
Unbreakable Data Access for Any Application
Performance, Functionality, and Reliability for Enterprise Applications

JDBC drivers, ODBC drivers, and ADO.NET data providers

www.datadirect.com/products/data-connectivity

This DZone Refcard is brought to you by:

Visit refcardz.com to browse and download the entire DZone Refcardz collection

• Oracle
• SQL Server
• DB2
• Sybase
• MySQL
• Others

• 32-bit
• 64-bit
• Windows
• UNIX
• Linux
• More

http://www.datadirect.com/products/data-connectivity

DZone, Inc. | www.dzone.com

By Jesse Davis

A BRIEF HISTORY

JD
B

C
 B

e
st

 P
ra

ct
ic

e
s

 w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#101

JDBC Best Practices
CONTENTS INCLUDE:
n	 A Brief History
n	 JDBC Basics
n	 Driver Types and Architechture
n	 Performance Considerations
n	 Data Types
n	 Advanced JDBC and more...

Sun Microsystems created JDBC in the 90s to be the standard
for data access on the Java Platform. JDBC has evolved since
that time from a thin API on top of an ODBC driver to a fully
featured data access standard whose capabilities have now
surpassed its aging brother, ODBC. In recent applications,
JDBC connects persistence layers (such as Hibernate or
JPA) to relational data sources; but the JDBC API with its
accompanying drivers are always the final piece connecting
Java apps to their data! For more in depth (and entertaining)
history, watch this movie on the history of Java and JDBC:

http://www.youtube.com/watch?v=WAy9mgEYb6o

brought to you by...

Hot
Tip

The JDBC specification allows for fetching all data types
using getString or getObject; however, it is a best practice
to use the correct getXXX method as demonstrated
in the code sample above to avoid unnecessary data
conversions.

JDBC BASICS

Connecting to a Server
Getting a basic Connection object from the database is the
first operation to get a handle on. The code snippet below
gets a connection to a SQL Server database. Note that the
Class.forName line is unnecessary if you are using a JDBC 4.0
driver with Java SE 6 or above.

String url = “jdbc:datadirect:sqlserver://nc-cqserver:1433;databaseNa
me=testDB;user=test;password=test”;
try {
 Class.forName(“com.ddtek.jdbc.sqlserver.SQLServerDriver”);
 Connection con = DriverManager.getConnection(url);
}
catch (Exception except) {
 SQLException ex = new SQLException(
 “Error Establishing Connection: “ +
 except.getMessage());
 throw ex;
}

It is good to get metaData from the Connection object to
see what driver and server version you are using. This comes
in handy when its time to debug. Printing to system out or
logging to a file is preferable:

DatabaseMetaData dbmd = con.getMetaData();
System.out.println(“\nConnected with “ +
 dbmd.getDriverName() + “ “ + dbmd.getDriverVersion()
 + “{ “ + dbmd.getDriverMajorVersion() + “,” +
 dbmd.getDriverMinorVersion() +” }” + “ to “ +
 dbmd.getDatabaseProductName() + “ “ +
 dbmd.getDatabaseProductVersion() + “\n”);

Retrieving Data
A straightforward approach to retrieving data from a database
is to simply select the data using a Statement object and
iterate through the ResultSet object:

Statement stmt = con.createStatement();
ResultSet results = stmt.executeQuery(“Select * from foo”);
String product;
int days = 0;
while (results.next()){
 product = results.getString(1);
 days = results.getInt(2);
 System.out.println(product + “\t” + days);
}

Executing a PreparedStatement
Use a PreparedStatement any time you have optional
parameters to specify to the SQL Statement, or values that do
not convert easily to strings, for example BLOBs. It also helps
prevent SQL injection attacks when working with string values.

PreparedStatement pstmt = con.prepareStatement(“INSERT into table2
(ID, lastName, firstName) VALUES (?,?,?)”);
pstmt.setInt(1, 87);
pstmt.setString(2, “Picard”);
pstmt.setString(3, “Jean-Luc”);
rowsInserted += pstmt.executeUpdate();

Calling a Stored Procedure via CallableStatement
Use a CallableStatement any time you wish to execute a stored
procedure on the server:

CallableStatement cstmt = con.prepareCall(“{CALL STPROC1 (?)}”);
cstmt.setString(1, “foo”);
ResultSet rs = cstmt.executeQuery();
rs.next();
int value = rs.getInt(1);

Hot
Tip

CallableStatements can return resultSets, even when
inserting data on the server. If the application doesn’t know
if results should be returned, check for results by issuing a
call to getMoreResults() after execution.

Stop Wasting Time with Type 4 Driver Limitations
Today’s Java applications need a modern solution: Type 5 JDBC

• Oracle
• SQL Server
• DB2

Details at datadirect.com/products/jdbc

Try a Type 5 driver today for:

• Sybase
• MySQL
• Informix

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp
http://www.datadirect.com/products/jdbc/index.ssp

DZone, Inc. | www.dzone.com

2 JDBC Best Practices

DRIVER TYPES AND ARCHITECTURE

TYPE 5: NEW!

While not yet officially sanctioned by the JDBC Expert
Group, there is quite a bit of discussion surrounding the
new Type 5 driver proposal in the JDBC community. Getting
down to the real functional differences, we see this list as the
requirements for Type 5 Drivers as follows:

Codeless
Configuration

The ability to modify options, check statistics and
interact with the driver while it is running. Typically
through a standard JMX MBean.

Performance
Architecture

Drivers specifically designed for multi-core, 64 bit,
and virtualized environments.

Clean Spec
Implementation

Strict adherence to the JDBC standard, solving
problems within the specification instead of using
proprietary methods that promote vendor lock-in.

Advanced
Functionality

Type 5 drivers unlock code that has been trapped in
the vendor native client libraries and bring that into
the Java community. Features include but are not
limited to: Bulk Load, Client side High Availability,
Kerberos, and others.

TYPE 1: The JDBC-ODBC Bridge

The JDBC-ODBC Bridge was the
architecture that the first JDBC
drivers adopted. This architecture
requires an implementation of
the JDBC API that then translates
the incoming JDBC calls to the
appropriate ODBC calls using the JNI
(Java Native Interface). The requests
are then sent to the underlying ODBC
driver (which at the time was just a
shell over the database native client
libraries). The bridge implementation
shipped with the JDK so you only
needed the ODBC drivers and native
DB client libraries to get started.
Although this was a klunky and
headache prone approach, it worked.

	

Type 3 drivers sought to be a 100%
Java solution but never really gained
much traction. Type 3 drivers had a
Java client component and a Java
server component, where the latter
actually talked to the database.
Although this was technically a full
Java solution, the database vendors
did not like this approach as it was
costly – they would have to rewrite
their native client libraries which
were all C/C++. In addition, this
didn’t increase the architectural
efficiency as we are really still a 3 tier
architecture so it is easy to see why
this was never a popular choice.

	

TYPE 3: Two Tier Architecture

The most popular JDBC driver
architecture to date is Type 4.
This architecture encapsulates
the entirety of the JDBC API
implementation along with all
the logic for communicating
directly with the database in a
single driver. This allows for easy
deployment and streamlines the
development process by having
a single tier and a small driver all
in a 100% java package.

	

Hot
Tip

Type 4 drivers have been the traditional favorite
of Java application developers since its inception
due to the clean design and ease of use; drop in the
driver jar and you’re up and running!

TYPE 4: Wire Protocol DriversTYPE 2: Client Based

The next generation of JDBC Drivers
was the ever popular Type 2 driver
architecture. This architecture
eliminated the need for the ODBC
driver and instead directly called the
native client libraries shipped by the
database vendors. This was quickly
adopted by the DB vendors as it was
quick and inexpensive to implement
since they could reuse the existing C/
C++ based native libraries. This choice
still left Java developers worrying about
version and platform compatibility
issues (i.e. client version 6 is not
supported on HP-Itanium processors). 	

Hot
Tip

Some vendors still do their new development in
their native clients first. So, don’t assume that if
their website states that the JDBC driver supports
Kerberos that they mean their Type 4 driver – they
may mean Type 2!

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

DZone, Inc. | www.dzone.com

3 JDBC Best Practices

PERFORMANCE CONSIDERATIONS

Pooling (Object Re-use)

Hot
Tip

Pooling objects results in significant performance savings.
In JDBC, pooling Connection and Statement objects is the
difference between a streamlined app and one that will
consume all your memory. Make use of these pooling
suggestions for all your JDBC applications!

Connection Pooling – Enabling Connection pooling allows the
pool manager to keep connections in a ‘pool’ after they are
closed. The next time a connection is needed, if the connection
options requested match one in the pool then that connection
is returned instead of incurring the overhead of establishing
another actual socket connection to the server

Statement Pooling – Setting the MaxPooledStatements
connection option enables statement pooling.
Enabling statement pooling allows the driver to re-use
PreparedStatement objects. When PreparedStatements are
closed they are returned to the pool instead of being freed
and the next PreparedStatement with the same SQL statement
is retrieved from the pool rather than being instantiated and
prepared against the server.

Hot
Tip

Don’t use PreparedStatements by default! If your SQL
statement doesn’t contain parameters use the Statement
object instead – this avoids a call to internal and wire level
prepare() methods and increases performance!

MetaData Performance
 • Specify as many arguments to DatabaseMetaData
 methods as possible. This avoids unnecessary scans on
 the database. For example, don’t call getTables like this:

ResultSet rs = dbmd.getTables(null,null,null,null);

 Specifying at least the schema will avoid returning
 information on all tables for every schema when the
 request is sent to the server:

ResultSet rs = dbmd.getTables(null,”test”,null,null);

 • Most JDBC drivers populate the ResultSetMetaData
 object at fetch time because the needed data is
 returned in the server responses to the fetch request.
 Some underutilized pieces of ResultSetMetaData include:

ResultSetMetaData.getColumnCount()
ResultSetMetaData.getColumnName()
ResultSetMetaData.getColumnType()
ResultSetMetaData.getColumnTypeName()
ResultSetMetaData.getColumnDisplaySize()
ResultSetMetaData.getPrecision()
ResultSetMetaData.getScale()

Hot
Tip

Instead of using getColumns to get data about a table,
consider issuing a dummy query and using the returned
ResultSetMetaData which avoids querying the system
tables!

Commit Mode
When writing a JDBC application, make sure you consider

how often you are committing transactions. Every commit
causes the driver to send packet requests over the socket.
Additionally, the database performs the actual commit which
usually entails disk I/O on the server. Consider removing auto-
commit mode for your application and using manual commit
instead to better control commit logic:

Connection.setAutoCommit(false);

Hot
Tip

Virtualization and Scalability are key factors to consider
when choosing a JDBC driver. During the Performance
Testing phase of your development cycle, ensure that your
JDBC driver is using the least amount of CPU and Memory
possible. You can get memory and CPU performance
numbers from your driver vendor to see how the drivers
will scale when deployed in a Cloud or other virtualized
environment.

Network Traffic Reduction
Reduce network traffic by following these guidelines.

Technique Benefit

Use addBatch() instead of using
PreparedStatements to insert.

Sends multiple insert requests in a single
network packet

Eliminate unused column data
from your SQL statements

Removing long data and LOBs from your
queries can save megabytes of wire transfer!

Ensure that your database is
set to the maximum packet size
and that the driver matches that
packet size

For fetching larger result sets, this reduces
the number of total packets sent/received
between the driver and server

JDBC DATA TYPES

Below is a list of common JDBC types and their default
mapping to Java types. For a complete list of data types,
conversion rules, and mapping tables, see the JDBC
conversion tables in the JDBC Specification or the Java SE API
documentation.

JDBC Types Java Type

CHAR, VARCHAR,
LONGVARCHAR

java.lang.String

CLOB java.sql.Clob

NUMERIC, DECIMAL java.math.BigDecimal

BIT, BOOLEAN Boolean

BINARY, VARBINARY,
LONGVARBINARY

byte[]

BLOB java.sql.Blob

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT, DOUBLE double

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

DZone, Inc. | www.dzone.com

4 JDBC Best Practices

WHAT’S IN A DRIVER?

To illustrate what a JDBC driver does under the covers, take a look at this ‘anatomy of a JDBC driver’ diagram.

ADVANCED JDBC

Hot
Tip

These advanced features are complex and meant as an
overview. For all the bells and whistles for these advanced
options, check your JDBC driver documentation!

Debugging and Logging
Well-written JDBC drivers offer ways to log the JDBC calls
going through the driver for debugging purposes. As an
example, to enable logging with some JDBC drivers, you
simply set a connection option to turn on this spying capability:

Class.forName(“com.ddtek.jdbc.sqlserver.SQLServerDriver”);

Connection conn = DriverManager.getConnection
(“jdbc:datadirect:sqlserver://Server1:1433;User=TEST;Password=secret;
SpyAttributes=(log=(file)C:\\temp\\spy.log;linelimit=80;logTName=yes;t
imestamp=yes)”);

Codeless Configuration (Hibernate and JPA)
Codeless Configuration is the ability to change driver behavior
without having to change application code. Using a driver
under something like Hibernate or JPA means that the user
cannot use proprietary extensions to the JDBC objects and
should instead control and change driver behavior through
connection options.

Additionally, codeless configuration is the ability to monitor
and change JDBC driver behavior while the driver is in use.
For example, using a tool like JConsole to connect to a driver
exported MBean and check the PreparedStatement pool stats

as well as importing/exporting new statements on the fly to
fine tune application performance.

Encrypt Your Data using SSL
Ensure that your data is secure by encrypting the wire traffic
between the server and client using SSL encryption:

 (1) Set the EncryptionMethod connect option to SSL.

 (2) Specify the location and password of the trustStore file
 used for SSL server authentication. Set connect options
 or system properties (javax.net.ssl.trustStore and
 javax.net.ssl.trustStorePassword).

 (3) If your database server is configured for SSL client
 authentication, configure your keyStore information:

 (a) Specify the location and password of the keyStore
 file. Either set connect options or Java system
 properties (javax.net.ssl.keyStore and javax.net.ssl.
 keyStorePassword).

 (b) If any key entry in the keyStore file is password-
 protected, set the KeyPassword property to the
 key password.

Single Sign-on with Kerberos
Kerberos is an authentication protocol, which enables secure
proof of identity over a non-secure network. It is also used for
enabling single sign-on across multiple sites by delegating
credentials. To enable Kerberos:

 (1) Set the authenticationMethod connect option to
 Kerberos.

 (2) Modify the krb5.conf file to contain your Kerberos realm

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

DZone, Inc. | www.dzone.com

5 JDBC Best Practices

 and the KDC name for that realm. Alternatively, you
 can set the java.security.krb5.realm and java.security.krb5.
 kdc system properties.

 (3) If using Kerberos authentication with a Security Manager,
 grant security permissions to the application and driver.

Hot
Tip

These security features are not supported by all databases
and database versions. Check to ensure your database is
setup appropriately before attempting Kerberos and SSL
connections.

Application Failover
Application failover is the ability for a driver to detect a
connection failure and seamlessly reconnect you to an alternate
server. Various types of failover exist for JDBC drivers so check
your driver documentation for support - the most common are
listed below:

Connection
Failover

In the case of the primary connection being unavailable, the
connection will be established with the alternate server.

Extended Failover While the application is running, if a connection failover
occurs, the driver will reconnect to an alternate server and
post a transaction failure to the application.

Select Failover Same as extended, except instead of posting a transaction
failure, this level will reposition any ResultSets, so the
application will not know there was a failure at all.

Bulk Loading
Loading large amounts of data into a database quickly requires
something more powerful than standard addBatch(). Database
vendors offer a way to bulk load data, bypassing the normal
wire protocol and normal insert procedure. There are 2 ways to
use Bulk Loading with a JDBC driver that supports it:

 (1) Set enableBulkLoad connect option to true. This will
 make addBatch() calls use the bulk load protocol over
 the wire.

 (2) Use a Bulk Load object:

// Get Database Connection

Connection con = DriverManager.getConnection(“jdbc:datadirect:orac
le://server3:1521;ServiceName=ORCL;User=test;Password=secret”);

// Get a DDBulkLoad object

DDBulkLoad bulkLoad = DDBulkLoadFactory.getInstance(con);

bulkLoad.setTableName(“GBMAXTABLE”);

bulkLoad.load(“tmp.csv”);

// Alternatively, you can load from any ResultSet object into the
target table:

bulkLoad.load(results);

Hot
Tip

For additional Bulk Load options, check the JDBC driver
documentation.

SQL QUICK REFERENCE

Basic Syntax Examples
SQL Construct Example

SELECT statement SELECT * from table1
SELECT (col1,col2,…) from table1

WildCard Description and Example

% (percent) Subsititute for zero or more characters.
SELECT * from emp where name like ‘Da%’

_ (underscore) Substitute for exactly one character.
SELECT * from books where title like ‘_at in the Hat’

[charlist] Any single character in the charlist.
Select * from animals where name like ‘[cb]at’

[!charlist]
-or-
[^charlist]

Any single character not in the charlist.
Select * from animals where name like ‘[!cb]at’
Select * from animals where name like ‘[^cb]at’

WHERE clause SELECT (col1, col2, col3)
FROM table1 WHERE col1 = ‘foo’

ORDER BY clause SELECT (col1,col2,…)
FROM table_name
ORDER BY column_name [ASC|DESC]

GROUP BY clause SELECT column_name, aggregate_
function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

INSERT statement
(all columns implicit)

(explicit columns)

INSERT INTO table1
VALUES (val1, val2, value3,…)

INSERT INTO table2
(col1,col2,…)
VALUES (val1, val2, value3,…)

UPDATE statement UPDATE table1
SET col1=val1, col2=val2,…
WHERE col3=some_val

DELETE statement DELETE FROM table1
WHERE col2=some_val

Escape Clauses
Escape Type Example

Call (a.k.a. stored procedure) {call statement}
{call getBookValues (?,?)}

Function {fn functionCall}
SELECT {fn UCASE(Name)} FROM Employee

Outer Join {oj outer-join}
where outer-join is
table-reference {LEFT | RIGHT | FULL}
OUTER JOIN
{table-reference | outer-join} ON
search-condition

SELECT Customers.CustID, Customers.
Name, Orders.OrderID, Orders.Status
FROM {oj Customers LEFT OUTER JOIN
Orders ON Customers.CustID=Orders.
CustID} WHERE Orders.Status=’OPEN’

Date Escape {d yyy-mm-dd}
UPDATE Orders SET OpenDate={d ‘2005-
01-31’} WHERE OrderID=1025

Time Escape {t hh:mm:ss}
UPDATE Orders SET OrderTime={t
‘12:30:45’} WHERE OrderID=1025

TimeStamp Escape {ts yyyy-mm-dd hh:mm:ss[.f...]}
UPDATE Orders SET shipTS={ts ‘2005-02-
05 12:30:45’} WHERE OrderID=1025

Hot
Tip

To get a listing of the functions supported by a given JDBC
driver, use the getter methods on the DatabaseMetaData
object: getStringFunctions(), getNumericFunctions(),
getTimeDateFunctions(), etc.

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
JDBC Best Practices

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-71-4
ISBN-10: 1-934238-71-6

9 781934 238714

50795

JDBC WITH HIBERNATE

Hibernate is one of the most popular Object Relational
Mapping (ORM) frameworks used with JDBC. It is important
to note that even if you choose to use Hibernate instead of
writing pure JDBC, Hibernate must use a JDBC driver to get to
data! Therefore, Hibernate does not replace JDBC as the data
connectivity layer, it merely sits on top of it to interface with the
application:

	

When writing Hibernate applications it is important to understand
the main files used to setup a Hibernate environment:

Hibernate File Purpose

Dialects (org.hibernate.dialect.*) Describes the SQL behavior of the JDBC
driver and database to which the application
is connecting.

Configuration File (hibernate.
properties or hibernate.cfg.xml)

Contains the hibernate configuration
settings, such as: JDBC driver and connection
information, dialect information, mapping
information, etc.

Mapping File The mapping file contains the mapping
between the application defined objects and
the relational data stored in the database.

Jesse Davis watched his Dad code on his Apple IIC Plus,
and his addiction to technology began. He used his first PC (a
Packard Bell) in high school to run Slackware Linux and began
writing shell scripts and simple C applications. Honing his skills
as a Computer Engineer at North Carolina State University,
Jesse loved the challenge of combining hardware and software
and concentrated on microprocessor architecture and design -
graduating with honors in Y2K. Today, he enjoys teaching others
about the latest technological breakthroughs and enjoys building
robots and woodworking projects with his kids. During the day,
he is the Senior Engineering Manager for the Progress|DataDirect
Connect product line, and has more than 12 years of experience

developing database middleware, including JDBC and ODBC drivers, ADO.NET
providers, and data services. Jesse is responsible for product development initiatives
and forward looking research, and is an active member of the JDBC Expert Group,
working on the next version of JDBC.

Blog: http://blogs.datadirect.com/

Twitter: @jldavis007

Hot
Tip

When choosing a driver to use with Hibernate, ensure your
driver supports Codeless Configuration so that you can
tune performance and change driver behavior without
having to modify the Hibernate code!

Hot
Tip

Not all JDBC drivers are created equal! Look for a set of
JDBC drivers that can use a single dialect to connect to
multiple versions of a database. There’s nothing worse than
deploying your application with an Oracle 8 dialect and
discover that you need to redeploy with an
Oracle 10 dialect!

Performance and scalability are more critical than
ever in today’s enterprise database applications, and
traditional database tuning isn’t nearly enough to solve
the performance problems you are likely to see in those
applications. Nowadays, 75-95% of the time it takes to
process a data request is typically spent in the database
middleware. Today’s worst performance and scalability
problems are generally caused by issues with networking,
database drivers, the broader software/hardware
environment, and inefficient coding of data requests. In
The Data Access Handbook, two of the world’s leading
experts on database access systematically address these

issues, showing how to achieve remarkable improvements in performance of real-
world database applications.

BUY NOW
books.dzone.com/books/data-access-handbook

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp
http://books.dzone.com/books/data-access-handbook

