S
O
O
N
o
il
©
O
—“—
o
el
=
2
>
N
O
L
©
[S)
(¥l
()
o
()
S
(e)
=
Fe]
()
V)

www.dzone.com

Getting Started with Firebug 1.5

.~ !DZone Refcardz

= About Firebug

® Installation

* Inspecting Page Elements

= JavaScript Profiling

= Keyboard and Mouse Shortcuts

= Console APl Reference and more...

Getting Started with

Firebug 1.5

By Chandan Luthra & Deepak Mittal

ABOUT FIREBUG

Firebug is a free and open-source tool, available as a Mozilla
Firefox extension, which allows debugging, editing and
monitoring of any website’s CSS, HTML, DOM and JavaScript.
It allows performance analysis of a website and has a
JavaScript console for logging errors and watching values.
Firebug has many other tools to enhance the productivity

of today's web developer. Firebug provides all the tools

that a web-developer needs to analyze, debug and monitor
JavaScript, CSS, HTML and Ajax. Firebug includes a debugger,
error console, command line, and a variety of useful inspectors.

Please note that though Firebug allows you to make
changes to the source code of your web page, but
the changes are done to the copy of the HTML code

which has been sent to the browser by the server.
Any changes that are done to the code are done in
the copy which is with the browser and not in the
code which is on the server.

INSTALLATION

Firebug is developed as a Firefox addon and can be installed
on Firefox like all other add-ons. In order to make Firebug
work for non-Firefox browsers, there is a JavaScript “Firebug
Lite” from Firebug which makes available a large set of Firebug
features. Based on your browser version, you can install the
corresponding Firebug version.

Browser Version
Firefox 3.6 and Firefox 3.7

Firebug Version

Firebug 1.6 alpha

Firebug 1.5 Firefox 3.5 and Firefox 3.6
Firebug 1.4 Firefox 3.0 and Firefox 3.5
Firebug 1.3 Firefox 2.0 and Firefox 3.0
Firebug Lite |E, Safari and Opera

To install Firebug on Firefox, visit http://getfirebug.com and
click the “Install Firebug on Firefox” button.

To use Firebug Lite on non Firefox browsers, visit
http://getfirebug.com/firebuglite, copy the JavaScript from
there and include it in your HTML code.

INSPECTING PAGE ELEMENTS

This is the first and main step for investigating an HTML element.

Dt
e Click on the "inspect” button to get into the

Firebug's inspection mode.

e Move your cursor on the page component/section that
you want to inspect.

e Click on the page component/section to investigate it.

There is another easy and fast way to inspect an element. Just
right click on the page component/section and select “Inspect
Element” from the context menu. You can also directly select
a DOM node under the HTML tab to view its style, layout, &
DOM attributes.

JAVASCRIPT PROFILING

Type the following code in an HTML file, save it and open it up
with Firebug enabled Firefox (if Firebug is not enabled then
press F12 key to activate it):

<html>

<head><title>Firebug</title>

<script>

function bar(){
console.profile(‘Measuring time');
foo();
console.profileEnd() ;

function foo(){
1o0op(16000) ; Loop(1006000) ; Loop(10060) ;
}

function loop(count){
for(var i=0;i<count;i++){}

</script></head><body>

Click this button to profile JavaScript

<input type="button” value="Start” onclick="bar();"/>
</body></html>

Click on the button to start the JavaScript profiler. You will see
a table generated in the Firebug’s Console panel. Description
and purpose of the columns:

Function: This column shows the name of each function.

~. Don’t Miss An Issue!
Get over 90 DZone Refcardz
FREE from Refcardz.com!

Al
07 < Done Refeardz

Visit Refcardz.com to get them all Free!

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

/-1 DZone Refcardz

Getting Started with Firebug 1.5

Call: Shows the count of how many times a particular function
has been invoked. (3 times for loop() function in our case.)

Percent: Shows the time consuming of each function in
percentage.

Own Time: Shows the duration of own script in a particular
function. For example foo() function has none of its own code.
Instead, it is just calling other functions. So, its own execution
time will be ~Oms. If you want to see some values for that
column, add some looping in this function.

Time: Shows the duration of execution from start point of a
function to the end point of a function. For example foo() has
no code. So, its own execution time is approx ~0Oms, but we
call other functions in that function. So, the total execution
time of other functions is 4.491ms. So, it shows 4.54ms in that
column which is equal to own time taken by 3 loop() function +
own time of foo().

Avg: Shows the average execution time of a particular function.
If you are calling a function one time only, you won't see the
differences. If you are calling more than one time, you will see
the differences. The formula for calculating the average is:

Avg = Own time / Call

Min and Max columns: Shows the minimum execution time of
a particular function. In our example, we call loop() for 3 times.
When we passed 1000 as a parameter, it probably took only

a few millisecond (let's say 0.045ms.) and when, we passed
100000 to that function, it took much longer than first time (let’s
say 4.036ms). So, in that case, 0.045ms will be shown in Min
column and 4.036ms will be shown in Max column.

File: Shows the file name of file with line number where the
function is located

JAVASCRIPT DEBUGGING

Firebug allows you to insert break points and step debug the
JS code.

<html>
<head><title>Javascript Debugging</title>
<script>
function populateDiv(){
var divElement = document.
getElementById(‘messagelLabel’);
divElement.innerHTML = “Lorem ipsum dollor”;

</script></head>

<body>

<div id="messagelLabel”></div>

<input type="button” value="Click Me!”
onclick="populateDiv();"” />
</body></html>

Now, under the Firebug’s “Script” tab, move your mouse
pointer on the line number as shown in the image and click to
insert a breakpoint.

function populateDivi{){

var divElement = document.getElementByIdi{'messageLabel');

divElement.imnerHTML = "Lorem ipsum dollor";

}

0 = &

To verify that you have inserted a break point, you can see

the list of breakpoints in the “Breakpoints” panel on the
right side of “Script” tab.

Click on the “Click Me!” button to start the execution. You will
notice that JS execution is paused at the breakpoint that you
set.

You can now step debug the JavaScript by pressing one of
these buttons (Continue, Step Over, Step Into and Step Out)
under the “Script” tab.

S e

e Continue (F8): Allows you to resume the script execution
once it has been stopped via another breakpoint.

e Step Over (F10): Allows you to step over the function call.

e Step Into (F11): Allows you to step into the body of the
another function.

e Step Out: Allows you to resume the script execution and
will stop at next breakpoint.

TWEAK CSS ON THE FLY

Through Firebug, you can add, remove and change the CSS
properties of inspected elements. This is a most useful feature
of Firebug through which one can fix the Ul issues rapidly and
easily. You can watch the live demo of the changes that you are
making in the CSS tab. If you want to add the ‘color’ property
of an inspected element:

e '‘Double-click’ on the ‘Style’ panel of HTML tab. A little
text editor will appear and type ‘color’ followed by a
‘TAB' key.

* Now the tiny text editor moves to the right side of the
‘color’ property asking you to enter the value (color code)
for the property. Provide a value to it and press enter to
see the magic.

e Sl

Edit | 00l.css ~

HTML | CSS~ | Script

Console

newTestPule {
unde fined;

}

html {

margin: 0;
@ padding: 0;
}

body {
—-x—-system—font: none;
background: $FFFFFF url{/00l/blossoms.’
coloxr: #HS555753;
font-family: georgia,sans—-serif;

Done

Apart from JS auto code-completion, Firebug provides an

auto-complete feature for CSS properties too.

To disable a CSS rule, move the mouse pointer near to the CSS
rule. Click on the 'do-not’ @ icon that appears on the left side
of the rule.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Getting Started with Firebug 1.5

To change a specific CSS rule, simply click on the rule, a text
editor will appear asking you for the new property or value.

NETWORK MONITORING

Firebug also allows monitoring web pages of your application.
A web app might appear to be slow to an end user due to
Network latency, Order in which the files are loaded, Number
of concurrent request made to server or Browser caching.
Firebug's Net panel allows you to monitor each and every

file and request (XHR or HTTP). It generates a colorful graph
accordingly on the basis of cycle of a request. Following image
is an example of a request:

|| Ons : DNS Lookup
Ons : Connecting
2.83s : Queuing

| 6l7ms : Waiting For Response

or XML. This is very useful while debugging any AJAX code,
and it's also quite fun to analyse how other web pages use AJAX.

You can see the headers, Response, JSON, Response/Request
Headers, GET/POST call.

=/ GET http://downloads.intelligrape.com/firebug/data.json 200 OK 12ms

Headers Response JSON

Response Headers

Date
Server

Last-Modified
Etag
Accept-Ranges
Content-Length
Keep-alive
Connection
Content-Type

Request Headers

Host

User-Agent
Accept
Accept-Language
Accept-Encoding
Accept-Charset
Keep-Alive
Connection
X-Requested-With
Referer

Fankia

Thu, 10 Dec 2009 15:18:47 GNT

Apache/2.2.4 (Ubuntu) DAV/Z SVN/1l.4.4 mod_jk/1.2.23 mod
.3 proxy_html/2.5

Thu, 10 Dec 2009 15:00:13 GNT

"368174-77-10cbh0&cO"

bytes

119

timeout=15, max=98

Keep-Alive

text/plain; charset=UTF-8

dovmloads.intelligrape.com

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.
application/json, text/jawvascript, */*

en-us,en;q=0.5

gzip,deflate

IS0-8859-1,utf-8;¢=0.7,%;4=0.7

300

keep-alive

XMLHttpRequest

http://dovmloads.intelligrape.con/firebug/code_8_l.htul
emA=AGCIT10% 2NQONT2E1E 12ENACACAT 12ENACACAT 1260AC

Zus : PReceiving Data
I +3.%6s : 'DOMContentLoaded' ({(event)
| +t4.2s : 'load' (event)
Color Description
Green Time for DNS Lookup
Light Green | Time to connect to the server
Light Brown | Time for which the request had to wait in the queue
Purple Time waiting for a response from the server
Dark Grey Request was sent to server, request served by the server
and not from browser cache
Light Grey | Request was sent to the server, “304 Not Modified”
received from server, response loaded from the browser
cache

TRACKING XmlHttpRequest

Enabling “Show XMLHttpRequests” option on the Console
tab, it acts like an AJAX spy.

| ConsoleEd | HTML €SS Script DOM Net
le ® Enabled
~ Disabled
o actiwva
v Show JavaScript Errors
Show JavaScript Warnings
Show CSS Errors
Show XML Errors
5 LHttpRequests |

Show Chrome Errors
Show Chrome Messages
Show External Errors
v Show Stack Trace With Errors
Strict Warnings {performance penalty)

Larger Command Line

Each XMLHttpRequest will be automatically logged to the
console, where we you can inspect its response as text, JSON,

THE cd() METHOD

By default all the expressions and functions that you execute
in the command line are relative to the top level window of
the page. For example, you cannot invoke any function from
Firebug’s command line if that function is defined in an iFrame
within a page. Firebug provides a solution for such situation.
The cd() method allows you to change the context of the
window from main window to the iFrame.

On the Firebug command use the following syntax against a
page that has an iFrame

Syntax:

cd(window. frames[0]);
// you can also use the $, $$ or $x selectors for selecting
the iFrame elements.

When the context changes then you will be notified by

FireBug.

KEYBOARD AND MOUSE SHORTCUTS

Firebug provides a lot of keyboard and mouse shortcuts in
order to make working with Firebug easier and faster. As you
become more experienced with Firebug, you will find yourself

making more and more use of these shortcuts to accomplish
common tasks instead of opening Firebug panel and then
clicking on various tabs and buttons.

Global Shortcuts

Task / Operation Shortcut
Open Firebug Panel F12

Close Firebug Panel F12
Open Firebug in Window Ctrl+F12
Switch to Previous Tab Ctrl+

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

~7DZone Refcardz

Getting Started with Firebug 1.5

DOM and Watch Editor Shortcuts

Ctrl+Click on line number

Focus Command Line Ctrl+Shift+L
Focus Search Box Ctrl+Shift+K Task / Operation Shortcut
Toggle Inspect Mode Ctrl+Shift+C Finish Editing Double-Click on empty space
Toggle JavaScript Profiler Ctrl+Shift+P Cancel Editing Ctrl+.
Re-Execute Last Command Line | Ctrl+Shift+E Autocomplete Next Property Crl+,
Autocomplete Previous Property | Shift+Tab
HTML Tab Shortcuts
Task / Operation Shortcut CSS Tab Shortcuts
Edit Attribute Click on name or value Task / Operation Shortcut
Edit Text Node Click on text Edit Property Click on property
Edit Element Double-Click tag name Insert New Property Double-Click on white-space
Next Node in Path Cirl+ Focus Menu of Style Sheets Ctrl+Space
Previous Node in Path Ctrl+, CSS Editor Tab Shortcuts
HTML Editor Shortcuts Task / Operation Shortcut
Task / Operation Shortcut Finish Editing Retum
Finish Editing Return i Editng =
Cancel Editing B Advance to Next Field Tab
Advance to Next Field Tab Advance to Previous Field Shift+Tab
- Increase Number by One Up
Advance to Previous Field Shift+Tab
Decrease Number by One Down
HTML Inspect Mode Shortcuts Increase Number by Ten Page Up
Task / Operation Shortcut Decrease Number by Ten Page Down
Cancel Inspection Esc Autocomplete Next Keyword Up
Inspect Parent Ctrl+Up Autocomplete Previous Keyword | Down
Inspect Child Ctrl+Down Layout Tab Shortcut
Toggle Inspection Ctl+Shift+C Task / Operation Shortcut
Edit Value Click on value
Script Tab Shortcuts
Task / Operation Shortcut Layout Editor Shortcuts
Continue F8OR Ctrl+/ Task / Operation Shortcut
Step Over F10 OR Ctrl+" Finish Editing Return
Step Into F11OR Ctrl+; Cancel Editing Esc
- - Advance to Next Field Tab
Step Out Shift+F11 OR Ctrl+Shift+;
Advance to Previous Field Shift+Tab
Toggle Breakpoint Click on i
oggle Breakpoin ick on line number Increase Number by One Up
Disable Breakpoint Shift+Click on line number Decrease Number by One Down
Edit Breakpoint Condition Right-Click on line number Increase Number by Ten Page Up
Run to Line Middle-Click on line number OR Decrease Number by Ten Page Down

Command Line (small) Shortcuts

Task / Operation Shortcut
Autocomplete Next Property Tab
Autocomplete Previous Property | Shift+Tab
Execute Return
Inspect Result Shift+Return
Open Result’s Context Menu Ctrl+Return

Command Line (large) Shortcut

Task / Operation

Shortcut

Next Function on Stack Ctrl+.
Previous Function on Stack Ctrl+,
Focus Menu of Scripts Ctrl+Space
Focus Watch Editor Ctrl+Shift+N
DOM Tab Shortcuts
Task / Operation Shortcut
Edit Property Double-Click on empty space
Next Object in Path Ctrl+.
Previous Object in Path Ctrl+,

Execute

Ctrl+Return

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

-7 DZone Refcardz

Getting Started with Firebug 1.5

CONSOLE API REFERENCE

Task / Operation

Purpose

console.log(object], object, ...])

Writes a message to the
console. You may pass as many
arguments as you'd like, and
they will be joined together in a
space-delimited line.

console.debug(object, object, ...])

Writes a message to the
console, including a hyperlink
to the line where it was called.

console.info(object|, object, ...])

Writes a message to the
console with the visual “info”
icon and color coding and a
hyperlink to the line where it
was called.

console.warn(object|, object, ...])

Writes a message to the
console with the visual
“warning” icon and color
coding and a hyperlink to the
line where it was called.

console.error(object[, object, ...])

Writes a message to the
console with the visual “error”
icon and color coding and a
hyperlink to the line where it
was called.

console.assert
(expression][, object, ...])

Tests that an expression is true.

If not, it will write a message
to the console and throw an
exception.

console.dir(object)

Prints an interactive listing of
all properties of the object.
This looks identical to the view
that you would see in the
DOM tab.

console.dirxml(node)

Prints the XML source tree of
an HTML or XML element. This
looks identical to the view that
you would see in the HTML
tab. You can click on any node
to inspect it in the HTML tab.

console.trace()

Prints an interactive stack trace
of JavaScript execution at the
point where it is called.

console.group(object[, object, ...])

Writes a message to the
console and opens a nested
block to indent all future
messages sent to the console.
Call console.groupEnd() to
close the block.

console.groupCollapsed
(object], object, ...])

Like console.group(), but the
block is initially collapsed.

console.groupEnd()

Closes the most recently
opened block created by a call
to console.group() or console.
groupEnd()

console.time(name)

Creates a new timer under
the given name. Call console.
timeEnd(name) with the same
name to stop the timer and
print the time elapsed.

console.timeEnd(name)

Stops a timer created by a call
to console.time(name) and
writes the time elapsed.

console.profile([title])

Turns on the JavaScript profiler.
The optional argument title
would contain the text to be
printed in the header of the
profile report.

console.profileEnd()

Turns off the JavaScript profiler
and prints its report.

console.count([title])

Writes the number of times
that the line of code where
count was called was executed.
The optional argument title will
print a message in addition to
the number of the count.

console.table()

Allows output of tabular data
in console. E.g.
var myTable = new Array(3);
for (var i=0; i<3; i++)

myTable[i] = [i+1, i+2, i+3, i+4];
console.table(table);

COMMAND API REFERENCE

Command Purpose

$(id) Returns a single element with the given id.

$%(selector) Returns an array of elements that match
the given CSS selector.

$x(xpath) Returns an array of elements that match
the given XPath expression.

dir(object) Prints an interactive listing of all properties

of the object. This looks identical to the
view that you would see in the DOM tab.

dirxml(node)

Prints the XML source tree of an HTML or
XML element. This looks identical to the
view that you would see in the HTML tab.
You can click on any node to inspect it in
the HTML tab.

(object[, tabName])

cd(window) By default, command line expressions
are relative to the top-level window of
the page. cd() allows you to use the
window of a frame in the page instead.

clear() Clears the console.

inspect Inspects an object in the most suitable

tab, or the tab identified by the optional
argument tabName.
The available tab names are “html”,

u "on

css”, “script”, and “dom”.

keys(object)

Returns an array containing the names
of all properties of the object.

values(object)

Returns an array containing the values
of all properties of the object.

debug(fn) Adds a breakpoint on the first line of a
function.
undebug(fn) Removes the breakpoint on the first line

of a function.

monitor(fn)

Turns on logging for all calls to a function.

unmonitor(fn)

Turns off logging for all calls to a function.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

DZone Refcardz ¢

Getting Started with Firebug 1.5

STRING FORMATTING

All of the console logging functions can format a string with
any of the following patterns:

Turns on logging for all events
dispatched to an object. The optional
argument types may specify a specific
family of events to log. The most
commonly used values for types are
“mouse” and "key”.

monitorEvents
(object], types])

The full list of available types includes Symbol Type/Purpose
“compjoiltlon ! Sonteftr?enu" . %s Formats the object as a string
drag”, "focus”, “form”, "key”, “load”,
“mouse”, “mutation”, “paint”, “scroll”, %d, %i, %I, %f Formats the object as a number
text”, “ui”, and "xul”. %0 Formats the object as a hyperlink to the inspector

%1.0, %2.0, etc.. | Formats the object as an interactive table of its

properties

unmonitorEvents Turns off logging for all events

(object], types]) dispatched to an object. %.0 Formats the object as an array of its property
names
profile([title]) Turns on the JavaScript profiler. The - - -
optional argument title would contain Yox Formats the object as an interactive XML

the text to be printed in the header of markup tree

the profile report.

%1.x, %2.x, etc.. | Formats the object as an interactive XML

markup tree with n levels expanded

profileEnd() Turns off the JavaScript profiler and

.) *If you need to include a real % symbol, you can escape it with
prints its report.

a backslash like so: "\%".

ABOUT THE AUTHOR

Chandan Luthra is a Software Development Engineer with

RECOMMENDED BOOKS

= o)

With the advent of RIA (Rich Internet Applications), most

IntelliGrape Software, New Delhi, India-a company specializing
in Groovy/Grails development. He is an agile and pragmatic
programmer and an active participant at local open source
software events, where he evangelizes Groovy, Grails,

web pages are driven by a combination of JavaScript, AJAX,
CSS, and so on. Web developers and designers find it hard
to debug and fix the issues that crop up on the client side.
Firebug is a wonderful toolkit to have in your arsenal for

Jquery, and Firebug. Chandan is a Linux and open source
enthusiast. He also involves himself in writing blogs and is an
active member on various tech-related mailing lists. He has
developed web applications for various industries, including entertainment,
finance, media and publishing, as well as others.

Firebug 1.5: Editing Debugging,
and Monitoring Web Pages

handling all such issues. This book covers all of Firebug's
features and will help you utilize its capabilities with
maximum efficiency. AJAX development and debugging is
not one of the easiest tasks; this book explains step-by-step,
how to develop and debug AJAX components in your web page in a very easy
way, thereby increasing your productivity. Topics like performance tuning of the
web page are covered in detail.

T

Deepak Mittal is a software developer based in New Delhi,
India, and he has been involved with software engineering

and web programming in Java/JEE world since the late

1990s. Deepak is a Linux and open source enthusiast. He is

an agile practitioner and speaks about open source, agile
processes, and free software at various user group meetings
and conferences. He has designed and built web applications
for industries including pharmaceutical, travel, media, and
publishing, as well as others. He loves to explore new technologies and has
been an early-adopter of quite a few mainstream technologies of today’s world.

BUY NOW

books.dzon.com/books/firebug

M 4% DZone Refcardz

Getting Started with

Cloud Computing

) Daniel Fubio

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz

Apache Ant
Hadoop
Free PDF Spring Security
Subversion
DZone, Inc.
140 Preston Executive Dr. ISBN-13: 978-1-734238-75-2
ISBN-10: 1-93u4238-75-9

Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

$7.95

|| |||| ||| ||| l
9781934238752 |“ “MH

Version 1.0

tutorials, cheatsheets, blogs, feature articles, source code and more.

"DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

