

DZone, Inc. | www.dzone.com

By Eugene Ciurana

INTRODUCTION

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 N

o
S

Q
L

an
d

 D
at

a
S

ca
la

b
ili

ty

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#105

CONTENTS INCLUDE:
n	 Introduction
n	 Scalable Data Architecture
n	 Is NoSQL For You?
n	 mongoDB
n	 GigaSpaces XAP
n	 Google App Engine Datastore and more...

The DZone Refcard #43 is an introduction to system high
availability and scalability terminology and techniques
(http://refcardz.dzone.com/refcardz/scalability). The next
logical step is the scalable handling of massive data volumes
resulting from having these powerful processing capabilities.

This Refcard demystifies NoSQL and data scalability
techniques by introducing some core concepts. It also offers
an overview of current technologies available in this domain
and suggests how to apply them.

What is Data Scalability?
Data scalability is the ability of a system to store, manipulate,
analyze, and otherwise process ever increasing amounts of
data without reducing overall system availability, performance,
or throughput.

Data scalability is achieved by a combination of more powerful
processing capabilities and larger but efficient storage
mechanisms.

Relational and hierarchical databases scale up by adding more
processors, more storage, caching systems, and such. Soon
they hit either a cost or a practical scalability limit because
they are difficult or impossible to scale out. These database
management systems are designed as single units that must
maintain data integrity, and enforce schema rules to guarantee
it. This rigidity is what promotes upward, but not outward,
scalability.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Getting Started with
NoSQL and Data Scalability

Hot
Tip

Oracle RAC is a cluster of multiple computers with
access to a common database. This is considered
only vertically scalable because the processing
(usually in the form of stored procedures) may scale
out, but the shared storage facilities don’t scale with
the cluster.

Data integrity and schemas are suited for handling
transactional, normalized, uniform data. They handle
unstructured or rapidly evolving data structures with difficulty
or exponentially larger costs.

Hot
Tip Data replication is not the same as data scalability!

SCALABLE DATA ARCHITECTURES

There are two general kinds of architectures used for building
scalable data systems: data grids and NoSQL systems.

Node Node Node Node

Load Balancer

Node Node Node Node

Load Balancer

Consumer

Master

Figure 1 - Data Grid

Data grids expose their functionality through a single API
(either a Web service or native to the application programming
language) that abstracts its topology and implementation from
its data processing consumer.

Implementations of either often share characteristics from the
other.

Data Grids
Data grids process workloads defined as independent jobs
that don’t require data sharing among processes. Storage
or network may be shared across all nodes of the grid, but
intermediate results have no bearing on other jobs progress or
on other nodes in the grid, such as a MapReduce cluster.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with NoSQL and Data Scalability

IS NoSQL FOR YOU?

Hot
Tip

NoSQL is intended as shorthand for “not only
SQL.” Complete architectures almost always mix
traditional and NoSQL databases.

NoSQL setups are best suited for non-OLTP applications that
process massive amounts of structured and unstructured data
at a lower cost and with higher efficiency than RDBMs and
stored procedures.

Virtual File System
logical table management, load balancing, garbage collection

(HDFS, mongoFS, Hypertable)

Tablet
Server 0

Tablet
Server 1

Tablet
Server n

Distributed File System

FS 0 FS 1 FS 2 FS n

Node Node Node Node

Consumer

Figure 2 - NoSQL Topology

Areas of Application
 • Financial modeling
 • Data mining
 • Click stream analytics
 • Document clustering
 • Distributed sorting or grepping
 • Simulations
 • Inverted index construction
 • Protein folding

NoSQL
NoSQL describes a horizontally scalable, non-relational
database with built-in replication support. Applications
interact with it through a simple API, and the data is stored in a
“schema-free”, flat addressing repository, usually as large files
or data blocks. The repository is often a custom file system
designed to support NoSQL operations.

NoSQL storage is highly replicated (a commit doesn’t occur
until the data is successfully written to at least two separate
storage devices) and the file systems are optimized for write-
only commits. The storage devices are formatted to handle
large blocks (32 MB or more). Caching and buffering are
designed for high I/O throughput. The NoSQL database
is implemented as a data grid for processing (mapReduce,
queries, CRUD, etc.)

Areas of Application
 • Document storage
 • Object databases
 • Graph databases
 • Key/value stores
 • Eventually consistent key/value stores

This list is the implementation counterpart to the data grid
areas of application; the data store feeds the computational
network and, together, they form the NoSQL database.

NoSQL vs RDBMS vs OO Analogies
NoSQL RDBMS OO

Kind Table Class

Entity Record Object

Attribute Column Property

Preparation:

 • Don’t fall prey to the NoSQL fad
 • Don’t be stubborn; neither NoSQL nor traditional
 databases apply to all cases
 • Apply the CAP Theorem to your use cases to
 determine feasibility

Brewer’s (CAP) Theorem
It’s impossible for a distributed computer system to
simultaneously provide all three of these guarantees:

 • Consistency (all nodes see the same data at the same time)
 • Availability (node failures don’t prevent survivors from
 continuing to operate)
 • Partition tolerance (no failures less than total network
 failures cause the system to fail)

Since only two of these characteristics are guaranteed for any
given scalable system, use your functional specification and
business SLA (service level agreement) to determine what your
minimum and target goals for CAP are, pick the two that meet
your requirements, and proceed to implement the appropriate
technology.

Hot
Tip

Rule of Thumb: NoSQL’s primary goal is to achieve
horizontal scalability. It attains this by reducing
transactional semantics and referential integrity.

Use Figure 3 to identify the best match between your
application’s CAP requirements and the suggested SQL and
NoSQL systems listed.

Pick Any Two

C A

P

Consistency Availability

Partition tolerance

Relational
Key-Value

Column-Oriented
Document-Oriented

RDBMs (Oracle, MySQL), Aster Data, Green Plum, Vertica

Dyn
am

o,
Vo

lde
mor

t, T
ok

yo
 C

ab
ine

t, K
AI

, C
as

sa
nd

ra
,

Si
mple

DB,
 C

ou
ch

DB,
 R

iak

mongoDB, Terrastore, Datastore, Hypertable, Hbase,

Redis, Berkeley DB, MemcacheDB, Scalaris

Figure 3 - CAP Selection Chart
(source: Nathan Hurst's Blog)

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with NoSQL and Data Scalability

mongoDB

mongoDB is a document-based NoSQL database that bridges
the gap between scalable key-value stores like Datastore
and Memcache DB, and RDBMS’s querying and robustness
capabilities. Some of its main features include:

 • Document-oriented storage - data is manipulated as
 JSON-like documents
 • Querying - uses JavaScript and has APIs for submitting
 queries in every major programming language
 • In-place updates - atomicity
 • Indexing - any attribute in a document may be used for
 indexing and query optimization
 • Auto-sharding - enables horizontal scalability
 • Map/reduce - the mongoDB cluster may run smaller
 MapReduce jobs than a Hadoop cluster with significant
 cost and efficiency improvements

mongoDB implements its own file system to optimize I/O
throughput by dividing larger objects into smaller chunks.
Documents are stored in two separate collections: files
containing the object meta-data, and chunks that form a
larger document when combined with database accounting
information. The mongoDB API provides functions for
manipulating files, chunks, and indices directly. The
administration tools enable GridFS maintenance.

mongoDB Server (master)

Data
Storage

mongod
Database
daemon

mongos
Sharding
daemon

mongoDB Server (slave)

Data
Storage

mongod
Database
daemon

mongos
Sharding
daemon

Consumer

fail-over

Figure 5 - mongoDB Cluster

A mongoDB cluster consists of a master and a slave. The slave
may become the master in a fail-over scenario, if necessary.
Having a master/slave configuration (also known as Active/
Passive or A/P cluster) helps ensure data integrity since only
the master is allowed to commit changes to the store at any
given time. A commit is successful only if the data is written to
GridFS and replicated in the slave.

Hot
Tip

mongoDB also supports a limited master/master
configuration. It’s useful only for inserts, queries,
and deletions by specific object ID. It must not
be used if updates of a single object may occur
concurrently.

Caching
mongoDB has a built-in cache that runs directly in the cluster
without external requirements. Any query is transparently
cached in RAM to expedite data transfer rates and to reduce
disk I/O.

Document Format
mongoDB handles documents in BSON format, a binary-

encoded JSON representation. BSON is designed to be
traversable, lightweight and efficient. Applications can map
BSON/JSON documents using native representations like
dictionaries, lists, and arrays, leaving the BSON translation
to the native mongoDB driver specific to each programming
language.

BSON Example

{
 'name' : 'Tom',
 'age' : 42
}

Language Representation

Python {
 'name' : 'Tom',
 'age' : 42
}

Ruby {
 "name" => "Tom",
 "age" => 42
}

Java BasicDBObject d;
d = new BasicObject();
d.put("name", "Tom");
d.put("age", 42);

PHP array("name" => "Tom",
 "age" => 42);

Dynamic languages offer a closer object mapping to BSON/
JSON than compiled languages.

The complete BSON specification is available from:
http://bsonspec.org/

mongoDB Programming
Programming in mongoDB requires an active server running
the mongod and the mongos database daemons (see Figure
5), and a client application that uses one of the language-
specific drivers.

Hot
Tip

All the examples in this Refcard are written in Python
for conciseness.

Starting the Server
Log on to the master server and execute:

[servername:user] ./mongod

The server will display its status messages to the console
unless stdout is redirected elsewhere.

Programming Example
This example allocates a database if one doesn’t already exist,
instantiates a collection on the server, and runs a couple of
queries.

The mongoDB Developer Manual is available from:
http://www.mongodb.org/display/DOCS/Manual

#!/usr/bin/env jython

import pymongo

from pymongo import Connection

connection = Connection('servername', 27017)

db = connection['people_database']

peopleList = db['people_list']

person = {
 'name' : 'Tom',
 'age' : 42 }

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with NoSQL and Data Scalability

peopleList.insert(person)

person = {
 'name' : 'Nancy',
 'age' : 69 }

peopleList.insert(person)

find first entry:
person = peopleList.find_one()

find a specific person:

person = peopleList.find_one({ 'name' : 'Joe'})

if person is None:
 print "Joe isn’t here!"
else:
 print person['age']

bulk inserts
persons = [{ 'name' : 'Joe' }, {'name' : 'Sue'}]

peopleList.insert(persons)

queries with multiple results

for person in peopleList.find():
 print person['name']

for person in peopleList.find({'age' : {'$ge' : 21}}).sort('name'):
 print person['name']

count:

nDrinkingAge = peopleList.find({'age' : {'$ge' : 21}}).count()

indexing

from pymongo import ASCENDING, DESCENDING

peopleList.create_index([('age', DESCENDING), ('name', ASCENDING)])

The PyMongo documentation is available at:
http://api.mongodb.org/python - guides for other languages
are also available from this web site.

The code in the previous example performs these operations:

 • Connect to the database server started in the previous
 section
 • Attach a database; notice that the database is treated like
 an associative array
 • Get a collection (loosely equivalent to a table in a
 relational database), treated like an associative array
 • Insert one or more entities
 • Query for one or more entites

Although mongoDB treats all these data as BSON internally,
most of the APIs allow the use of dictionary-style objects to
streamline the development process.

Object ID
A successful insertion into the database results in a valid
Object ID. This is the unique identifier in the database for a
given document. When querying the database, a return value
will include this attribute:

{
 "name" : "Tom",
 "age" : 42,
 "_id" : ObjectId('999999')
}

Users may override this Object ID with any argument as long as
it’s unique, or allow mongoDB to assign one automatically.

Common Use Cases
 • Caching - more robust capabilities, plus persistence, when
 compared against a pure caching system
 • High volume processing - RDBMS may be too expensive
 or slow to run in comparison

 • JSON data and program objects storage - many RESTful
 web services provide JSON data; they can be stored in
 mongoDB without language serialization overhead
 (especially when compared against XML documents)
 • Content management systems - JSON/BSON objects can
 represent any kind of document, including those with a
 binary representation

mongoDB Drawbacks
 • No JOIN operations - each document is stand-alone
 • Complex queries - some complex queries and indices are
 better suited for SQL
 • No row-level locking - unsuitable for transactional data
 without error prone application-level assistance

If any of these is part of the functional requirements, a SQL
database would be better suited for the application.

GIGASPACES XAP

Application Frameworks

JettyJEESpringMule

Groovy.NetC++Java

XAP
Management

and
Monitoring

XAP Deployment Virtualization

XAP Middleware Virtualization

(Virtualized Clustering Layer)

RDBMS Memcache DB mongoDB

Figure 4 - GigaSpaces XAP Data Grid

The GigaSpaces eXtreme Application Platform is a data
grid designed to replace traditional application servers. It
operates based on an event-processing model where the
application dispatches objects to the processing nodes
associated with a given data partition. The system may be
configured so that data state on the grid may trigger events, or
an application may dispatch specific commands imperatively.
GigaSpaces XAP also manages all threading and execution
aspects of the operation, including thread and connection
pools. GigaSpaces XAP implements Spring transactions and
auto-recovery. The system detects any failed operations
in a computational node and automatically rolls back the
transaction; it then places it back in the space where another
node picks it up to complete processing.

GigaSpaces provides data persistence, distributed processing,
and caching by interfacing with SQL and NoSQL data stores.
The GigaSpaces API abstracts all back-end operations (job
dispatching, data persistence, and caching) and makes

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with NoSQL and Data Scalability

it transparent to the application. GigaSpaces XAP may
implement distributed computing operations like MapReduce
and run them in its nodes, or it may dispatch them for
processing to the underlying subsystem if the functionality
is available (e.g. mongoDB, Hadoop). The application may
implement transactions using the Spring API, the GigaSpaces
XPA transactional facilities, or by implementing a workflow
where specific NoSQL stores handle entities or groups of
entities. This must be implemented explicitly in systems like
mongoDB, but may exist in other NoSQL systems like Google
App Engine’s Datastore.

GigaSpaces XAP Programming
The GigaSpaces XAP API is very rich and covers many aspects
beyond NoSQL and data scalability areas like configuration
management, deployment, web services, third-party product
integration, etc.

The GigaSpaces XAP documentation is at:
http://www.gigaspaces.com/wiki/display/XAP71/Programmer%27s+Guide

NoSQL operations may be implemented over these APIs:

 • SQLQuery - allows querying a space using a SQL-like
 syntax and regular expressions; do not confuse it with
 JDBC support.

 • Persistency - mostly supports RDBMSs but may implement
 other persistency mechanisms through the External Data
 Source Components API.

 • memcached - support for key/value pair distributed
 dictionaries available to any client in the grid; entities
 are automatically made available across all nodes. The
 memcached API is implemented on top of the data
 grid, and it’s interchangeable with other memcached
 implementations.

 • Task Execution - allows synchronous and asynchronous job
 execution on specific nodes or clusters

The GigaSpaces XAP API is in a minority of stateful NoSQL
systems. Most NoSQL systems strive to achieve statelessness
to increase scalability and data consistency.

Common Use Cases
 • Real-time analytics - dynamic data analysis and reporting
 based on data entered into a system less than a minute
 before effective time of use

 • Map/reduce - distributed data processing of large data
 sets across a computational grid

 • Near-zero downtime - allows for database schema
 changes without homebrew master/slave configurations or
 proprietary RDBMS dependencies

GigaSpaces XAP NoSQL Drawbacks
 • Complexity - the server, transactional, and grid model are
 more complex than for other NoSQL systems

 • Application server model - the API and components are
 geared toward building applications and transactional
 logic

 • Steeper learning curve

 • Higher TCO - brings a requirement of a specialized,
 well-trained system administration team with higher
 requirements than other NoSQL systems

GOOGLE APP ENGINE DATASTORE

Bigtable
Master Server

(Logical table management, load balancing, garbage collection)

Tablet
Server 0

Tablet
Server 1

Tablet
Server n

Google File System

FS 0 FS 1 FS 2 FS n

Datastore
Java (JDO, JPA)

API 1
Other language

Datastore
Python

Your
Applications

Google
Applications

Figure 6 - Datastore Architecture

Datastore operations are defined around entities. Entities
can have one-to-many or many-to-many relationships. The
Datastore assigns unique IDs unless the application specifies
a unique key. Datastore also disallows some property names
that it uses for housekeeping. The complete Datastore
documentation is available from:
http://code.google.com/appengine/docs/python/datastore/

Hot
Tip

Did you notice the parallels between Datastore
and mongoDB so far? Many NoSQL database
implementations have solved similar problems in
similar ways.

Transactions and Entity Groups
Datastore supports transactions. These transactions are only
effective on entities that belong to the same entity group.
Entities in a given group are guaranteed to be stored on the
same server.

Datastore Programming
The programming model is based on inheritance of basic
entities, db.Model and db.Expando. Persistent data is
mapped onto an entity specialization of either of these classes.
The API provides persistence and querying instance methods
for every entity managed by the Datastore.

Programming Example
The Datastore API is simpler than other NoSQL APIs and is
highly optimized to work in the App Engine environment. In
this example we insert data into the data store, then run a query:

from google.appengine.ext import db

class Person(db.Model):
 name = db.StringProperty(required=True)
 age = db.IntegerProperty(require=True)

person = Person(name = 'Tom', age = 42)

person.put()

person = Person(name = 'Sue', age = 69)

person.put()

The Datastore is the main scalability feature of Google App
Engine applications. It’s not a relational database or a façade
for one. Datastore is a public API for accessing Google’s
Bigtable high-performance distributed database system.
Think of it as a sparse array distributed across multiple servers
that also allows an infinite number of columns and rows.
Applications may even define new columns “on the fly”. The
Datastore scales by adding new servers to a cluster; Google
provides this functionality without user participation.

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with NoSQL and Data Scalability

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

find a specific person

query = Person.all() # every entity!

query.filter('age > ', 20)
query.order('name')

peopleList = query.fetch() # up to 1000

for person in peopleList:
 print person.name

This example performs these operations:
 • Defines a Person kind and associates it with the Datastore
 • Persists new items using the put() method
 • Defines and executes a query; notice that the query
 conditions are expressed as strings

Gql - the Google Query Language
Datastore also allows queries in a custom, SQL-like language.
The query in the previous example could be expressed as:

SELECT * FROM Person WHERE age > 20
 ORDER BY name ASC

Gql is useful for writing more expressive queries than those
written in the Python or Java APIs.

Hot
Tip

Careful! Python vs. Gql queries have different
performance and quota characteristics that may
impact your cost or functionality! Refer to the
Datastore documentation for a discussion of how
they differ.

Common Use Cases
 • Massive scalability - Datastore offers ultimate scalability
 by leveraging Google’s own infrastructure for persistent
 storage
 • Google App Engine applications - there is no alternative
 mechanism for data storage on this platform
 • Data rich RESTful Web services - use the Datastore
 and App Engine infrastructure to offload traditional data
 centers when stateless, data-intensive web services must
 be implemented

Datastore Drawbacks
 • Vendor lock-in - persistence and queries are tightly
 coupled with the Datastore and the Datastore API is far
 from being an industry standard
 • Availability - Datastore has been known to fail and the
 EULA doesn’t allow more than 4-nines SLAs
 • Quotas - Datastore utilization costs per data access and
 for processor time
 • Query limits - Result sets are limited to return a maximum
 of 1,000 entities, forcing queries be needlessly complex

STAYING CURRENT

Do you want to know about specific projects and use cases
where NoSQL and data scalability are the hot topics? Join the
scalability newsletter:

http://eugeneciurana.com/scalablesystems

Eugene Ciurana is an open-source evangelist who specializes in the design
and implementation of mission-critical, high-availability large scale systems.
Over the last two years, Eugene designed and built hybrid cloud scalable
systems for leading financial, software, insurance, and healthcare companies
in the US, Japan, and Europe. As chief liaison between Walmart.com Global
and the ISD Technology Council, he led the official adoption of Linux and
other open-source technologies at Walmart Stores Information Systems
Division in 2006.

Publications
• Developing with Google App Engine
• DZone Refcard #43: Scalability and High Availability
• DZone Refcard #38: SOA Patterns
• The Tesla Testament: A Thriller

MongoDB, a cross-platform NoSQL database, is the fastest-
growing new database in the world. MongoDB provides a
rich document orientated structure with dynamic queries that
you’ll recognize from RDMBS offerings such as MySQL. In other
words, this is a book about a NoSQL database that does not
require the SQL crowd to re-learn how the database world
works!

BUY NOW
books.dzone.com/books/mongodb

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

