

DZone, Inc. | www.dzone.com

By James Sugrue

ABOUT APACHE ANT

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 A

p
ac

h
e

 A
n

t

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#104

CONTENTS INCLUDE:
n	 About Apache Ant
n	 Anatomy of an Ant Script
n	 Core Java Related Tasks
n	 Infrastructure Tasks
n	 SCM Related Tasks
n	 Hot Tips and more...

Hot
Tip

Download Instructions
You can download the latest Ant distribution (1.8.1)
as a standalone tool from http://Ant.apache.org/. Ant
is also built into most Java development IDEs, such
as Eclipse, and NetBeans which uses it as its internal
build system.

Apache Ant is an XML based tool for automating software
build processes. Starting out as part of the Apache Tomcat
codebase, Ant got its first standalone release in July 2000.
Today it is the most widely used build tool for Java projects,
enabling developers to adopt agile principles: most
importantly test-driven development.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Getting Started with

Apache Ant

The Anatomy of an Ant Script
A typical Ant script consists of a single build.xml file. The
root element of the build script is the project tag. Within the
project element there are one or more targets specified. A
target contains a set of tasks to be executed.

The project element can specify a default target if no target is
chosen during execution of the build script.

	

Figure 1: The basic structure of an Ant build script.

The most important concept in Ant is that of dependencies.
Each target may depend on other targets. When running, Ant
resolves these dependencies so that your script gets executed
in the order you have specified.

Attribute Description Required

name Name of the project. No

basedir Base directory from which all path calculations
are done

No

default The default target to run when no other target
has been specified

No

Table 1: Project element attributes

Attribute Description Required

name The name and identifier of this target Yes

depends Comma separated list of other targets that this
target depends on

No

if The name of a property which must be set for
this target to run

No

unless The name of a property which must not be set
for this target to run

No

description Description of this target No

extensionOf Add the target to the depends list of the
named extension point

No

Table 2: Target element attributes

Hot
Tip

Extension Points
Introduced in Ant 1.8.0 <extension-point> is similar
to a <target> with its name and depends attributes.
However, it does not contain any tasks and is used
to collect targets that contribute to a state in the
dependency relationships of the script.

Properties
Properties can be defined within the build script or in separate
property files to provide more customizable build scripts.

Attribute Description Required

name Name of the property No

value The value of the property One of
these when
using name
attribute

location Set value to absolute filename. If the value
passed through is not an absolute path it will
be made relative to the project basedir

refId Reference to an object defined elsewhere

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Apache Ant

file Location of the properties file When
not using
the name
attribute
(i.e. loading
external
properties)

resource Location in the classpath of the properties file

url URL pointing to properties file

basedir The basedir to calculate the relative path from No. Default
is project
basedir

classpath /
classpathref

The classpath to use when looking up a
resource

No

environment Prefix to use when accessing environment
variables

No

prefix Prefix to apply to properties loaded using file,
resource or url

No

Table 3: Property element attributes

All system properties that can be accessed from the System.
getProperties() methods in Java can be used in Ant.
Additionally, the following built-in properties are available:

Property Name Description

basedir Absolute path of projects basedir

ant.core.lib Absolute path of the ant.jar file

ant.file Absolute path of buildfile

ant.home Home directory of Ant

ant.java.version Java version detected

ant.project.default-target Name of the default target

ant.project.invoked-targets List of targets specified in the command line when
invoking this project

ant.project.name Name of the project that is running

ant.version Version of Ant

Table 4: Built-in properties

Path Structures
Path structures can be created using a series of <pathelement>
tags. For example, a classpath can be created using:

<classpath>
 <pathelement location=”/path/jarfile.jar”/>
 <pathelement path=”/path/lib/jar1.jar;/path/lib/jar2.jar”/>
</classpath>

File Sets
In order to bundle files together, Ant provides the <fileset> tag:

Property Name Description

casesensitive Whether include/excludes patterns must be treated with
case sensitivity. Default true

dir Root of the directory tree of this fileset

defaultexcludes If default excludes should be used (set of definitions that
are always excluded)

erroronmissingdir If true causes a build error, if false the fileset is ignored

excludes List of patterns of files to exclude

excludesfile Name of a file to exclude

file Shortcut for specifying a fileset containing a single file

followssymlinks Whether symbolic links should be followed. Default true

Table 5: Fileset attributes

Built-in Tasks
The following sections list out the most commonly used tasks
in Ant build scripts. Required attributes are marked in bold.

Core Java Related Tasks
This section gives a complete reference of all tasks and their
attributes that are most commonly used by Java Developers.

Compiling Java Code
Compilation is achieved with the <javac> task.

Attribute Description

srcdir Location of java files to compile

bootclasspath/
boothclasspathref

Location of bootstrap class files or reference to a
predefined path

classpath/ classpathref Classpath to use for compilation or reference to a
predefined path

compiler Compiler implementation to use. Default is current VM

debug Whether source should be compiled with debug
information (-g parameter). Defaults to off

debuglevel Can be lines, var or source. Used in the –g parameter
for the compiler

depend Enables dependency tracking on jikes and classic
compilers

deprecation Whether source should compile with deprecation
information

destdir Destination for compiled .class files

encoding Encoding of source files

errorProperty Property to set to true if compilation fails

excludes Comma separated list of files that must be excluded
from compilation. Wildcard patterns can be used

excludesFile File that contains the exclusion list

executable Path to javac executable to use when fork set to yes

extdirs Location of installed extensions

fork Whether to execute javac using the JDK compiler
externally. Default no

failonerror Whether compilation error fails the build. Default true

includes Comma separated list of files that must be included in
compilation. Wildcard patterns can be used

includeAntRuntime Whether to include ANT runtime libraries in the
classpath. Default yes

includeDestClasses Whether classes compiled to the dest directory are
included in the classpath. Default true. When false,
causes recompilation of dependent classes

includesFile File containing the exclusion list

includeJavaRuntime Whether to include default libraries from VM.
Default no

listfiles Whether source files to be compiled will be listed.
Default no

memoryInitialSize /
memoryMaximumSize

Initial and maximum memory sizes for VM if run
externally

nowarn Whether –nowarn should be used with the compiler.
Defaults to off

optimize Whether to compile with optimization, ignored since
JDK1.3

source Value of the –source command line switch

sourcepath/
sourcepathref

Defaults to value of srcdir or reference to a
predefined path

target Generate class files for a particular VM version

tempdir Temporary file location if fork set to yes

updatedProperty Property to set for successful compilation

verbose Use verbose output on the compiler

Table 6: javac tasks properties

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Apache Ant

Class file dependencies can be managed using the
<depend> task.

Attribute Description

srcdir Location of Java files to compile. Will be examined to
determine which files are out of date

cache Directory where dependency information is stored and
retrieved. No cache if not used

classpath Classpath from which dependencies also need to be checked

closure If true, all classes depending on an out-of-date class are
deleted

destdir Location of class file to be analyzed

dump If true dependency info is written to the debug level log

warnOnRmiStubs Disables warnings about files that look like rmic generated
stubs but no .java source

Table 7: Depend task properties

Hot
Tip

Compiler Choice
To use different compilers set the build.compiler
property to classic (1.1, 1.2) modern (1.3-1.6) or
choose a separate compiler such as jikes, jvc, kjc,
gcj or sj.

Hot
Tip

Ivy For Dependency Management
Ivy (http://ant.apache.org/ivy), a sub project of Ant,
can also be used to manage dependencies.

Additional command line arguments can be passed through to
the compiler using the <compilerarg> nested element.

Distributing Compiled Code
Jar files can be created using the <jar> task.

Attribute Description

destfile JAR file to create

basedir The directory to build from

compress Compress data in jar. Defaults true

createUnicodeExtraFields Whether to create unicode extra fields to store file
names a second time inside the entry’s metadata

defaultexcludes Whether default excludes should be used.
Default true

duplicate Behavior when a duplicate file is found – add
(default), preserve, fail

keepcompression For entries coming from other archives, keep its
compression, overriding compress

encoding Character encoding for filenames. Default UTF8

excludes List of patterns of files to exclude

excludesfile The name of a file that defines an exclude pattern

fallbacktoUTF8 If the specified encoding cannot be used, whether
to fallback to UTF8

filesonly Store only file entries. Default false

filesetmanifest Behavior for when a manifest is found in a
zipfilesset. Can merge, mergewithoutmain or skip
(default)

flattenAttributes Merge attributes occurring more than once in a
section into one single attribute

includes List of patterns of files to include

includesfile The name of a file that defines an include pattern

index Whether to create an index list to speed up
classloading. Default false

indexMetaInf Whether to include META-INF in the index.
Default false

level Compression level for files from 0 (none) to 9
(maximum)

manifest Location of manifest for jar

manifestencoding Encoding to use for manifest. Default is platform
encoding

mergeClassPathAttributes Merge classpath attributes of different manifests
when merging

preserve0permissions If a file has permissions value of 0, it will preserve
this instead of applying default values

roundup Whether to round up file modification time to the
next even number of seconds

strict How to handle breaks of packaging version
specification Fail, warn or ignore (default)

update Whether to overwrite files that already exist.
Default false

useLanguageEncodingFlag Whether to set language encoding if encoding set
to UTF8 only

whenmanifestonly Behavior when no files match – fail, skip or create
(default)

Table 8: Jar task properties

Hot
Tip

War and Ear Archive Tasks
Both <war> and <ear> tasks have similar attributes
to the <jar> task, adding in attributes for web.xml or
application.xml respectively.

Additionally, you can sign jar archives using the <signjar> task.

Attribute Description

alias The alias to sign under

jar The jar file to sign

storepass The password for keystore integrity

executable Specific jarsigner executable to use in place of default
in JDK

force Force signing if already signed or not out of date

internals Whether to include the .SF file inside signature block.
Default false

keypass The password for the private key

keystore Keystore location

lazy Whether a signature file being present means the jar is
signed

maxmemory Maximum memory the VM will use when signing

preservelastmodified Signed files keep the same modification time as original
jar files

sectionsonly Whether to compute the hash of entire manifest

sigfile The name of the .SF or .DSA file

signedjar The name of the signed jar file

storetype The keystore type

tsacert Alias in keystore for timestamp authority

tsaurl URL for timestamp authority

verbose Whether to use verbose output. Default false

Table 9: Signjar task properties

Manifests can be included using the <manifest> task.

Attribute Description

file Manifest file to create or update

encoding Encoding to read existing manifest

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Apache Ant

flattenAttributes Merge attributes occurring more than once in a
section into one single attribute

mergeClassPathAttributes Merge classpath attributes of different manifests
when merging

mode Either update or replace (default)

Table 10: Manifest task properties

Generating Documentation
JavaDoc generation is done through the <javadoc> task.

Attribute Description

sourcepath
sourcepathref
sourcefiles

Location of the source files for the task. At least one
of these attributes required for this specification

destdir Destination directory required unless a doclet is
specified

access Access mode (public, private, protected, package)

additionalparam Additional parameters to pass through

author Include @author parts

bootclasspath /
bootclasspathref

Location of class files loaded by bootstrap class
loader

bottom Bottom text for each page

breakiterator Use new breakiterator algorithm

charset Charset for cross platform viewing

classpath/classpathref Location of classpath

defaultexcludes Whether default excludes should be used

docencoding Encoding of output file

docfilessubdirs Deep copy of doc-file subdirectories

doclet/docletpathref Classfile that starts to doclet used

doctitle Title for the package index page

encoding Source file encoding

excludepackagenames Packages to exclude from javadoc

executable Specify a javadoc executable instead of VM default

extdirs Location of installed extensions

failonerror Stops build process if command fails

footer Footer text for each page

group Group specified packages together in overview
page

header Header text for each page

helpfile Specifies help file to include

includenosourcepackages When true includes packages with no source

link Create links to javadoc output at given url

linksource Generate links to source files

locale Locale to be used

maxmemory Maximum amount of memory to allocate in VM

nodeprecated Do not include @deprecated information

nodeprecatedlist Do not generate deprecated list

notree Do not generate class hierarchy

noindex Do not generate index

nohelp Do not generate help link

nonavbar Do not generate naviation bar

noqualifier Enables –noqualifier argument for a list of packages
(or all)

overview Read overview documentation from HTML file

packagenames List of package files to use

packageList File containing packages to use

public Show only public classes and members

protected Show only protected/public classes and members

package Show only package/protected/public classes and
members

private Show all classes and members

serialwarn Warn about @serial tag

source Source level used for compilation

splitindex Split index into one file per letter

stylesheetfile Specifies CSS stylesheet

use Create class and package usage pages

verbose Output all messages of javadoc process

version Include @version parts

windowtitle Browser window title for documentation

Table 11: JavaDoc task properties

Executing Java Classes
Java classes can be executed from Ant using the <java> task.

Attribute Description

classname
jar

The jar file or classname to execute. If using jar, fork must be
set to true

append Whether output/error files should be appended or overwritten

args Arguments for class. Better to use nested <arg> elements

classpath /
classpathref

Classpath to use for execution

clonevm Clones system properties and bootclasspath of forked VM to
be the same as the Ant VM

dir Directory to invoke VM in

error File to write error (System.err) output to

errorproperty Property to store error output from command

failonerror Stops Ant build process if failure occurs

fork Executes the class in another VM

input File where standard input is taken from

inputstring String where standard input is taken from

jvm Command used to invoke JVM. Default is java

javmargs Arguments for forked JVM. Better to use nested <jvmarg>

logError Shows error output in Ant log

maxmemory Maximum memory to allocate to the forked VM

newenvironment When fork=true, do not propogate current environment
variables

output File to write output to

outputproperty Property to store output of the command

resultproperty Property where return code of command is stored

spawn Need fork set to true. Will spawn a process independent of
calling Ant process

timeout Timeout for the command to execute within before being
stopped

Table 12: Java task properties

Running Unit Tests
JUnit tests are executed from Ant through the <junit> task

Attribute Description

clonevm Clones system properties and bootclasspath of forked VM
to be the same as the Ant VM

dir Directory from which to invoke the VM

errorproperty Property to set when errors occur

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Apache Ant

failureproperty Property to set when failure occurs

filtertrace Filter out JUnit or Ant stack frames from stack traces in
errors or failures

fork Run JUnit in a separate VM

forkmode How many VMs to create when forking tests. (preTest,
perBatch or once)

haltonerror Stop build process if an error happens

haltonfailure Stops build process if a test fails

includeAntruntime Stops build process if a test fails

jvm Command used to invoke VM, default java

logfailedtests Log a FAILED message for each failed test to Ant’s logging
system

maxmemory Maximum memory to allocate to forked VM

newenvironment When fork=true, do not propogate current environment
variables

outputformatters Send output generated by tests to test formatters

printsummary Print statistics for each test case. (on, off, withOutAndErr)

reloading Whether a new classloader should be instAntiated for each
test

showoutput Send output to Ant log

tempdir Location for temporary files

timeout Cancel tests if not complete in specified time

Table 13: JUnit task properties

Tests are defined in nested elements within the <junit> task.
Batch tests are defined using the <batchtest> tag:

Attribute Description

name Name of test class

errorproperty Property to set when errors occur

failureproperty Property to set when failure occurs

filtertrace Filter out JUnit or Ant stack frames from stack traces in errors
or failures

fork Run tests in a separate VM, overriding the value set in the
<junit> task

haltonerror Stop build process if an error happens

haltonfailure Stops build process if a test fails

if Property condition to run test against, if set

todir Directory to write reports to

unless Property condition to run test against, if not set

Table 14: JUnit batch test definition

Hot
Tip

Single Tests
If you just need to run a single test, the <test> tag
can be used to specify the test. This contains similar
attributes to the <batchtest> tag.

Test results can be written to different formats, using the
outputformatters attribute in the <junit> task. The following
table shows the options for formatter definition:

Attribute Description

type A predefined formatter type of either xml, plain, brief or failure

classname If no type specified, use a customer formatter implementing
org.apache.tools.Ant.taskdefs.optional.junit
.JUnitResultFormatter

if Use formatter if property is set

unless Use formatter if property is not set

usefile If output should be sent to a file. Default true

Table 15: JUnit formatter definition

Once tests are completed, reports can be generated for the
tests using the <junitreport> task.

Attribute Description

todir The directory that will contain the results

tofile The name of the XML file that will aggregate all previously
generated results

Table 16: JUnitReport task properties

The <junitreport> task contains a fileset that collects all the
reports from previous Junit tests.

To output to a report file, use the internal <report> tag.

Attribute Description

format Format of report (frames or noframes)

styledir Directory containing stylesheets. Files must be junit-frames.xsl
or junit-noframes.xsl

todir The directory that files are written to. By default this is the
current directory

Table 17: Report tag for <junitreport>

Infrastructure Tasks
There are a number of other core tasks related to file
operations. The following is an overview of these tasks:

Task Description

attrib /chmod Changes permission of a file (attrib for Windows, chmod for
Unix)

checksum Generates a checksum for files

concat Concatenates multiple files into one single file, or to the console

copy Copies a file, or collection of files, to another location

delete Deletes a file, directory or collection of files

exec Executes a system command

ftp Provides basic FTP functionality

get Gets a file from a URL

import /
include

Imports or includes another build file into the current Ant script

mail Sends mail over SMTP

mkdir Creates a new directory

move Moves a file, or collection of files, to another location

record Listens to the build process and outputs to a file

replace Replaces occurances of a string in file or collection of files

replaceregexp Replaces occurances of a string in file or collection of files using
regular expressions

sql Executes SQL statements to a database using JDBC

sync Synchronizes a target directory with a list of files

zip / unzip
tar / untar

Creates a zip file / unzips an existing zip. Also provides
functionality for tar files

Table 18: Overview of basic infrastructure tasks

SCM Related Tasks
ANT provides a number of tasks for connecting with different
source control management systems. The core support deals
with CVS.

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Apache Ant

RECOMMENDED BOOKSABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

Task Description

cvs Handles commands to be run against CVS, defaulting with
checkout

cvschangelog Generates a report of change logs recorded in CVS

cvspass Adds entries to a .cvspass file

cvstagdiff Generates a report of the changes between two tags/dates
from CVS

cvsversion Retrieves CVS client and server version

patch Applies a diff file to originals

Table 19: CVS task properties

There are also tasks available for interfacing with ClearCase,
Visual Source Safe, Pvcs, Perforce and Continuus. Additional
tasks can be found online for DCVS systems such as Git and
Mercurial.

Property Tasks
Ant provides some tasks that deal with managing properties
throughout your build process.

Task Description

available Sets property if file, directory or class in classpath is available
at runtime

basename Sets property to last element of specified path

Hot
Tip

Writing Your Own Tasks
If Ant doesn’t provide you with the functionality that
you need, you can write your own Ant tasks in Java
by extending org.apache.tools.ant.Task.

buildnumber Reads build number from a specified file

condition Set property if a condition is true

dirname Set property to the directory path of a specified file

echoproperties Display all properties to file or console

loadfile Loads a file into a property

loadproperties Load a property file contents as Ant properties

makeurl Converts filenames into URLs

pathconvert Converts a file list or path structure to a separated string for
the target platform

property Set a property

propertyfile Creation and modification of property files

uptodate Set property if specified target file is newer than source files

whichresource Find class or resource

xmlproperty Loads properties from property file written in XML

Table 20: Ant Property Tasks

James Sugrue has been editor at both Javalobby
and EclipseZone for over two years, and loves every
minute of it. By day, James is a software architect at
Pilz Ireland, developing killer desktop software using
Java and Eclipse all the way. While working on desktop
technologies such as Eclipse RCP and Swing, James also
likes meddling with up and coming technologies such
as Eclipse e4. His current obsession is developing for
the iPhone and iPad, having convinced himself that it’s a
turning point for the software industry.

A single application of increasing complexity, followed
throughout the book, shows how an application evolves
and how to handle the problems of building and testing.
Reviewers have praised the book’s coverage of large-
projects, Ant’s advanced features, and the details and
depth of the discussion-all unavailable elsewhere.

BUY NOW
books.dzone.com/books/ant-action

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/ant-action

