

DZone, Inc. | www.dzone.com

By Jon Rose and James Ward

F
le

x
4

 &
 S

p
ri

n
g

 3
 I

n
te

g
ra

ti
o

n

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#102

CONTENTS INCLUDE:
n	 Flex Remoting
n	 Integrating Flex with Hibernate
n	 Integrating Pub / Sub Messaging
n	 Flex and Spring Security
n	 Hot Tips and more...

brought to you by...

INTEGRATING FLEX AND SPRING

Adobe Flex has strong ties to Java, which include an Eclipse-based
IDE and BlazeDS, its open source server-based Java remoting and
web messaging technology. In late 2008, the Spring community began
working on the Spring BlazeDS Integration project to add support for
Flex development with Java and Spring.

By default BlazeDS creates instances of server-side Java objects and
uses them to fulfill remote object requests. This approach doesn’t work
with Spring, as the framework is built around injecting the service beans
through the Spring container. The Spring integration with BlazeDS
allows you to configure Spring beans as BlazeDS destinations for use as
remote objects in Flex.

This tutorial assumes that you are already familiar with Spring and Flex.
If you need an introduction or refresher to either, check out the Very
First Steps in Flex and Spring Configuration DZone Refcardz.

Hot
Tip

BlazeDS provides simple two-way communication with Java
back ends. Flash Player supports a serialization protocol called
AMF that alleviates the bottlenecks of text-based protocols and
provides a simpler way to communicate with servers. AMF is a
binary protocol for exchanging data that can be used over HTTP
in place of text-based protocols that transmit XML. Applications
using AMF can eliminate an unnecessary data abstraction
layer and communicate more efficiently with servers. To see a
demonstration of the performance advantages of AMF, see the
Census RIA Benchmark at: http://www.jamesward.org/census

To follow along with this tutorial you will initially need:
 • An Eclipse 3.5 Distribution. You may choose either the standard
 distribution: Eclipse 3.5 (Galileo) for Java EE Developers (On Mac use
 the Eclipse Carbon version): http://www.eclipse.org/downloads/
 Or, for enhanced Spring support you might consider using the
 SpringSource Tool Suite:
http://www.springsource.com/products/springsource-tool-suite-download/

 • Flash Builder 4 (60 day Trial) installed as a plug-in for the

 Java EE Eclipse distribution: http://www.adobe.com/go/try_flashbuilder

 • Tomcat 6: http://tomcat.apache.org/

 • BlazeDS 4 (Binary Distribution):
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/

 • Spring Framework 3.0.2 (vanilla release):
http://www.springsource.org/download

 • Spring BlazeDS Integration 1.0.3 (vanilla release):
http://www.springsource.org/spring-flex

 • AOP Alliance 1.0: http://sourceforge.net/projects/aopalliance/files/

 • backport-util-concurrent 3.1 for the Java version you’re using:
http://sourceforge.net/projects/backport-jsr166/files/backport-jsr166/

 • cglib 2.2 http://sourceforge.net/projects/cglib/files/

 • asm 3.2 http://forge.ow2.org/projects/asm/

Manually downloading the dependencies is one way to get everything
you need. Alternatively, you can use Maven or the SpringSource Tool

Suite to automatically handle dependencies for you.

First install your chosen Eclipse distribution and then install Flash
Builder 4 as a plug-in to the Eclipse distribution you just installed. Also

extract the ZIP files for the other dependencies specified above. When
you’ve completed these steps, run Eclipse. In Eclipse create a server
that will run the application:
 1. Choose File > New > Other
 2. Select Server > Server
 3. Click Next
 4. Select Apache > Tomcat v6.0 Server
 5. Click Next
 6. Specify the location where Tomcat is installed and select the JRE
 (version 5 or higher) to use

 7. Click Finish

There are two ways to begin setting up the Dynamic Web project in
Eclipse. You can either start with a prepackaged project containing
all of the dependencies or you can start from scratch and configure
everything by hand. Starting from scratch will help you to better
understand how everything fits together, however it will take a little bit
more time to download all of the dependencies and configure Spring
and BlazeDS.

To begin with the prepackaged project, download this project archive:
http://static.springsource.org/spring-flex/refcard/flexspring-refcard_justdeps.zip

Then, in Eclipse select File > Import and select the Existing Projects Into
Workspace option. Using the Select Archive File option and Browse

button, locate the flexspring.zip file, and then click Finish.

Alternatively to start from scratch, set up the server-side Java web
project in Eclipse by creating a web application from the blazeds.war file

(found inside the BlazeDS zip file).

In Eclipse, import the blazeds.war file to create the project:

 1. Choose File > Import
 2. Select the WAR file option. Specify the location of the blazeds.war file.
 For the name of the web project, type flexspring

 3. Click Finish

First remove the xalan.jar file from the WebContent/WEB-INF/lib
folder. Next, go into the project properties. One way to get there is
by right-clicking on the project and selecting Properties. In the project

Flex 4 & Spring 3 Integration

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.adobe.com/go/try_flashbuilder

DZone, Inc. | www.dzone.com

2
Flex 4 & Spring 3 Integration

properties, select Java Build Path and then click the Source tab. Set the
Default Output Folder to be the following (you will need to create the
classes folder):

flexspring/WebContent/WEB-INF/classes

This causes all Java classes that are created in the project to be
deployed in the web application.

In the WebContent/WEB-INF/flex folder update the services-config.xml
file with the following contents:

<?xml version=”1.0” encoding=”UTF-8”?>
<services-config>
 <channels>
 <channel-definition id=”my-amf” class=”mx.messaging.channels.AMFChannel”>
 <endpoint url=”http://{server.name}:{server.port}/{context.root}/
messagebroker/amf” class=”flex.messaging.endpoints.AMFEndpoint”/>
 </channel-definition>
 <channel-definition id=”my-streaming-amf” class=”mx.messaging.channels.
StreamingAMFChannel”>
 <endpoint url=”http://{server.name}:{server.port}/{context.root}/
messagebroker/streamingamf” class=”flex.messaging.endpoints.StreamingAMFEndpoint”/>
 </channel-definition>
 <channel-definition id=”my-polling-amf” class=”mx.messaging.channels.
AMFChannel”>
 <endpoint url=”http://{server.name}:{server.port}/{context.root}/
messagebroker/amfpolling” class=”flex.messaging.endpoints.AMFEndpoint”/>
 </channel-definition>
 </channels>
</services-config>

Listing 1: services-config.xml - Updated to contain only the channels defined.

Now select the Servers tab in Eclipse. If the tab is not visible you can
make it visible by choosing Windows > Show View > Servers. Right-
click the Tomcat Server and select Add and Remove. To add the
flexspring web application to the server, select it in the Available list

and then click Add. Finally, click Finish.

Next, you need to add the required dependencies to the flexspring
web application. Copy all of the Spring Framework libraries / JAR
files (located in the dist folder) to the WebContent/WEB-INF/lib folder.
Also copy the Spring BlazeDS Integration library (located in the dist
folder) to the lib folder. Do the same for aopalliance.jar, backport-util-
concurrent.jar, cglib-2.2.jar, asm-3.2.jar.

Simple Flex Remoting
To configure the server for simple Flex Remoting first edit the web.xml
file in the WebContent/WEB-INF folder. Replace its contents with:

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app xmlns=”http://java.sun.com/xml/ns/javaee” xmlns:xsi=”http://www.
w3.org/2001/XMLSchema-instance”
 xmlns:web=”http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd”
 xsi:schemaLocation=”
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd”
 version=”2.5”>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>flex.messaging.HttpFlexSession</listener-class>
 </listener>
 <servlet>
 <servlet-name>flexspring</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value></param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>flexspring</servlet-name>
 <url-pattern>/messagebroker/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 2: web.xml - Setup for simple Flex Remoting with Spring.

Eclipse may try to change the web-app version to 2.4 instead of 2.5. If
this happens just manually change it back to 2.5.

Spring will now handle requests to the /messagebroker/ url.

Now configure Spring by creating an applicationContext.xml
file in the WebContent/WEB-INF folder with the following contents:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:flex=”http://www.springframework.org/schema/flex”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 xmlns:context=”http://www.springframework.org/schema/context”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/flex
 http://www.springframework.org/schema/flex/spring-flex-1.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd”>
 <flex:message-broker>
 <flex:remoting-service default-channels=”my-amf”/>
 </flex:message-broker>
 <context:component-scan base-package=”flex” />
</beans>

Listing 3: The basic Spring configuration for Flex Remoting.

Listing 3 sets up the Flex message-broker, which will enable the Flex
remoting-service using the my-amf channel. The component-scan
will find classes in the “flex” package that have been annotated for
Remoting. Typically with Spring, the configuration files are split out into
more logical pieces. The approach used in Listing 3 is a simple way to
get started but does not represent the best practice for Spring config file
organization. For more details on how to better organize Spring config
files see: http://refcardz.dzone.com/refcardz/spring-configuration

Now create a simple Java class that will be exposed through the AMF
channel to a Flex application. In the src folder create a new Java Class in
the flex package with the name “HelloWorldService”. Set the contents
of the HelloWorldService.java file to:

package flex;
import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.RemotingInclude;
import org.springframework.stereotype.Service;
@Service
@RemotingDestination
public class HelloWorldService {
 @RemotingInclude
 public String sayHello(String name) {
 return “howdy, “ + name;
 }
}

Listing 4: HelloWorldService.java - A simple Java object exposed for remoting through

Spring annotations.

On the HelloWorldService class you will notice two annotations. The
@Service annotation tells Spring that the class is a Service and the
@RemotingDestination annotation exposes the class as a remoting
endpoint for Flex. This class also contains a single method named
sayHello, which simply takes a string and returns a slightly modified
version of the string. By default all public methods on a class are
available for remoting. You can keep a public method from being
exposed as a remoting endpoint by using the @RemotingExclude
annotation.

Create the Flex Application
Now you can create a Flex application that will call the sayHello method
on HelloWorldService. Remember that Flex applications run on the
client side so all interactions with a server must happen over some
remote call. Usually (and in the case here) these calls happen over HTTP.
They can use a variety of serialization options including SOAP, JSON,
and RESTful XML. In this case, Flex Remoting will use the binary AMF
serialization protocol inside of HTTP request / response bodies.

To begin building the Flex application, simply create a new Flex Project
in Eclipse. In the New Flex Project wizard, type sayHello as the name,
select Web as the Application type, and set the Flex SDK Version to
Flex 4.0 (usually the default). Also select J2EE as the Application Server
Type, enable Use Remote Object Access Service, and select BlazeDS.
Ensure that the Create Combined Java/Flex Project Using WTP option
is not checked and then click Next. Now enter the information for your
flexspring project. The Root folder is the WebContent folder in your
flexspring project. The Root URL should be http://localhost:8080/
flexspring/. The Context root should be /flexspring.

Click Finish to create the project. You should now see the template
code for the application. Replace the code with the following:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:mx=”library://ns.adobe.com/flex/mx”>
 <fx:Declarations>

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Flex 4 & Spring 3 Integration

 <s:RemoteObject id=”ro” destination=”helloWorldService”
endpoint=”http://localhost:8080/flexspring/messagebroker/amf”/>
 </fx:Declarations>
 <s:layout><s:VerticalLayout/></s:layout>
 <s:TextInput id=”t”/>
 <s:Button label=”sayHello” click=”ro.sayHello(t.text)”/>
 <s:Label text=”{ro.sayHello.lastResult}”/>
</s:Application>

Listing 5: sayHello.mxml - Basic Flex application using Remoting with Spring.

Hot
Tip

Externalizing Configuration
These examples hardcode URLs into the applications. This is not
recommended for real-world applications. Configuration should be
externalized with Flex using one of the many methods available.
Flex frameworks like Swiz, Parsley, or Spring ActionScript provide
straightforward ways to externalize configuration. Using these
methods is highly recommended for real-world applications.

When you save the file it should automatically compile. When it is
compiled it should automatically be deployed in your web application.
You are now ready to start the server and test the application. Go to
the Servers View in Eclipse and start the Tomcat server. Watch the
console and make sure that there are no startup errors.

Now run the sayHello application (one way is to right-click the sayHello.
mxml file, select Run As, and then select Web Application). Your
browser should open the sayHello.html file that then downloads and
runs the Flex application. Type your name in the TextInput box and
click the sayHello button. This will initiate a Flex Remoting request to
the Tomcat server calling the Spring DispatcherServlet, which then will
look up the service based on the destination helloWorldService. This
destination is automatically mapped to the HelloWorldService Spring
Bean. Then the sayHello method will be invoked on the bean, passing
in the String that was specified in the RemoteObject call on the client.
The method returns a new String, which is then serialized into AMF,
inserted into the HTTP Response body, and sent back to the client. On
the client side the Flex application will parse the AMF and then set the
ro.sayHello.lastResult property to what was returned from the server.
Data binding in the Label will note the property change and refresh its
view of the data.

You now have completed a basic web application with a Flex
application communicating with Spring through BlazeDS using the
Spring BlazeDS Integration! Next you will add Hibernate into the mix
and see how the Flash Builder 4 data-centric development features can
help you quickly build data-driven Flex applications.

Integrating Flex with Hibernate through Spring
Using the same flexspring server as the Remoting example you can now
add Hibernate to do data persistence. To get started you first need
some additional Java libraries:

 • Hibernate 3.5.2: http://hibernate.org/downloads.html

 • H2 Database: http://h2database.com/html/main.html

 • slf4j 1.5.8: http://www.slf4j.org/dist/

Extract the libraries and copy their JAR files into the WEB-INF/lib
folder. For Hibernate copy the hibernate3.jar file, the JAR files in the
lib/required folder, and the JAR file in the lib/jpa folder. For slf4j copy
the slf4j-simple-1.5.8.jar file and for H2 copy the h2-1.2.134.jar file.

Now you will need to update the Spring config file so that your code
can connect to an H2 database. Update the applicationContext.xml file
with the following contents:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:flex=”http://www.springframework.org/schema/flex”
 xmlns:context=”http://www.springframework.org/schema/context”
 xmlns:tx=”http://www.springframework.org/schema/tx”
 xmlns:jdbc=”http://www.springframework.org/schema/jdbc”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/flex
 http://www.springframework.org/schema/flex/spring-flex-1.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd”>
 <flex:message-broker>
 <flex:remoting-service default-channels=”my-amf” />
 </flex:message-broker>
 <context:component-scan base-package=”flex” />
 <tx:annotation-driven />
 <jdbc:embedded-database id=”dataSource” type=”H2”/>
 <bean id=”sessionFactory”
class=”org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean”>
 <property name=”dataSource” ref=”dataSource” />
 <property name=”packagesToScan” value=”flex” />
 <property name=”hibernateProperties”>
 <props>
 <prop key=”hibernate.dialect”>org.hibernate.dialect.H2Dialect</prop>
 <prop key=”hibernate.hbm2ddl.auto”>create</prop>
 </props>
 </property>
 </bean>
 <bean id=”transactionManager”
 class=”org.springframework.orm.hibernate3.HibernateTransactionManager”>
 <property name=”sessionFactory” ref=”sessionFactory” />
 </bean>
</beans>

Listing 6: applicationContext.xml - Hibernate and H2 Spring configuration.

The changes to the Spring config file introduce the ability to apply
transactions through annotations (which you will see shortly), a
DataSource to create a database connection, a SessionFactory used
to manage the Hibernate Session, and a TransactionManager that
handles the database transactions through the SessionFactory. The
SessionFactory scans for Hibernate entities in the flex package.

In order to use the new data-centric development features in Flash
Builder 4 you need to add the following servlet and servlet mapping to
the web.xml file:

 <servlet>
 <servlet-name>RDSDispatchServlet</servlet-name>
 <servlet-class>flex.rds.server.servlet.FrontEndServlet</servlet-class>
 <init-param>
 <param-name>messageBrokerId</param-name>
 <param-value>_messageBroker</param-value>
 </init-param>
 <init-param>
 <param-name>useAppserverSecurity</param-name>
 <param-value>false</param-value>
 </init-param>
 <load-on-startup>10</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>RDSDispatchServlet</servlet-name>
 <url-pattern>/CFIDE/main/ide.cfm</url-pattern>
 </servlet-mapping>

Listing 7: web.xml snippet - Enable the data-centric development in Flash Builder 4.

This new servlet from BlazeDS enables Flash Builder 4 to introspect
the services that are configured on a server. If you add this servlet in a
real application make sure that you either configure the security for the
RDSDispatchServlet or remove the servlet when the application goes to
production. Leaving a wide open RDSDispatchServlet in a production
system can have adverse security implications.

Now create a Hibernate bean by creating a new Java class in the flex
package called Friend with the following contents:

package flex;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
@Entity
public class Friend {
 @Id
 @GeneratedValue
 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 private String id;
 private String name;
}

Listing 8: Friend.java - The Hibernate Entity used to persist data.

You will notice that the Friend class has an @Entity annotation on it.
This annotation enables this class to be used by Hibernate for data
persistence. The getId() method of Friend has two annotations.
The @Id annotation uses the id property as the primary key for the
entity while the @GeneratedValue annotation will tell Hibernate to
automatically assign a value when a new Entity is created.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Flex 4 & Spring 3 Integration

In order to communicate with the Friend entity from Flex you will need
a Remoting service to connect to. Similar to the HelloWorldService
example, you can create a Spring bean that will be exposed to Flex.
Create a new Java class in the flex package called FriendService with
the following contents:

package flex;
import java.util.List;
import org.hibernate.SessionFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.RemotingInclude;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;
@Repository
@RemotingDestination
public class FriendService {
 private SessionFactory sessionFactory;
 @Autowired
 public void setSessionFactory(SessionFactory factory) {
 sessionFactory = factory;
 }
 @SuppressWarnings(“unchecked”)
 @RemotingInclude
 @Transactional
 public List<Friend> getFriends() {
 return sessionFactory.getCurrentSession().createQuery(“from Friend”).list();
 }
 @RemotingInclude
 @Transactional
 public void createFriend(String name) {
 Friend f = new Friend();
 f.setName(name);
 sessionFactory.getCurrentSession().save(f);
 }

}

Listing 9: FriendService.java - A Spring bean to manage Friend entities.

The FriendService class is annotated with @Repository to allow it to
connect to a DataSource and @RemotingDestination to expose it as
a Flex Remoting destination. The SessionFactory is Autowired into
instances of the FriendService using Spring’s dependency injection.
In this case the SessionFactory that is injected is defined in the
applicationContext.xml file. The getFriends method is included
for Remoting access but also uses the @Transactional annotation
to wrap the database query into a transaction. The createFriend
method, which simply creates a new Friend entity and saves, is also
Transactional and included for Remoting.

After making these changes, restart your Tomcat server. Verify that
there were no errors on startup.

Create the Flex Application
Create a new Flex project called myFriends. Specify the same
parameters as in the first example for the Application Type, Flex SDK
version, and Server technology. Click Next and specify the same
parameters as the sayHello project for Server Location. Click Finish.

Instead of writing code this time, switch to Design view for the
myFriends.mxml file. Now in the Data/Services View click Connect to
Data/Service, select BlazeDS, and then click Next. When you are asked
for a username and password, check No Password Required and click
OK. You should now see a list of services that are configured on your
server. Among them should be friendService; select the checkbox
next to that service and then click Finish. This automatically generates
the client-side service stubs and value objects used to connect to
friendService. In the Data/Services view you should now see the
friendService methods and data types used.

To create the UI for the application, locate the DataGrid component
in the Components view. Drag the DataGrid onto the Design canvas
of the myFriends.mxml application. Now drag the getFriends method
from the Data/Services View onto the DataGrid of the myFriends.mxml
application. When you are prompted to confirm how you want to bind
the service call to the DataGrid, click OK. Your DataGrid should now
have two columns: id and name.

Next, you need some way to create new Friend objects. Right-click the
createFriend method in the Data/Services View and select Generate
Form. When you are presented with a dialog box asking for details
about how to create the form, simply click Finish. You should now have
a form in the Design canvas for myFriends.mxml. You can reposition
the form so that it doesn’t overlap the DataGrid. Now double-click the

arg0 label and rename it by typing Name.

While you were manipulating elements in the Design canvas for the
myFriends.mxml application you were actually writing Flex code. Switch
back to Source view so you can see the code and make a few minor
changes to the generated code.

First, you need to tell the generated FriendService instance how to
connect to the server. Find the <services:FriendService tag and add a
property called endpoint with a value of
http://localhost:8080/flexspring/messagebroker/amf, for example:

<services:FriendService id=”friendService”
 endpoint=”http://localhost:8080/flexspring/messagebroker/amf”/>

Listing 10: myFriends.mxml snippet - FriendService with an endpoint.

Another small change you will want to make is to refresh the data
in the DataGrid after a new Friend has successfully been created.
To do that, first make the event parameter in the dataGrid_
creationCompleteHandler function optional. For example:

protected function dataGrid_creationCompleteHandler(event:FlexEvent=null):void {

Listing 11: myFriends.mxml snippet - Optional FlexEvent parameter.

Finally update the createFriendResult CallResponder so that on a
result event the dataGrid_creationCompleteHandler function is called.

<s:CallResponder id=”createFriendResult”
result=”dataGrid_creationCompleteHandler()”/>

Listing 12: myFriends.mxml snippet - Refresh the data on result event

Now run the myFriends application and create a new Friend by typing
a name in the TextInput and clicking CreateFriend. Verify that the new
Friend shows up in the DataGrid. You now have a Flex application that
calls a Spring service to interact with Hibernate!

Hot
Tip

Hibernate Lazy Loading and Flex
When BlazeDS serializes data to send to Flex, that data must
be serializable. This can cause problems with lazy loading of
associations in Hibernate. There are several approaches for
dealing with this problem. One is to potentially not serialize the
same object graph that is defined in Hibernate Entities but instead
utilize Data Transfer Objects for serialization to AMF.

Integrating Pub / Sub Messaging with Flex and Spring
Flex Remoting is always done in a request / response manner.
Sometimes applications also need to communicate in a publish
/ subscribe manner. BlazeDS provides the ability for Flex clients
to connect to a message service and listen for messages or send
messages. The message service can optionally be connected to other
messaging systems like JMS, ActiveMQ, or any messaging system
supported in Spring Integration.

Sending messages over HTTP is usually technically simple to enable
because it can easily be built on HTTP’s request / response nature.
However receiving messages is more difficult since the client must
initiate connections. To overcome this hurdle BlazeDS has various
channels that are configured to do a pseudo push of messages from
the server to the client. The primary channels available in BlazeDS are
HTTP Streaming, HTTP Long-Polling, and HTTP Polling. Each of these
channels has different advantages and disadvantages. For instance
HTTP Streaming provides very low latency for sending messages but
consumes one of the available HTTP connections the browser allows
to a given site. HTTP Streaming in BlazeDS also uses the default HTTP
connector in the Java app server, which usually has a very limited
number of concurrent connections available. Java NIO provides a
way to work around those connection limits but today NIO-backed
connections are only available in Adobe’s commercial superset of
BlazeDS, called LiveCycle Data Services. HTTP Long-Polling and
HTTP Polling can help alleviate some of the connection load but they
also increase latency for sending messages from the server to the
client. Ultimately which channel configuration you select will depend
on your requirements. It’s important to also note that channels can
be configured to do automatic failover. So if an HTTP Streaming

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Flex 4 & Spring 3 Integration

connection can’t be made then Flex can try Long-Polling or Polling.
Channel configuration is done in the services-config.xml file.

The Spring BlazeDS integration exposes the Messaging features of
BlazeDS so that they can be configured in Spring config and easily
connected to Spring services and messaging systems. To configure
a Messaging destination for Flex simply add the message-service to
the message broker in the applicationContext.xml file. Then create a
message-destination in that same file. For this example set the id of
the message-destination to chat.

 <flex:message-broker>
 <flex:remoting-service default-channels=”my-amf” />
 <flex:message-service
 default-channels=”my-streaming-amf,my-polling-amf” />
 </flex:message-broker>
 <flex:message-destination id=”chat” />

Listing 13: applicationContext.xml - Messaging enabled configuration.

Now create a new Flex Project just as before but call it “chat”. Update
the chat.mxml file with the following code:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:mx=”library://ns.adobe.com/flex/mx”>
 <fx:Script>
 import mx.messaging.messages.AsyncMessage;
 </fx:Script>
 <fx:Declarations>
 <s:ChannelSet id=”channelSet”>
 <s:StreamingAMFChannel
 uri=”http://localhost:8080/flexspring/messagebroker/streamingamf”/>
 <s:AMFChannel
 uri=”http://localhost:8080/flexspring/messagebroker/amfpolling”
 pollingEnabled=”true” pollingInterval=”5”/>
 </s:ChannelSet>
 <s:Consumer id=”c” destination=”chat” channelSet=”{channelSet}”
 message=”ta.text += event.message.body + ‘\n’”/>
 <s:Producer id=”p” destination=”chat” channelSet=”{channelSet}”/>
 </fx:Declarations>
 <s:applicationComplete> c.subscribe(); </s:applicationComplete>
 <s:layout><s:VerticalLayout/></s:layout>
 <s:TextArea id=”ta” width=”300” height=”150”/>
 <s:TextInput id=”ti”/>
 <s:Button label=”send” click=”p.send(new AsyncMessage(ti.text))”/>
</s:Application>

Listing 14: chat.mxml - A simple Chat application using Flex Messaging

Restart the Tomcat server and run the application. Open two browser
windows to verify that the messaging is happening correctly.

In the Chat application there is a ChannelSet declaration that defines
how messages will be sent and received from the server. The first
child inside the ChannelSet is the StreamingAMFChannel. Flex
will try to make that connection first. Next is the AMFChannel with
polling enabled on a 5 second poll interval. Also declared in the
Chat application is a Consumer, which can listen for messages from
the server using the ChannelSet. A message event handler on the
Consumer tells the application to append the body of the message to
the TextArea. A Producer declaration is used to send messages to the
message service. Notice that both the Consumer and Producer have
their destination set to chat, which is the id of the message-destination
that was defined in the Spring configuration.

An applicationComplete event handler calls the subscribe method on
the Consumer to begin listening for messages from the server.

The UI for the Chat application is very simple. The TextArea displays
the chat messages. A TextInput allows the user to enter the text for a
new chat message, and a Button allows the user to send the message.
In the click handler for the Button a new AsyncMessage is created with
its body set to the text the user entered in the TextInput. That message
is then sent to the Producer, which connects to the server and sends
the message. BlazeDS then tries to send that message out to all clients
that are connected to the destination. When a connection is available
the Consumer will receive any queued messages on the server and fire
message events for each message.

Flex Messaging uses AMF internally so complex objects can be sent
and received through the message service, just like with Remoting.

On top of the Producer and Consumer APIs, very powerful real-time
and near real-time applications can be built. These can range from
collaborative applications to trader desktops. Sometimes the message

service is used simply for application management to do things like
notify the client that their version of the data is stale.

Flex and Spring Security
Most real-world Flex applications require a user to login before
they can perform certain actions in the application. Enabling user
authentication and application security with Flex and Spring is simple
to set up and implement. To get started you will need to download
Spring Security 3.0.2 from http://www.springsource.org/download and
copy the following JAR files into the WEB-INF/lib for the flexspring web
app project:
 • spring-security-acl-3.0.2.RELEASE.jar
 • spring-security-config-3.0.2.RELEASE.jar
 • spring-security-core-3.0.2.RELEASE.jar
 • spring-security-web-3.0.2.RELEASE.jar

Now modify the applicationContext.xml file to add in some Spring
Security information:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:flex=”http://www.springframework.org/schema/flex”
 xmlns:context=”http://www.springframework.org/schema/context”
 xmlns:tx=”http://www.springframework.org/schema/tx”
 xmlns:jdbc=”http://www.springframework.org/schema/jdbc”
 xmlns:security=”http://www.springframework.org/schema/security”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/flex
 http://www.springframework.org/schema/flex/spring-flex-1.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.0.xsd”>
 <security:global-method-security secured-annotations=”enabled”
 jsr250-annotations=”enabled”/>
 <security:http entry-point-ref=”preAuthenticatedEntryPoint”>
 <security:anonymous enabled=”false”/>
 </security:http>
 <bean id=”preAuthenticatedEntryPoint”
class=”org.springframework.security.web.authentication.Http403ForbiddenEntryPoint”
/>
 <security:authentication-manager>
 <security:authentication-provider>
 <security:user-service>
 <security:user name=”john” password=”john” authorities=”ROLE_USER” />
 </security:user-service>
 </security:authentication-provider>
 </security:authentication-manager>
 <flex:message-broker>
 <flex:remoting-service default-channels=”my-amf” />
 <flex:message-service
 default-channels=”my-streaming-amf,my-polling-amf” />
 <flex:secured/>
 </flex:message-broker>
... (file truncated)

Listing 15: applicationContext.xml snippet - Enable Security annotations.

The configuration in Listing 15 simply tells Spring about a basic
user-service authentication-provider. Real-world applications use a
database or LDAP server for user credentials and authentication.

Add the following filter, and filter-mapping to the web.xml file to
enable Spring Security for the web application:

 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Listing 16: web.xml snippet - Enables Spring Security for the web application.

Modify the HelloWorldService.java file to protect calls to the sayHello
method by adding the following annotation above the method:

 @Secured(“ROLE_USER”)

Listing 17: HellowWorldService.java snippet - Only users with ROLE_USER can call the
sayHello method

Make sure you add the import statement for org.springframework.
security.access.annotation.Secured then save the class and restart
Tomcat. Now run the sayHello Flex application. Remote calls to the
helloWorldService sayHello method should now fail. Update the
sayHello.mxml file with the following contents:

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Flex 4 & Spring 3 Integration

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-71-4
ISBN-10: 1-934238-71-6

9 781934 238714

50795

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:mx=”library://ns.adobe.com/flex/mx”>
 <fx:Script>
 import mx.rpc.AsyncResponder;
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 private function handleFault(event:FaultEvent, o:Object=null):void {
 l.text = event.fault.faultString;
 }
 </fx:Script>
 <fx:Declarations>
 <fx:Boolean id=”loggedIn”>false</fx:Boolean>
 <s:RemoteObject id=”ro”
 destination=”helloWorldService”
 fault=”handleFault(event)”>
 <s:channelSet>
 <s:ChannelSet>
 <s:AMFChannel uri=”/flexspring/messagebroker/amf”/>
 </s:ChannelSet>
 </s:channelSet>
 </s:RemoteObject>
 </fx:Declarations>
 <s:layout><s:VerticalLayout/></s:layout>
 <s:TextInput id=”t”/>
 <s:Button label=”sayHello” click=”ro.sayHello(t.text)”/>
 <s:Label id=”l” text=”{ro.sayHello.lastResult}”/>
 <s:Button label=”login” enabled=”{!loggedIn}”>
 <s:click>
 ro.channelSet.login(‘john’, ‘john’).addResponder(new AsyncResponder(
 function(result:ResultEvent, o:Object):void {
 loggedIn = true;
 l.text = “logged in”;
 }, handleFault));
 </s:click>
 </s:Button>
 <s:Button label=”logout” enabled=”{loggedIn}”>
 <s:click>
 ro.channelSet.logout().addResponder(new AsyncResponder(
 function(result:ResultEvent, o:Object):void {
 loggedIn = false;
 l.text = “logged out”;
 }, handleFault));
 </s:click>
 </s:Button>
</s:Application>

Listing 18: sayHello.mxml - Enables the user to login and logout.

The updated sayHello application now has buttons that allow the

CONCLUSION

In this Refcard, you learned how to use Flex Remoting and Messaging to
connect to Spring and Hibernate. You also learned how to use Spring
Security with Flex. As you can see, the Spring BlazeDS Integration
project makes integrating Flex and Spring easy and straightforward.
The combination of the two technologies creates a powerful platform
for building robust RIAs. You can learn more about integrating Flex and
Spring on the Spring BlazeDS Integration project site:
http://www.springsource.org/spring-flex

To receive help with Spring BlazeDS integration ask questions in the
Spring Forums: http://forum.springsource.org/forumdisplay.php?f=61

Download the full source code, configuration, and dependencies for
all of the projects from: http://static.springsource.org/spring-flex/refcard/

flexspring-refcard_completed.zip

Find screencasts which explain these code examples at:
http://www.jamesward.com/flex-and-java-resources/

user to login to the server. In this example the credentials for login
are hardcoded. For a real-world application the credentials would
likely come from TextInput controls – allowing the user to enter their
username and password. Also the Boolean variable loggedIn tracks
whether the user is authenticated or not. This Boolean is also used to
enable and disable the login and logout buttons.

Rerun the sayHello application and try to call the sayHello method
when not logged in. Now login and try it again. That is how simple it is
to set up Spring Security with Flex!

Jon Rose is the Flex Practice Director for Gorilla Logic, an enterprise
software consulting company located in Boulder, Colorado. He is an editor and
contributor to InfoQ.com, an enterprise software community. Visit his website at:

www.ectropic.com

Gorilla Logic, Inc. provides enterprise Flex and Java consulting services tailored
to businesses in all industries. www.gorillalogic.com

James Ward is a Technical Evangelist for Flex at Adobe. He travels the
globe speaking at conferences and teaching developers how to build better
software with Flex. Visit his website at: www.jamesward.com

First Steps in Flex is an introductory Flex book by James Ward and Bruce Eckel.
It will give you just enough information, and just the right information, to get
you started learning Flex. For more information visit:
http://www.firststepsinflex.com

First Steps in Flex will give you just enough information,
and just the right information, to get you started
learning Flex. Enough so that you feel confident in
taking your own steps once you finish the book. For
more information visit http://www.firststepsinflex.com.

BUY NOW
books.dzone.com/books/adobeflex

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/adobeflex
http://www.firststepsinflex.com
http://books.dzone.com/books/adobeflex

