

DZone, Inc. | www.dzone.com

By Hamlet D’Arcy

WHAT IS GRIFFON?

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 G

ri
ff

o
n

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#107

CONTENTS INCLUDE:
n	 Creating and deploying desktop RIAs with
	 Groovy and Griffon
n	 Designing with Model-View-Controller
n	 Event systems for applications,
	 app life-cycles, and builds
n	 Developing with plugins
n	 Groovy guide to Swing threading
n	 Hot Tips and more...

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Griffon is a Grails like application framework for rich desktop
applications and is built on top of Groovy, Java, and Swing.
Griffon embraces convention over configuration, automates
many common development tasks, and features a large
and growing plugin system. Griffon also features property
binding for widgets and a broad and extensible event system.
These combine to make Griffon an excellent choice for rich
Internet applications. You can write maintainable and well
designed applications quickly without spending time on builds,
deployment, or configuration tweaking. You also get a rock-
solid, secure, and well-known platform in the JVM, and along
with the productivity boost of a modern, dynamic language
while retaining and using all your Java expertise.

FROM 0 TO DEPLOYED

Griffon is a full life-cycle framework: it automates not just
creation and maintenance of applications, but also build and
deployment tasks. We’ll cover Model-View-Controller next,
but let’s start with creating, running, packaging, and deploying
an app with Java WebStart, going from nothing to deployed
in about 5 minutes time. We could deploy as an applet, Jar,
or desktop installation as well, but WebStart is the most
interesting for RIAs.

Prerequisites – You should have the Java Development Kit
(JDK) version 1.5+ (Version 6 recommended).

Installing Griffon – Download the latest release from
http://griffon.codehaus.org/. Simply extract the .zip file
somewhere on your machine. Next, create an environment
variable called GRIFFON_HOME, pointing to the directory you
unzipped the package, and add GRIFFON_HOME/bin to your
path. The Griffon website contains instructions on how to set
environment variables if you need more specific guidance. If
you’ve done everything correctly then you should be able to
open a command prompt, enter “griffon help”, and see a help
message from Griffon.

$ griffon help
Welcome to Griffon 0.3.1 - http://griffon.codehaus.org/
...

Griffon provides many commands to help you create and
manage an application, and plugins may add more commands.
“griffon help” will display all the available commands for your
system.

griffon help Displays all the available commands for the Griffon
installation

griffon <target> help Displays help for the specified target

Creating an Application – A full application stack is only a
command away. Simply run “griffon create-app” and enter the
name for the app when you are prompted.
$ griffon create-app
...
Application name not specified. Please enter:
Starter
...
Created Griffon Application at /home/hdarcy/dev/Starter
$ cd Starter

This step creates an entire project on your disk: standard
directory layout, MVC groups, internationalization bundles,
build scripts, IDE files, and more. The application is little more
than a Hello World app at this point, but you can run it.

griffon create-app Creates a new Griffon application

Running the Application – Griffon apps are desktop
applications that a user can install, Applet applications that run
in a browser, and WebStart applications that run as Internet
apps. Griffon hides the platform differences from you so any
Griffon app you write can be deployed in any of these forms.
To run the application on your desktop enter “griffon run-
app”, and your Hello World style window will pop up shortly
after the compile and packaging automatically finishes.

	
It’s not much to look at yet, but pretty good considering we
have written no code. You can also run the application using
“griffon run-applet” or “griffon run-webstart”.

griffon run-app Compiles and runs the application as a desktop app

griffon run-applet Compiles and runs the application a browser Applet

griffon run-webstart Compiles and runs the application as a JNLP Webstart
project

Getting Started with

Griffon

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Griffon

Signing the Application – The Java platform offers excellent
security options, but the in past configuring these options was
complex. This is an optional step, you do not need to sign
applications, but you should, and Griffon handles all the hard
work of managing digital signatures and signing Jar files for
you with just two easy steps. First create your digital signature
using the JDK’s keytool program (unless your company already
has done this). We’ll call ours MyKey.

$ keytool -genkey -alias MyKey

You’ll be prompted to enter a password, as well as your name,
company, and location. This creates the required Java key
files in your home directory. Now we just need to tell our
application about this key file. In a text editor, open the
./griffon-app/conf/Config.groovy configuration file. There
are 5 entries that need to be changed in order to properly
sign a WebStart application. In the environments.production.
signingkey.params properties, add the following settings
modified with your home directory and key name:

sigfile = ‘MyKey’
keystore = “/home/hdarcy/.keystore”
alias = ‘MyKey’

Then, under environments.production.griffon turn Jar packing
off and specify your Internet deployment location.

jars {
 pack = false
}
webstart {
 codebase = ‘http://www.canoo.com/griffon/starter’
}

Finished. The Jars will all be signed the next time you package
the app.

Packaging and Deployment – To package your application, run
the “griffon package” target. This creates deployable files for
Jar, Applet, and WebStart deployments. You’ll be prompted
for your keystore password during the signature process. From
here, just copy all the contents of your ./dist/webstart folder
onto any webserver and your application is ready to launch
over the Internet. You can see this sample deployed at
http://canoo.com/griffon/starter. There is no need for a Java
Servlet container, just copy the files and access the URL.

griffon package Packages the application into deployable bundles

SWING DONE RIGHT

Consistent Project Structure - Griffon projects follow a
convention; all Griffon projects are meant to look the same.
This consistency eases maintenance costs and promotes
application best practices. The following table shows the
project layout for a default project, and lists the contents of
each folder.

./griffon-app/conf Build and runtime configuration
data

./griffon-app/controllers Controller classes, orchestrate
views and models

./griffon-app/i18n Message bundles for
internationalization

./griffon-app/lifecycle Scripts to run on application
events

./griffon-app/models Model classes

./griffon-app/resources Images, properties, and other
resources

./griffon-app/views User interface view classes

./lib Jar files and libraries

./scripts Gant scripts, a Groovy wrapper
around the Ant build tool

./src/main Other source files, with many JVM
languages supported

./test Testing files, at both the
integration and unit level

	

Hot
Tip

Groovy property files are an improved version of
Java property files. The old .properties file syntax of
“key=value” can still be used if you want. However,
properties are hierarchical and grouped, and
the Groovy syntax makes these groupings more
apparent. Plus, you can put any code you want in a
property file and have it execute.

Hot
Tip

When configuring version control for your project,
do not check in these files: dist, staging, stacktrace.
log, and the .iws file. Instead, add them to your VC’s
ignore list.

Hot
Tip

A Griffon model is not a domain model, but an
application model. As such, the Griffon model makes
it easy for the controller and view to exchange data
in a toolkit agnostic way. A domain model describes
the conceptual entities in your software system.
Consider the difference between an Employee object
(a domain model) and an EmployeeTableModel (an
application model).

Our starter application contains exactly one MVC triad: the
main frame. Larger Griffon applications are made of many MVC
triads, which are all defined in
./griffon-app/conf/Application.groovy. An MVC triad can be
based around an entire window, a panel, or simply a widget.
Beginners often create one MVC triad for each window in their
application, but this is a mistake. MVC is a pattern you apply to
components or bundles of components. The WeatherWidget
sample application from the Griffon distribution illustrates this:

Pervasive MVC – Model-View-Controller (MVC) is an often
used design pattern that separates concerns in applications.
An MVC pattern contains three essential elements: A View
defines how your application looks. Buttons, Frames, and
Widgets are all part of the view layer. A Controller defines how
your application behaves. Querying the database, managing
data, and coordinating user events are all part of the controller
layer. The Model holds data and state required by both the
controller and view. The state of buttons, the contents of text
boxes, and dirty field tracking are all part of the model layer.

	

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Griffon

In this window there are two visible MVC triads: The main frame
WeatherWidget, which contains four SmallForecast MVC triads
(one for each day of the week shown). Creating and reusing
MVC triads is a key design and decomposition technique
for building Griffon applications. Strive to build many, small,
and reusable MVC triads within your application. This Griffon
command will help you:

griffon create-mvc Creates a new MVC group: model, view, controller, and test

SIMPLE MVC

Griffon supports many view layer GUI toolkits through plugins:
Swing (the default), Eclipse Standard Widget Toolkit (SWT),
Pivot, Gtk, and even JavaFX. Using these toolkits is as easy as
installing the appropriate plugin. For now, we’ll stay in Swing
and start with an example. Following is a modified MVC Group
from the first example, we’re adding a button and a simple
counter to the screen. The view script adds a button and a
label to the form, and the Controller simply updates a counter.
The Model is used to communicate between the two:

View - The view script is Groovy and relies heavily on
SwingBuilder, a Groovy convenience class for building Swing
based UIs. As you can see, SwingBuilder is a terse and DSL-like
script for writing widgets and configuration, which maps closely
to the Swing API. In case you are not too familiar with Groovy,
here is a quick summary of how this View script relates back to
the JDK:

	

Hot
Tip

Laying out components in Swing forms is notoriously
difficult using the GridBagLayout, which is exactly
why MigLayout was created. It’s goal is to make
complex layouts easy and normal layouts one-liners,
and may of the Griffon team swears by it. Just install
the miglayout plugin to get started.

gridLayout(rows: 2,
cols: 1)

Applies the Java GridLayout to the current container.
Parameters are named explicitly and map to the Java
constructor or setter methods.

label(text:bind
{model.message})

label() is a dynamic method and creates a JLabel in
the current container. The text of the label is bound
to a model property called message. Any updates to
the model.message field will result in the label being
updated. All of the event notification and listeners are
handled for you.

button(text:’Click
Me’, ...)

button() is a dynamic method and creates a JButton in
the current container. Setters may be invoked as named
argument parameters.

actionPerformed:
controller&action

Creates and adds a Swing ActionListener to the
component. This is the Groovy alternative to an
anonymous inner class. When the button is clicked the
controller is invoked.

Groovy adds a simplifying layer over the standard GUI
toolkits, like Swing; however, GUI toolkits are usually
large and complex. It is worthwhile to invest in one of the
many Swing books available. Groovy in Action contains a
thorough treatment of SwingBuilder, and the Oracle online
documentation for Swing is excellent.

Controller – The controller simply updates a counter and
tells the model that an update occurred. The model field is
automatically injected into controllers by Griffon (as is the view,
if you desire). The action field is just a closure (think Runnable)
that writes a new message back to the model.

Model – The communication hub holds a simple String field
marked @Bindable. This lets Griffon know that objects may
bind to the property, and any time the property is updated
then the correct PropertyChangeListeners will fire and
observers will be notified. Those with a Swing background will
understand that this simple annotation removes about 50 lines
of boilerplate Swing code!

Advanced Data Binding – Binding widgets to a model is a
requirement for modern GUI toolkits. But if you’ve worked with
other tools you may be worried about too many events being
posted and your application slowing down under a load of
bound requests, a situation known as a “Bind Storm”. Griffon
offers a flexible API to shelter you from this condition:

bind() Adds automatic event listeners and ties a component to a model

unbind() Removes the automatic listeners from a component

rebind() Reinstates the automatic listeners to a component

You don’t need to understand how binding works to write an
application fast, but you may need to in order to write a fast
application.

Controller

ModelView

ClickerView.groovy
application(title:’Clicker’) {
 gridLayout(rows: 2, cols: 1)
 label(text:bind {model.message})
 button(text: ‘Click Me’, actionPerformed: controller.&action)
}

ClickerController.groovy
class ClickerController {
 def model
 def counter = 0
 def action = {
 model.message = “Count: ${counter++}”
 }
}

ClickerModel.groovy
class ClickerModel {
 @groovy.beans.Bindable String message
}

The launched application looks like this once we click the
button a few times:

Hot
Tip

Many Look & Feels exist to skin Swing apps into
something more eye-pleasing. One of the best
collections is Substance, available from
http://substance.dev.java.net/. To install the
Substance Look & Feels, run the following command:
griffon install-plugin lookandfeel-substance

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Griffon

EVENTS

Custom Event Handing - Griffon has a rich, lightweight event
system. For the most part, components in your application
communicate via events and message passing rather
than direct method calls. This means your controllers stay
decoupled from one another but still communicate. Custom
events and event handlers are wired together based on
naming convention. Here is our controller that posts an event
by interacting with the implicit “app” object and handles the
event itself.

class ClickerController {

 def model
 def counterService

 def action = {
 app.event(“Click”, [counterService.next])
 }

 def onClick = { value ->
 doLater { model.message = “Count: $value” }
 }
}

THREADING

The last example contained a method call to something called
“doLater” with a closure as a parameter. This hints at one
of the major concerns for the Griffon or Swing developer:
threading. Swing is a single-threaded GUI toolkit, meaning
there is a single thread called the Event Dispatch Thread (EDT)
dedicated to refreshing and repainting the UI. If you perform
a long computation on the EDT then your application will not
repaint properly or may become sluggish. If you update the
state of a UI widget from a thread other than the EDT then
your widget may not paint or be updated correctly. As a Swing
programmer you must remember two rules: all interactions
with widgets must occur on the EDT and any other processing
should occur off the EDT, and this rule holds true for other
GUI toolkits as well. Groovy’s SwingBuilder object gives you

Startup Ready Shutdown StopInitialize

Raise events using the GriffonApplication object named “app”
and handle them by declaring an “on<EventName>” closure.
Simple.

Application Life-Cycle Events - All Griffon applications have
the same life-cycle, regardless of whether it is deployed as
an applet, application, or webstart. As an application moves
through the phases, you have the opportunity to cleanly
execute any sort of acquiring or releasing resources you wish.
Griffon provides an event system for you to both post and
handle the events with custom code. Here’s the basics of the
life-cycle:

Initialize Application is created and configuration read. Good place to apply a new Look
and Feel

Startup All MVC Groups from ./griffon-app/conf/Application.groovy marked as startup
groups are instantiated

Ready All pending UI events have been processed and the main frame is about to be
displayed

Shutdown The application is about to close

Stop Only available in Applet mode, called when destroy() is invoked by the container.

To respond and handle any of the lifecycle events, such as
BootstrapEnd, LoadPluginStart, NewInstance, or any of the
many others, then add a handler in the file
./griffon-app/conf/Events.groovy. The name of the method
should be “on<EventName>”. All of the available events are
documented in the Griffon User Guide, and you may add your
own custom events as well.

Extensible Build Scripting – The build of Griffon is completely
scriptable; there is even a Griffon command to help you write
build event extensions:

griffon create-script Creates a build script in the ./script directory, prompting
you to enter a script name

The Griffon build is built on the Gant framework, a Groovy
extension to Ant. The content of a build script is an
event handler. There are build events for CompileStart,
PackagingStart, RunAppEnd, and many more. To add pre or
post processing to a build event then simply declare a closure
in the script named “event<EventName>”. You can even add
new build events if you need to, and the Griffon User Guide
contains a complete reference of the built-in build events.

Hot
Tip

Mac and Linux users can easily chain commands
together using the && operator. For example, to run a
clean and package, run the command: “griffon clean
&& griffon package”. The 2nd command only runs
if the 1st succeeds. This also works under Windows
with Cygwin.

SERVICES

Many fields are automatically injected into your components
by Griffon: Views receive an application instance, a model, and
a controller, and Controllers receive a model and view. You
can also create your own helper objects that will automatically
be injected into your controllers by using Griffon services. A
service is an object with a no-arg constructor, and they are
discovered and injected based on naming conventions. To
create a service use this Griffon command:

griffon create-service Creates a service class, prompting you to enter a
package and a name. Also creates a unit test.

Here is our previous Clicker example refactored to use a
service:

CounterService.groovy
class CounterService {
 def counter = 0
 def getNext() {
 counter++
 }
}

ClickerController.groovy
class ClickerController {

 def model
 def counterService

 def action = {
 model.message = “Count: $counterService.next”
 }
}

Services are a key tool in decomposing large applications into
manageable, independent pieces. Strive to move logic out of
controllers and into reusable services. If you need more control
over construction, then use the Spring or Guice plugins to
provide full dependency injection frameworks.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Griffon

USING PLUGINS

The Griffon Plugin system is a key part of the framework.
There are currently over 100 plugins listed in the public plugin
repository, ranging from persistence providers like CouchDB
and GSQL, rich components like Coverflow and GlazedLists,
testing support like easyb and Spock, language support like
Clojure and Scala, and many, many more. Plugins strive to make
third party library integration a one or two line of code affair,
and they are a great way to add features with a minimum of
effort. As an example, consider how simple it is to generate
Mac, Windows, and Linux installers with the Installer Plugin:

$ griffon install-plugin installer
$ griffon prepare-all-launchers
$ griffon create-all-launchers

Installing the plugin downloads the package from the public
repository and installs it. The plugin adds several Griffon
targets, and invoking these targets builds the packages. After
running these commands you can see a Mac .app application,
and Windows .exe installer, and several other formats all sitting
in the ./installer folder.

Working effectively with plugins only requires mastering four
Griffon targets:

griffon list-plugins Lists all the plugins available to install

three convenience methods to help you with this, and Griffon
automatically imports these methods into your MVC groups.

doOutside { ... } Executes a block of code off the EDT.

edt { ... } Executes a block of code on the EDT. Similar to the JDK’s
SwingUtilities.invokeAndWait.

doLater { ... } Executes a block of code on the EDT. Similar to the JDK’s
SwingUtilities.invokeLater.

It is common for controller actions to start by reading a widget
on the EDT, perform work off the EDT, and finally update the
UI on the EDT. Here is a properly threaded version of our
ClickerController.

class ClickerController {

 def model
 def counterService

 def action = {
 model.busy = true
 doOutside {
 try {
 model.message = “Count: $counterService.next”
 } finally {
 edt { model.busy = false }
 }
 }
 }
}

The SwingBuilder methods are Swing specific, but Griffon
offers a platform agnostic way to invoke them as well. If you are
targeting SWT or some other toolkit then use the execOutside,
execSync, and execAsync methods instead.

TESTING

Testing is a first class concern in Griffon. Many of the built in
targets create unit test stubs for you and the quality related
plugins are particularly rich. The core targets for testing are:

griffon test-app
griffon test-app -unit

Executes the tests in the project. When the -unit
option is present, runs only the unit tests.

griffon create-unit-test Creates a new unit test.

griffon create-
integration-test

Creates a new integration test, in which the
GriffonApplication object is available.

For additional testing options, install the easyb, FEST, and
Spock plugins. Easyb is a Jolt award winning Behavior Driven
Development library for Groovy, FEST is a UI testing library
for Swing, and Spock is a rapidly growing testing tool in the
Groovy community. There are many other code quality related
plugins as well. The Clover and Cobertura plugins make code
coverage statistics available, FindBugs and CodeNarc provide
static code analysis, and JDepend and GMetrics offer structural
and dependency analysis. Keeping the code clean is only a
plugin install away.

IDE SUPPORT

Groovy enjoys very good IDE support; IntelliJ IDEA, NetBeans,
and Eclipse all offer some level of Groovy support, and Griffon
makes tooling easy by generating both Eclipse and IntelliJ
IDEA projects files for every application. Currently, IntelliJ
IDEA offers the best Groovy and Griffon support. Refactoring,
Java-aware find usages, code completion, and many code
intentions are supported. As for Griffon specific features, IDEA
provides a project builder for new projects, a customized view
that knows about MVC layouts, a Griffon target window to
replace the need for the command line, support for unit and
integration tests, and a UI to manage Griffon Plugins. Plus,
you can generate an IDEA project from your Griffon sources in
case you generated the project from the command line.

Hot
Tip

If you’d like to publish your own plugin to the
repository then send an email to the Griffon mailing
list: you’ll quickly be given the version control rights
to execute a “griffon release-plugin”. Also, the next
version of Griffon allows you to create your own
plugin repository so your organization can have a
private repo for non-open source plugins.

Hot
Tip

Command completion using the Tab key is available
for Bash based command shells, like Linux, Mac,
or Windows’ Cygwin. To enable completion, run the
command “source $GRIFFON_HOME/bash/griffon-
auto-scripts”. You might just add this to execute as
part of your login scripts.

Hot
Tip

It is worthwile to invest time understanding how
Swing threading works by using the plenty of high-
quality documentation that exists on the Internet.
Oracle’s Java Tutorial contains a section called
“Concurrency in Swing” and other articles appear on
the Sun Developer Network.

griffon plugin-info <plugin name> Lists the documentation of the
specified plugin

griffon install-plugin <plugin name> Downloads and installs the specified
plugin. Also accepts a file or URL as an
argument.

griffon uninstall-plugin <plugin name> Uninstalls the specified plugin.

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Griffon

RECOMMENDED BOOKSABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

MORE INFO

The best documentation for Griffon is the Griffon in Action
book, currently available in early access form from the
publisher’s website, if it hasn’t already been published. It
extensively covers the material here, but also takes in depth
looks at writing your own plugins, installing new look and
feels, and managing the development versus production
environments. Otherwise, the Griffon User Guide and mailing
list are free to use, and the mailing list in particular is quite
responsive. For more info on rich clients in Swing, I recommend
the book Filthy Rich Swing Clients.

For learning by example, the Griffon download package
contains several examples, and the code for all examples in
this Refcard are available at: http://github.com/HamletDRC/
GriffonRefcard. Lastly, you can follow all the latest Griffon news
by following @theaviary on Twitter.
Happy Developing!

Hamlet D’Arcy
Hamlet D’Arcy has been writing software for over a decade,

and has spent considerable time coding in Groovy, Java, and

C++. He’s passionate about learning new languages and

different ways to think about problems, and recently he’s

been discovering the joys of both F# and Scheme. He’s a

committer on several open source projects including Groovy

and JConch, and is a contributor on a few others (including Griffon and the

IDEA Groovy Plugin). He blogs regularly at http://hamletdarcy.blogspot.com,

tweets as HamletDRC, and can be contacted at hamletdrc@gmail.com.

Hot
Tip

In version 0.9, Griffon supports camelCase for
targets. This means typing “griffon cApp” matches
“create-app” and executes that target. If the
camelCase input is ambiguous then Griffon will
prompt you to select the intended target from a list.

Griffon in Action is a comprehensive tutorial written for

Java developers who want a more productive approach

to UI development. In this book, readers will immediately

dive into Griffon. After a Griffon orientation and a

quick Groovy tutorial, they’ll start building examples

that explore Griffon’s high productivity approach to

Swing development. The book covers declarative view

development, like the one provided by JavaFX Script, as well as the structure,

architecture and life cycle of Java application development.

BUY NOW
books.dzone.com/books/griffon-in-action

ON THE ROAD TO GRIFFON 1.0

The next version of Griffon will be 0.9, an API stable release
on the road to 1.0. However, Griffon handles upgrades
automatically and upgrades have always been painless. If
you install version 0.3 and later upgrade to 0.9, then Griffon
prompts you to run the upgrade scripts and convert the
project. Upgrading should be seamless, any required changes
are handled by the scripts supplied by the Griffon team or the
plugin authors. If you’ve written your own plugins, take a look
at the user mailing list to see if there are any required upgrade
steps you need to provide to your users for a new release.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://books.dzone.com/books/griffon-in-action

