tables are not executed.

|comment|
|this table| is not|executed|

COMMENT TABLE

LIBRARY TABLE

A Library Table can be used to make functions available for
all pages underneath the page the Library Table is defined
in. Whenever a method is called that is not available on the
Fixture, then all Fixtures defined as libraries are scanned for
that function so that it can be invoked.

Library tables can be defined by creating a Wiki table of which
the first row contains the reserved word Library. All subsequent
rows following the first are the names of fixtures. These
Fixtures are located the same way in the classpath as normal
Fixtures, so the rules of the Import Table apply here also.
Library Tables can be used for common functionality which
should be reused between tests. An example:

|Library|
|song creation|

script	jukebox fixture
create song	Stairway to Heaven
play song	Stairway to Heaven

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with FitNesse

If a $<symbolName> appears in an output cell of a table, then
that symbol will be loaded with that output. For example:

|DT:some decision table|
input	output?
3	$V=
$V	8
9	$V

The first row above loads the return value of the output
function into the symbol V. The second row will load the
previously stored value of V into the input. The third row
compares the output with the previously stored value of
the symbol.

USING SYMBOLS

FORMATTING CHEAT SHEET

FitNesse comes with an extensive set of formatting options to
style the text in Wiki pages.
Character formatting

Comment #text

Italics "text"

Bold '''text'''

Style !style_<style>(text), e.g. !style_pass(passed!)

Strike-through --text--

Header !1 Title
!2 Header
!3 Small header

Bullet Lists [space]* Item one
[space][space]* Sub item one
[space][space]* Sub item two

Numbered lists (numbers will be
incremented automatically)

[space]1 Item one
[space]1 Item two
[space]1 Item three

Centering !c center this text

“As-is”/escaping !-text-!

“As-is” !<text>!

Formatted “as is” {{{text}}}

Line and Block Formatting

Horizontal Line -----

Note !note text

Collapsible section expanded !* [title]
multi-line Wiki text
*!

Collapsible section collapsed !*> [title]
multi-line Wiki text
*!

Hidden collapsible section !*< [title]
this is hidden, but still active
*!

Plain text table ![my simple
table
]!

Literalized table ![:
first:Erik
last:Pragt
]!

Links and References

Page links - from root .RootPage[.Childpage]

Page links - sibling SameLevelPage[.ChildPage]

Page links - child or symbolic >ChildPage[.ChildPage]

Page links - from parent <ParentPage[.ChildPage]

Cross-reference !see AnyPagePath

“In page” label !anchor label-name

Jump to anchor - in-line
Jump to anchor - left-justified
Jump to anchor - in an alias

text #label-name text
.#label-name
[[text][#label-name]]

External links -web
-local
-alias
-alias

http://url-path
http://files/somePath
[[text][/files’’’/localPath]]
[[text][AnyPagePath#label-name]]

Picture
- clickable

!img url-to-image-file
[[!img url-to-image-file][some-link]]

Contents List !contents

Contents Tree !contents -R

Content Sub-tree !contents -R2

Include page !include AnyPagePath

Variables

Variable Definition !define name {value}

Variable Usage ${name}

Expression Evaluation ${=expression=}

Global Variables
Global variables can be set by placing them in the Wiki pages,
for example:

!define TEST_SYSTEM { slim }

Variable Definition !define name {value}

Variable Usage ${name}

Expression Evaluation ${=expression=}

And the associated Fixture code:

public class SongCreation {
 public void createSongForArtist(String songName) {
 // song creation logic here
 }
}

public class JukeboxFixture {
 public void playSong(String songName) {
 playService.playSong(songName);
 }
}

The lookup strategy of functions is:
 (1) First try to find the function in the current Fixture and execute it.
 (2) If the function was not found, look it up in the System Under Test.
 (3) If the function was not found in the System Under Test, look in the
 list of defined libraries, in reversed order of creation. This means that
 the function is first looked up in the last defined library Fixture, then in
 the one before that, etc.

BDD STYLE TESTING

Behavior Driven Development (or BDD) is an Agile software
development technique that encourages collaboration
between participants in a software project. BDD focuses on
exposing internal logic (typically business rules) to review by
stakeholder. As such, it’s a perfect match with FitNesse’s goals.
FitNesse doesn’t have special support for Behavior Driven
Development (BDD) style testing in the form of special Test
Tables, but using a combination of Script and Scenario Tables
provides the right tools to support the popular Given-When-
Then style of testing User Stories.

Consider the following example:
Given a juke box with 0 credits
When I deposit .25
Then the juke box should show 1 credits

Due to the flexible nature of FitNesse and Script Tables, it’s
easy to support a story like the one above. There are multiple
ways to implement this in FitNesse, but one of the best ways is
to use a combination of Plain Text Tables and Scenario Tables.

Plain Text Tables
Plain Text Tables can be used to surround plain text with ![

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with FitNesse

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-71-4
ISBN-10: 1-934238-71-6

9 781934 238714

50795

and]! symbols to turn the text into tables. The good thing
about the Plain Text Table is that it can be combined with the
FitNesse tests tables, for example the Script table. This can be
done by adding the ‘script’ tag after the ![symbol. This would
result in the following Wiki text:

![script
Given a juke box with 0 credits
When I deposit .25
Then the juke box should show 1 credits
]!

As you can see in the story, there is a combination of text and
parameters. Scenario tables with a parameterized style provide
a good way of handling this.

Declaring Scenarios Using Parameterized Style
Instead of using pipe symbols to separate between function
names and parameters, you can also declare a scenario by
embedding underscores within the name of the scenario to
represent variables. Each of the underscores represent an
argument which are named in a comma separated list in the
cell following the scenario name.

#page driver
|script|juke box|

scenario	Given a juke box with _ credits and _ songs	credits,songs
set credits	@credits	
set songs	@songs	

FitNesse will now invoke the scenario instead of looking for
a method in a Fixture. The body of the scenario uses the
supplied parameter names by prefixing them with an ‘@’ sign.

The body of the scenario type will be invoked against the page

driver. The page driver can be defined by using the script tag.
This needs to be defined before any scenarios are defined.
The page driver is just a normal Script Fixture, and all functions
defined in the scenario are executed against that Fixture.

Creating a Test like this can hide the details of the test and
allows you to focus on a readable test while creating reusable
scenarios in the process.

TRAINING

Neuri Ltd (http://neuri.co.uk) and jWorks (http://www.jworks.nl)
offer training courses for FitNesse and provide professional
training for Test Driven Development and Agile Acceptance
Testing. On a regular basis, jWorks offers free Open Source
Test Workshops to promote the usage of Automated
Acceptance testing.

CONCLUSION

FitNesse provides an Open Source testing framework which is
flexible enough to support most testing needs. An investment
is needed to setup the test framework, but this investment
leads to better software, less bugs and software which is easier
to maintain. FitNesse allows to test quick and often, providing
quick feedback on the health of the software being delivered
without the need for any manual labor. This makes FitNesse
a very valuable tool which would fit nicely in any software
development project!

My name is Erik Pragt. I’ve been a software developer
since the end of the 90’s, and I worked for various
companies, including ISP’s, Web Designers, a Medical
Software Developer. I focus on Java (JEE, Maven,
Wicket), Distributed Software Development, Agile
Processes, Coaching, SCRUM and Testing (TDD), but

I’m passionate about Groovy and Grails and I’m a strong believer in a
place for Grails in the EE world!

Using a realistic case study, Rick Mugridge and Ward
Cunningham--the creator of Fit--introduce each of Fit’s
underlying concepts and techniques, and explain how
you can put Fit to work incrementally, with the lowest
possible risk.

BUY NOW
books.dzone.com/books/fit

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

