

DZone, Inc. | www.dzone.com

By Willie Wheeler

INTRODUCTION

E
xp

re
ss

io
n

-B
as

e
d

 A
u

th
o

ri
za

ti
o

n
 w

it
h

 S
p

ri
n

g
 S

e
cu

ri
ty

 3

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#106

CONTENTS INCLUDE:
n	 Introduction
n	 Authentication
n	 User Based Expressions
n	 Web Authorization
n	 Domain Objects & ACLs
n	 Hot Tips and more...

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Expression-Based Authorization with

Spring Security 3

Spring Security, née Acegi, has a reputation for being a
challenging framework. While that reputation isn’t altogether
undeserved, in fairness it owes largely to the difficulty of the
subject matter itself. But those willing to invest the effort will
discover a powerful tool.

This Refcard covers the key features of expression-based
authorization with Spring Security 3, and aims to be a handy
reference for novices and experienced users alike.

Here’s a dependency diagram that doubles as our road map:

We’ll begin with authentication and work our way up. Then we’ll
repeat the process starting from domain objects.

AUTHENTICATION

Authentication is the process by which a security principal—
human, machine or otherwise—asserts and proves its identity.
Username/password logins are a familiar example.

Spring Security has rich support for authentication. We can source
authentication data from databases, LDAP, OpenID providers, CAS
and more. We describe two common choices below.

WARNING: Our examples store passwords as plaintext, which is a
poor security practice. Spring Security supports password hashing
and salting, but space limitations preclude a demonstration.

Using the JDBC user service
Using Spring Security’s JDBC user service with the default
database schema is easy.

Step 1: Prepare the database
Create the users and authorities tables described in the Database
Schemas section at the end of this Refcard, and populate it with
data. (We can use a custom schema with the JDBC user service as
well, but we won’t describe that here.) For example:

insert into users values (‘jude’, ‘p@ssword’, 1);
insert into authorities values (‘jude’, ‘user’);
insert into authorities values (‘jude’, ‘instructor’);

Hot
Tip

Create a “user” role and assign it to everybody. This will greatly
simplify domain object security by providing a single data-driven
lever for assigning and changing default permissions.

Step 2: Configure Spring Security to use the JDBC user service
The next step is to configure Spring Security to use the JDBC user
service. Here’s what that looks like:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans xmlns=”http://www.springframework.org/schema/security”
 xmlns:beans=”http://www.springframework.org/schema/beans”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-
 3.0.xsd”>

 ... DataSource and <http> configuration ...

 <authentication-manager>
 <authentication-provider>
 <jdbc-user-service data-source-ref=”dataSource” />
 </authentication-provider>
 </authentication-manager>
</beans:beans>

Using a custom user service
Usually our existing user service and database schema are more
interesting than the JDBC user service and default schema.
Consider a Hibernate-backed AccountDao and an Account class
supporting firstName, email and other such properties. Spring
Security can use this authentication infrastructure. Here’s how.

Step 1: Implement the UserService interface
We modify our AccountDao to implement the Spring Security
UserDetailsService interface, or else create an adapter if that isn’t
desirable/feasible. Either way, we implement a single method:

public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException, DataAccessException;

The fully-qualified name of the interface is:

org.springframework.security.core.userdetails.UserDetailsService

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Expression-Based Authorization with Spring Security 3

Step 2: Implement the UserDetails interface
Now we either modify our Account class to implement the
UserDetails interface, or else create an adapter. This time there are
several methods to implement, but they’re straightforward. See the
following for more information:

org.springframework.security.core.userdetails.UserDetails

Consider using the GrantedAuthorityImpl class when implementing
the UserDetails.getAuthorities() method.

Step 3: Configure Spring Security to use the custom user service
Configuration is as easy as it was with the JDBC case:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans ... >

 ... AccountDao and <http> configuration ...
 <authentication-manager>
 <authentication-provider user-service-ref=”accountDao” />
 </authentication-manager>
</beans:beans>

AUTHENTICATION

Spring Security 3 builds upon the Spring Expression Language
(SpEL) that Spring 3 introduces. The expressions in this section
reference characteristics of the user himself, such as roles and
authentication status. This stands in contrast to permission-based
security expressions, which derive from considering a user, an
action and a target domain object jointly. We’ll treat this more
advanced topic after we cover the basics here.

Spring Security evaluates user-based security expressions against a
context-dependent “root object” as we explain below.

Common user-based expressions
The base root object is SecurityExpressionRoot, and it defines
common security terms and predicates available for use in both
web and method security contexts. Here are the security terms:

Term Refers to

authentication The current user’s Authentication object, taken from the SecurityContext

principal The current user’s principal object, taken from the Authentication object

SecurityExpressionRoot supports several predicates as well. Their
semantics center around authentication status and user roles:

Predicate True if and only if...

permitAll Always true

denyAll Always false

isAnonymous() User is anonymous

isAuthenticated() User is not anonymous

isRememberMe() User authenticated via remember-me

isFullyAuthenticated() User is neither anonymous nor remember-me

hasRole(role) User has the specified role

hasAnyRole(role1, role2, ...,
role n)

User has at least one of the specified roles

User-based expressions in web contexts
In web contexts, the root object is a WebSecurityExpressionRoot,
which extends SecurityExpressionRoot with the following:

Expression Description

request Term exposing the underlying HttpServletRequest

hasIpAddress(ipAddr) Predicate that’s true iff the client IP address matches the specified
IP address. ipAddr can be either a single IP address or else a
range of IP addresses using IP/netmask notation

Examples
Most of the predicates are self-explanatory, so we’ll concentrate on
the ones that may not be, and also on how to use SpEL to combine
them into complex predicates.

WEB AUTHORIZATION

Authorization deals with controlling access to secure resources. In
Spring Security 3 authorization in general is heavily slanted toward
the use of security expressions. This is one of the major differences
between Spring Security 2 and 3.

For web authorization, expressions allow us to create access rules
in terms of user characteristics such as authentication status, user
roles and the user’s IP address.

Spring Security supports two flavors of web authorization. The first
uses the web security expressions just described to control access
to application URLs, or optionally, URL/HTTP method pairs. The
second involves showing or hiding JSP content using the Spring
Security tag library. We’ll examine both.

Authorizing web URLs
Activate expression-based web URL authorization as follows:

<http auto-config=”true” use-expressions=”true”>

Then implement access rules for URLs by adding <intercept-url>
children directly under the <http> element. The <intercept-url>
attributes are as follows:

Attribute Description Required

pattern URL pattern to match. Uses Ant syntax by default (e.g. * and
** wildcards) but regex is supported as well.

Yes

method Optional HTTP method to narrow the match No

access When expressions are activated, this contains the security
expression to apply to the URL and (if applicable) HTTP
method. Legacy behavior is to store a comma-delimited list
of user roles.

No

filters Only possible value is “none”, which indicates that the
request is to bypass the Spring Security filter chain. The
request will have no SecurityContext. This is mostly for static
resources like images, JavaScript, CSS and so forth.

No

requires-channel Can be either “http” or “https”. No

Rules are processed in order, so the first pattern/method match
determines which security expression will be used to make the
access decision. Therefore, place more specific patterns before
more general patterns.

Restrict access to admins:

hasRole(‘admin’)

Restrict access to users who are either instructors or admins:

hasAnyRole(‘instructor’, ‘admin’)

Restrict access to fully-authenticated users who are either customers
or admins (e.g., to require a full login before making a purchase):

isFullyAuthenticated() and hasAnyRole(‘customer’, ‘admin’)

Restrict access to the IPv4 loopback address:

hasIpAddress(‘127.0.0.1’)

Restrict access to admins on the LAN (uses netmask):

hasRole(‘admin’) and hasIpAddress(‘192.168.1.0/24’)

Now let’s use expressions to create access rules to support the
authorization of web URL requests and JSP content.

Hot
Tip

Implement a whitelist by placing a <intercept-url pattern=”/**”
access=”denyAll” /> at the end of the list of rules.

Examples
Exclude images from being intercepted:

<intercept-url pattern=”/images/**” filters=”none” />

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Expression-Based Authorization with Spring Security 3

Allow all users to see the home page:

<intercept-url pattern=”/home” method=”GET” access=”permitAll” />

Only unauthenticated users can register a new account (RESTful
URI/method):

<intercept-url pattern=”/users” method=”POST” access=”isAnonymous()” />

Only students or administrators can enter the student lounge:

<intercept-url pattern=”/lounges/student” method=”GET”
 access=”hasAnyRole(‘student’, ‘admin’)” />

Authorizing JSP content based on user characteristics
Activate expression-based web URL authorization as follows:

<%@ taglib prefix=”security”
 uri=”http://www.springframework.org/security/tags” %>

The tag library has three tags:

Tag Description

<security:authentication> Exposes the current Authentication object to the JSP.

<security:authorize> Shows or hides the tag body according to whether the current
principal satisfies a specified condition.

<security:accesscontrollist> Shows or hides the tag body according to whether the current
principal has a specified permission on the specified domain
object.

We’ll go over the first two tags now, and postpone the third until
after we’ve covered domain objects and ACLs.

<security:authentication>
This tag exposes the current Authentication object to the JSP,
either for creating variables or for display. Its attributes:

Tag Attribute Description Required

property Specifies a property on the Authentication object. Use dot
notation to access nested properties; e.g., principal.username.

Yes

var Variable name if you want to store the property value instead of
displaying it.

No

scope Optional variable scope if you want to store the property value
instead of displaying it. Default is page scope.

No

Examples
We’re usually interested in the user principal. Here’s how to greet
a user by username if our principal implements the UserDetails
interface. (By default, principals implement UserDetails.)

<p>Hi <security:authentication property=”principal.username” /></p>

Tell a user that his account has been locked, again assuming we’re
using a UserDetails principal:

<security:authentication var=”principal” property=”principal” />
<c:if test=”${!principal.accountNonLocked}”>
 <p>Sorry, your account has been locked.</p>
</c:if>

See the Javadocs for Spring Security’s UserDetails interface for
more information on the properties it exposes.

We can use <security:authentication> to access properties on a
custom principal, whether a UserDetails implementation or not. For
instance, here’s a more user-friendly greeting:

<p>Hi <security:authentication property=”principal.firstName” /></p>

<security:authorize>
The <security:authorize> tag shows or hides its body according to
whether the current principal satisfies a condition we select.

Tag Attribute Description Required

access Display tag body iff the access expression is true. Uses the web
security expressions described earlier in the Refcard.

No

url Specifies an app URL such that the tag displays the tag body only
if the user has access to the URL

No

method Optionally narrow url to a specific HTTP method (e.g., GET,
POST, PUT, DELETE) when doing URL-based authorization.

No

ifNotGranted Comma-delimited list of roles such that the tag body shows
iff the user has none of the roles. Deprecated; use the access
attribute instead.

No

ifAllGranted Comma-delimited list of roles such that the tag body shows
iff the user has all of the roles. Deprecated; use the access
attribute instead.

No

ifAnyGranted Comma-delimited list of roles such that the tag body shows iff
the user has at least one of the roles. Deprecated; use the access
attribute instead.

No

Examples
Show a login link iff the user is unauthenticated (or, strictly, is
“anonymously authenticated” in Spring Security):

<security:authorize access=”isAnonymous()”>
 Log in
</security:authorize>

Show a gradebook link if the user has the instructor role:

<security:authorize access=”hasRole(‘instructor’)”>
 Gradebook
</security:authorize>

Alternatively:

<security:authorize url=”/main/gradebook” method=”GET”>
 Gradebook
</security:authorize>

Show a logout link iff the user is authenticated:
<security:authorize access=”isAuthenticated()”>
 Log out
</security:authorize>

Hot
Tip

Using URL and method allows us to reuse access rules defined in
the application context, but we have to repeat the URL.

With that, we’re done with the left half of our road map. The next
topic is domain objects and ACLs.

DOMAIN OBJECTS & ACLs

A user with the instructor role should be allowed to view his own
gradebook, but not other instructors’ gradebooks. Requirements
like this demand something beyond uOne of the more compelling
features of Spring Security 3 is its support for domain object
security. The idea is to consider three factors when making an
access decision: (1) the actor, (2) the domain object being acted
upon and (3) the requested action. We ask the access question in
terms of permissions: does the actor have permission to perform
the action on the domain object?

For example, a user with the instructor role should be allowed to
read her own gradebook, but not other instructors’ gradebooks.
Role-based authorization won’t help us here.

Spring Security addresses this need by giving each secure domain
object (such as a gradebook) an access control list (ACL). Each ACL
is an ordered list of access rules, or access control entries (ACEs).
An ACE specifies for a given <domain object, actor, action> triple
whether to grant or block the action.

Managing ACEs
The Spring Security ACL module employs an ACE inheritance
mechanism to keep the ACEs manageable even as the number
of domain objects grows. The modeling approach is to organize
domain objects into a hierarchy and then create ACEs against the
most general domain object that makes sense.

Suppose that we have a forum with 10,000 messages. The forum
moderator needs admin access to all 10,000 messages. Instead of
creating 10,000 ACEs, we simply link the messages to the forum
and create a single ACE giving the moderator admin access to the

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Expression-Based Authorization with Spring Security 3

forum. The messages will inherit their ACEs from the forum as a
result, and the moderator now has admin access to the messages.

Here’s a set of entities corresponding to our scenario:

Entity Description

SID #1 raylene

Domain object class #1 myapp.model.Forum

Domain object class #2 myapp.model.Message

Domain object #1 Forum instance

Domain objects #2-10001 10,000 Message instances with parent set to the Forum instance

ACE #1 Grant admin permission on the Forum instance to raylene

Permissions and their codes
Creating ACEs involves adding records to the acl_entry table.
We specify permissions by placing permission codes in the mask
column. The five basic permissions and codes are the following:

Permission Bit Index Code

read 0 1

write 1 2

create 2 4

delete 3 16

admin 4 16

custom permission 5 <= n <= 31 2^n

WARNING: Spring permissions cannot be combined and
bitmasked like bitsets. A permission code of 3, for example, does
not represent simultaneous read and write permissions; it is simply
undefined. There are fairly deep reasons for this; suffice it to say
that permissions are more like enums than bitsets. To grant a user
two permissions on an object, we need two separate ACEs.

WEB AUTHORIZATION, REVISITED

Domain object security gives us the ability to authorize JSP content
based on permissions, as we describe below.

Authorizing JSP content using permissions
Earlier we authorized JSP content based on user characteristics
such as authentication status (anonymous, authenticated,
remember-me authenticated, fully authenticated), user roles and
others (e.g., IP address). Here we want to do the same thing, but
this time based on user permissions on domain objects. Once
again we rely upon the Spring Security tag library.

<security:accesscontrollist>
The <security:accesscontrollist> tag is like the <security:authorize>
tag in that it either shows or hides its body depending upon a
given condition. The difference is that the condition is based on a
domain object’s ACL as described below:

Tag Attribute Description Required

hasPermission Comma-delimited list of numerical permissions to evaluate.
Display tag body iff user has at least one of the permissions
on the specified domain object.

1

domainObject Domain object against which to evaluate the permissions. 2

Examples
Show an edit link for a message (referenced using the JSP EL
expression ${message}) if the user has either write (2) or admin (16)
permissions on the message:
<security:accesscontrollist
 hasPermission=”2,16” domainObject=”${message}”>
 Edit message
</security:accesscontrollist>

The <security:accesscontrolist> tag doesn’t use expressions,
and the tag library currently offers no straightforward way to use

expressions involving both user characteristics and permissions, as
we might want to do if we wanted to allow the admin role to edit
messages too. (Be careful to distinguish the admin user role from
the admin permission on a domain object.)

A better approach, however, is to create an admin SID in the ACL
database and give it the admin permission on the message. It is
critical to use ACE inheritance to avoid a proliferation of ACEs. If
the domain hierarchy is site forum thread message, then
we’d give the admin SID the admin permission on the site and
then let inheritance do the rest.

This approach greatly simplifies the code without adding
undue data complexity. It’s also easier to make changes and
accommodate exceptions when access decisions are data-driven.

Hot
Tip

Drive access decisions from the data, not from the code. Use
inheritance aggressively to avoid a big ACE mess.

METHOD AUTHORIZATION

Besides authorizing web URL requests and JSP content, Spring
Security supports annotation-based method authorization. We
protect methods by attaching annotations containing security
expressions to the classes and methods in question.

The expressions are the ones we’ve already seen, plus an
additional set of expressions allowing us to make assertions about
a user’s permissions on domain objects.

Permission-based security expressions
Here are the permission-based security expressions that Spring
Security 3 makes available for defining access rules:

Expression Type Description

#paramName term Expression variable referring to a method argument by
parameter name

filterObject term Refers to an arbitrary element when filtering a Collection. See
@PreFilter and @PostFilter below.

returnValue term Refers to a method’s return value. See @PostAuthorize below.

hasPermission(
domainObject,
permission)

predicate True iff the current user has the specified permission on the
specified domain object. Permission is read, write, create,
delete or admin.

Annotations for method authorization
Spring Security 3 introduces four expression-based @Pre/@Post
annotations. While Spring Security continues to support the JSR-
250 standard annotations (e.g., @RolesAllowed) and the legacy
@Secured annotation, the new @Pre/@Post annotations are much
more powerful because they support permission-based security
expressions. We’ll therefore focus on those.

Use the following top-level namespace element to activate
@Pre/@Post annotations:

<global-method-security pre-post-annotations=”enabled” />

The @Pre/@Post annotations are as follows.

@PreAuthorize(expression)
Checks that expression is true before allowing access to the
method. This is probably the most useful annotation of the set.

@PreFilter(value=expression [,filterTarget=collection])
Filters a Collection before passing it to the method. The filtering
process applies expression to each element in turn, removing it
from the collection if expression evaluates false. The reserved

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Expression-Based Authorization with Spring Security 3

name filterObject in the expression refers to an arbitrary element.
The Collection implementation must support the remove() method.

The filterTarget annotation element specifies the collection by
name if the method has multiple Collection parameters. This
requires compiling the target class with the debug flag on.

@PostAuthorize(expression)
Checks that expression is true before returning the annotated
method’s return value. The reserved name returnObject in the
expression refers to the return value. Useful in cases where the
method has domain object parameters that are actually IDs instead
of domain objects.

@PostFilter(expression)
Filters a Collection before returning it from the method. Similar to
@PreFilter, but filters the return value.

Hot
Tip

Proxies enforce @Pre/@Post rules. Once a request makes it
behind the proxy, internal calls are unprotected.

Examples
Only users with the write or admin permission can edit a message:

@PreAuthorize(“hasPermission(#message, write) or
 hasPermission(#message, admin)”)
public void editMessage(Message message) { ... }

Only users with the read permission can get a forum:
@PreAuthorize(“hasPermission(new myapp.model.Forum(#id), read)”)
public Forum getForum(long id) { ... }

In the example above, we use a SpEL trick to handle the fact that
we can’t directly reference an existing message. We can use
@PostAuthorize here too, but that requires actually loading the
forum before rejecting the request, which is suboptimal.

Only users with the admin role or permission can read blocked
messages:

@PreAuthorize(“hasPermission(new myapp.model.Forum(#id), read)”)
public Forum getForum(long id) { ... }

We use @PostAuthorize here because there’s no way to know
whether the message is visible without loading it. The role name
has to be in quotes. In contrast, the permission name must not
be in quotes, even though the examples in the Spring Security
reference documentation erroneously contain quotes.

Here’s a similar example, but this time for a list of messages:

@PostFilter(“filterObject.visible or hasRole(‘admin’) or
 hasPermission(filterObject, admin)”)
public List<Message> getMessagesByForumId(long forumId) { ... }

The last two examples combined hasRole(‘admin’) with
hasPermission(..., admin). That’s OK, and we did it to illustrate
expressions that combine hasRole() with hasPermission(). But
again consider using ACE inheritance to give the admin role itself
admin permissions on all messages, and then simply remove the
hasRole(‘admin’) expression from the access rules. By pushing
access decisions into the data, we can change our mind about
which roles can do what without having to recompile the app.

Hot
Tip

Whitelists make sense for method security too. Place
@PreAuthorize(“denyAll”) at the type level and override it as
necessary at the method level.

ACL infrastructure configuration
The following bean dependency diagram shows the major
infrastructural components for method security and ACLs. As you
can see, there’s a lot of supporting machinery. Please consult the
Spring Security reference documentation and Javadoc for details.

1 org.springframework.security.access.expression.method.
 DefaultMethodSecurityExpressionHandler
2 org.springframework.security.acls.AclPermissionEvaluator
3 org.springframework.security.acls.jdbc.JdbcMutableAclService
4 org.springframework.security.acls.jdbc.BasicLookupStrategy
5 org.springframework.security.acls.domain.ConsoleAuditLogger
6 org.springframework.security.acls.domain.
 AclAuthorizationStrategyImpl
7 javax.sql.DataSource
8 org.springframework.security.acls.domain.EhCacheBasedAclCache
9 org.springframework.cache.ehcache.EhCacheFactoryBean
10 org.springframework.cache.ehcache.EhCacheManagerFactoryBean
11 org.springframework.security.core.authority.GrantedAuthorityImpl

Here’s the corresponding ACL configuration file (minus
DataSource), with bean IDs suppressed where they’re unnecessary.

<?xml version=”1.0” encoding=”UTF-8”?>
<beans xmlns=”http://www.springframework.org/schema/beans”
 xmlns:p=”http://www.springframework.org/schema/p”
 xmlns:security=”http://www.springframework.org/schema/security”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=
 “http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/
 spring-security-3.0.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd”>

 <bean id=”aclCache”
 class=”org.springframework.security.acls.domain.
 EhCacheBasedAclCache”>
 <constructor-arg>
 <bean class=”org.springframework.cache.ehcache.
 EhCacheFactoryBean” p:cacheName=”aclCache”>
 <property name=”cacheManager”>
 <bean class=”org.springframework.cache.ehcache.
 EhCacheManagerFactoryBean”/>
 </property>
 </bean>
 </constructor-arg>
 </bean>

 <bean id=”adminRole”
 class=”org.springframework.security.core.authority.
 GrantedAuthorityImpl”>
 <constructor-arg value=”admin” />
 </bean>

 <bean id=”aclLookupStrategy”
 class=”org.springframework.security.acls.jdbc.BasicLookupStrategy”>
 <constructor-arg ref=”dataSource” />
 <constructor-arg ref=”aclCache” />
 <constructor-arg>
 <bean class=”org.springframework.security.acls.domain.
 AclAuthorizationStrategyImpl”>
 <constructor-arg>
 <list>
 <ref local=”adminRole” />
 <ref local=”adminRole” />
 <ref local=”adminRole” />
 </list>
 </constructor-arg>
 </bean>
 </constructor-arg>
 <constructor-arg>
 <bean class=”org.springframework.security.acls.domain.
 ConsoleAuditLogger” />
 </constructor-arg>
 </bean>

 <bean id=”aclService”
 class=”org.springframework.security.acls.jdbc.
 JdbcMutableAclService”>
 <constructor-arg ref=”dataSource” />
 <constructor-arg ref=”aclLookupStrategy” />
 <constructor-arg ref=”aclCache” />
 </bean>

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Expression-Based Authorization with Spring Security 3

RECOMMENDED BOOKSABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

Willie Wheeler is a Principal Solutions Architect with
the Apollo Group. He has been working with Java
for thirteen years and with Spring for six, with a focus
on web application development. Willie is currently
writing a book called Spring in Practice for Manning,
and writes lots of technical articles
(http://wheelersoftware.com/articles/) as well.

 <bean id=”permissionEvaluator”
 class=”org.springframework.security.acls.AclPermissionEvaluator”>
 <constructor-arg ref=”aclService” />
 </bean>

 <bean id=”expressionHandler”
 class=”org.springframework.security.access.expression.
 method.DefaultMethodSecurityExpressionHandler”
 p:permissionEvaluator-ref=”permissionEvaluator” />
</beans>

DATABASE SCHEMAS

Spring Security 3 has database schemas for users, groups,
“remember-me” logins and ACLs. Here are the tables:

Table Description

users Individual users

authorities User roles

groups Groups

group_authorities Group roles

group_members Group membership

persistent_logins Supports hardened “remember-me” authentication

acl_sid Security ID: either a principal or a role

acl_class Domain object classes whose instances require ACLs

acl_object_identity Domain objects requiring ACLs

acl_entry Domain object ACLs

ERDs for the MySQL 5.1 versions of the schemas follow. Modify
them as necessary for other DBMSes. You can get the DDL at
http://springinpractice.com/2010/07/06/spring-security-database-
schemas-for-mysql/.

User Schema

Group Schema

Remember-me Schema

ACL Schema

Unlike the many books that teach you what Spring
is, Spring in Practice shows you how to tackle
the challenges you face when you build Spring-
based applications. The book empowers software
developers to solve concrete business problems
“the Spring way” by mapping application-level
issues to Spring-centric solutions.

BUY NOW
books.dzone.com/books/spring-practice

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/spring-practice

