

DZone, Inc. | www.dzone.com

By Chandan Luthra & Deepak Mittal

ABOUT FIREBUG

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 F

ir
e

b
u

g
 1

.5

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#108

CONTENTS INCLUDE:
n	 About Firebug
n	 Installation
n	 Inspecting Page Elements
n	 JavaScript Profiling
n	 Keyboard and Mouse Shortcuts
n	 Console API Reference and more...

Hot
Tip

Please note that though Firebug allows you to make
changes to the source code of your web page, but
the changes are done to the copy of the HTML code
which has been sent to the browser by the server.
Any changes that are done to the code are done in
the copy which is with the browser and not in the
code which is on the server.

Firebug is a free and open-source tool, available as a Mozilla
Firefox extension, which allows debugging, editing and
monitoring of any website’s CSS, HTML, DOM and JavaScript.
It allows performance analysis of a website and has a
JavaScript console for logging errors and watching values.
Firebug has many other tools to enhance the productivity
of today’s web developer. Firebug provides all the tools
that a web-developer needs to analyze, debug and monitor
JavaScript, CSS, HTML and Ajax. Firebug includes a debugger,
error console, command line, and a variety of useful inspectors.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Getting Started with

Firebug 1.5

INSTALLATION

Firebug is developed as a Firefox addon and can be installed
on Firefox like all other add-ons. In order to make Firebug
work for non-Firefox browsers, there is a JavaScript “Firebug
Lite” from Firebug which makes available a large set of Firebug
features. Based on your browser version, you can install the
corresponding Firebug version.

Firebug Version Browser Version

Firebug 1.6 alpha Firefox 3.6 and Firefox 3.7

Firebug 1.5 Firefox 3.5 and Firefox 3.6

Firebug 1.4 Firefox 3.0 and Firefox 3.5

Firebug 1.3 Firefox 2.0 and Firefox 3.0

Firebug Lite IE, Safari and Opera

To install Firebug on Firefox, visit http://getfirebug.com and
click the “Install Firebug on Firefox” button.

To use Firebug Lite on non Firefox browsers, visit
http://getfirebug.com/firebuglite, copy the JavaScript from
there and include it in your HTML code.

INSPECTING PAGE ELEMENTS

This is the first and main step for investigating an HTML element.

 • Click on the “inspect” button to get into the

 Firebug’s inspection mode.

 • Move your cursor on the page component/section that
 you want to inspect.

 • Click on the page component/section to investigate it.

There is another easy and fast way to inspect an element. Just
right click on the page component/section and select “Inspect
Element” from the context menu. You can also directly select
a DOM node under the HTML tab to view its style, layout, &
DOM attributes.

JAVASCRIPT PROFILING

Type the following code in an HTML file, save it and open it up
with Firebug enabled Firefox (if Firebug is not enabled then
press F12 key to activate it):

<html>
<head><title>Firebug</title>
<script>
function bar(){
	 console.profile(‘Measuring	time’);
	 foo();
	 console.profileEnd();
}
function foo(){
	 loop(1000);loop(100000);loop(10000);
}
function loop(count){
	 for(var	i=0;i<count;i++){}
}
</script></head><body>
Click	this	button	to	profile	JavaScript
<input	type=”button”	value=”Start”	onclick=”bar();”/>
</body></html>

Click on the button to start the JavaScript profiler. You will see
a table generated in the Firebug’s Console panel. Description
and purpose of the columns:

Function: This column shows the name of each function.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with Firebug 1.5

Hot
Tip

To verify that you have inserted a break point, you can see
the list of breakpoints in the “Breakpoints” panel on the
right side of “Script” tab.

Hot
Tip

Apart from JS auto code-completion, Firebug provides an
auto-complete feature for CSS properties too.

Call: Shows the count of how many times a particular function
has been invoked. (3 times for loop() function in our case.)

Percent: Shows the time consuming of each function in
percentage.

Own Time: Shows the duration of own script in a particular
function. For example foo() function has none of its own code.
Instead, it is just calling other functions. So, its own execution
time will be ~0ms. If you want to see some values for that
column, add some looping in this function.

Time: Shows the duration of execution from start point of a
function to the end point of a function. For example foo() has
no code. So, its own execution time is approx ~0ms, but we
call other functions in that function. So, the total execution
time of other functions is 4.491ms. So, it shows 4.54ms in that
column which is equal to own time taken by 3 loop() function +
own time of foo().

Avg: Shows the average execution time of a particular function.
If you are calling a function one time only, you won’t see the
differences. If you are calling more than one time, you will see
the differences. The formula for calculating the average is:

Avg = Own time / Call

Min and Max columns: Shows the minimum execution time of
a particular function. In our example, we call loop() for 3 times.
When we passed 1000 as a parameter, it probably took only
a few millisecond (let’s say 0.045ms.) and when, we passed
100000 to that function, it took much longer than first time (let’s
say 4.036ms). So, in that case, 0.045ms will be shown in Min
column and 4.036ms will be shown in Max column.

File: Shows the file name of file with line number where the
function is located

JAVASCRIPT DEBUGGING

Firebug allows you to insert break points and step debug the
JS code.

<html>
<head><title>Javascript	Debugging</title>
<script>
	 function	populateDiv(){
	 var	divElement	=	document.
getElementById(‘messageLabel’);
	 divElement.innerHTML	=	“Lorem	ipsum	dollor”;
 }
</script></head>
<body>
<div	id=”messageLabel”></div>
<input	type=”button”	value=”Click	Me!”	
onclick=”populateDiv();”	/>
</body></html>

Now, under the Firebug’s “Script” tab, move your mouse
pointer on the line number as shown in the image and click to
insert a breakpoint.

	

Click on the “Click Me!” button to start the execution. You will
notice that JS execution is paused at the breakpoint that you
set.

You can now step debug the JavaScript by pressing one of
these buttons (Continue, Step Over, Step Into and Step Out)
under the “Script” tab.

 • Continue (F8): Allows you to resume the script execution
 once it has been stopped via another breakpoint.

 • Step Over (F10): Allows you to step over the function call.

 • Step Into (F11): Allows you to step into the body of the
 another function.

 • Step Out: Allows you to resume the script execution and
 will stop at next breakpoint.

TWEAK CSS ON THE FLY

Through Firebug, you can add, remove and change the CSS
properties of inspected elements. This is a most useful feature
of Firebug through which one can fix the UI issues rapidly and
easily. You can watch the live demo of the changes that you are
making in the CSS tab. If you want to add the ‘color’ property
of an inspected element:

 • ‘Double-click’ on the ‘Style’ panel of HTML tab. A little
 text editor will appear and type ‘color’ followed by a
 ‘TAB’ key.

 • Now the tiny text editor moves to the right side of the
 ‘color’ property asking you to enter the value (color code)
 for the property. Provide a value to it and press enter to
 see the magic.

	

To disable a CSS rule, move the mouse pointer near to the CSS
rule. Click on the ‘do-not’ icon that appears on the left side
of the rule.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
Getting Started with Firebug 1.5

NETWORK MONITORING

Firebug also allows monitoring web pages of your application.
A web app might appear to be slow to an end user due to
Network latency, Order in which the files are loaded, Number
of concurrent request made to server or Browser caching.
Firebug’s Net panel allows you to monitor each and every
file and request (XHR or HTTP). It generates a colorful graph
accordingly on the basis of cycle of a request. Following image
is an example of a request:

	
Color Description

Green Time for DNS Lookup

Light Green Time to connect to the server

Light Brown Time for which the request had to wait in the queue

Purple Time waiting for a response from the server

Dark Grey Request was sent to server, request served by the server
and not from browser cache

Light Grey Request was sent to the server, “304 Not Modified”
received from server, response loaded from the browser
cache

KEYBOARD AND MOUSE SHORTCUTS

Firebug provides a lot of keyboard and mouse shortcuts in
order to make working with Firebug easier and faster. As you
become more experienced with Firebug, you will find yourself
making more and more use of these shortcuts to accomplish
common tasks instead of opening Firebug panel and then
clicking on various tabs and buttons.

Global Shortcuts

Task / Operation Shortcut

Open Firebug Panel F12

Close Firebug Panel F12

Open Firebug in Window Ctrl+F12

Switch to Previous Tab Ctrl+`

To change a specific CSS rule, simply click on the rule, a text
editor will appear asking you for the new property or value.

TRACKING XmlHttpRequest

Enabling “Show XMLHttpRequests” option on the Console
tab, it acts like an AJAX spy.

	
Each XMLHttpRequest will be automatically logged to the
console, where we you can inspect its response as text, JSON,

	

THE cd() METHOD

By default all the expressions and functions that you execute
in the command line are relative to the top level window of
the page. For example, you cannot invoke any function from
Firebug’s command line if that function is defined in an iFrame
within a page. Firebug provides a solution for such situation.
The cd() method allows you to change the context of the
window from main window to the iFrame.

On the Firebug command use the following syntax against a
page that has an iFrame

Syntax:

cd(window.frames[0]);
// you can also use the $, $$ or $x selectors for selecting
the iFrame elements.

Hot
Tip

When the context changes then you will be notified by
FireBug.

or XML. This is very useful while debugging any AJAX code,
and it’s also quite fun to analyse how other web pages use AJAX.

You can see the headers, Response, JSON, Response/Request
Headers, GET/POST call.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
Getting Started with Firebug 1.5

DOM and Watch Editor Shortcuts

Task / Operation Shortcut

Finish Editing Double-Click on empty space

Cancel Editing Ctrl+.

Autocomplete Next Property Ctrl+,

Autocomplete Previous Property Shift+Tab

CSS Tab Shortcuts

Task / Operation Shortcut

Edit Property Click on property

Insert New Property Double-Click on white-space

Focus Menu of Style Sheets Ctrl+Space

CSS Editor Tab Shortcuts

Task / Operation Shortcut

Finish Editing Return

Cancel Editing Esc

Advance to Next Field Tab

Advance to Previous Field Shift+Tab

Increase Number by One Up

Decrease Number by One Down

Increase Number by Ten Page Up

Decrease Number by Ten Page Down

Autocomplete Next Keyword Up

Autocomplete Previous Keyword Down

Layout Tab Shortcut

Task / Operation Shortcut

Edit Value Click on value

Layout Editor Shortcuts

Task / Operation Shortcut

Finish Editing Return

Cancel Editing Esc

Advance to Next Field Tab

Advance to Previous Field Shift+Tab

Increase Number by One Up

Decrease Number by One Down

Increase Number by Ten Page Up

Decrease Number by Ten Page Down

Command Line (small) Shortcuts

Task / Operation Shortcut

Autocomplete Next Property Tab

Autocomplete Previous Property Shift+Tab

Execute Return

Inspect Result Shift+Return

Open Result’s Context Menu Ctrl+Return

Command Line (large) Shortcut

Task / Operation Shortcut

Execute Ctrl+Return

Focus Command Line Ctrl+Shift+L

Focus Search Box Ctrl+Shift+K

Toggle Inspect Mode Ctrl+Shift+C

Toggle JavaScript Profiler Ctrl+Shift+P

Re-Execute Last Command Line Ctrl+Shift+E

HTML Tab Shortcuts

Task / Operation Shortcut

Edit Attribute Click on name or value

Edit Text Node Click on text

Edit Element Double-Click tag name

Next Node in Path Ctrl+.

Previous Node in Path Ctrl+,

HTML Editor Shortcuts

Task / Operation Shortcut

Finish Editing Return

Cancel Editing Esc

Advance to Next Field Tab

Advance to Previous Field Shift+Tab

HTML Inspect Mode Shortcuts

Task / Operation Shortcut

Cancel Inspection Esc

Inspect Parent Ctrl+Up

Inspect Child Ctrl+Down

Toggle Inspection Ctl+Shift+C

Script Tab Shortcuts

Task / Operation Shortcut

Continue F8OR Ctrl+/

Step Over F10 OR Ctrl+’

Step Into F11 OR Ctrl+;

Step Out Shift+F11 OR Ctrl+Shift+;

Toggle Breakpoint Click on line number

Disable Breakpoint Shift+Click on line number

Edit Breakpoint Condition Right-Click on line number

Run to Line Middle-Click on line number OR
Ctrl+Click on line number

Next Function on Stack Ctrl+.

Previous Function on Stack Ctrl+,

Focus Menu of Scripts Ctrl+Space

Focus Watch Editor Ctrl+Shift+N

DOM Tab Shortcuts

Task / Operation Shortcut

Edit Property Double-Click on empty space

Next Object in Path Ctrl+.

Previous Object in Path Ctrl+,

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
Getting Started with Firebug 1.5

COMMAND API REFERENCE

Command Purpose

$(id) Returns a single element with the given id.

$$(selector) Returns an array of elements that match
the given CSS selector.

$x(xpath) Returns an array of elements that match
the given XPath expression.

dir(object) Prints an interactive listing of all properties
of the object. This looks identical to the
view that you would see in the DOM tab.

dirxml(node) Prints the XML source tree of an HTML or
XML element. This looks identical to the
view that you would see in the HTML tab.
You can click on any node to inspect it in
the HTML tab.

cd(window) By default, command line expressions
are relative to the top-level window of
the page. cd() allows you to use the
window of a frame in the page instead.

clear() Clears the console.

inspect
(object[, tabName])

Inspects an object in the most suitable
tab, or the tab identified by the optional
argument tabName.
The available tab names are “html”,
“css”, “script”, and “dom”.

keys(object) Returns an array containing the names
of all properties of the object.

values(object) Returns an array containing the values
of all properties of the object.

debug(fn) Adds a breakpoint on the first line of a
function.

undebug(fn) Removes the breakpoint on the first line
of a function.

monitor(fn) Turns on logging for all calls to a function.

unmonitor(fn) Turns off logging for all calls to a function.

console.timeEnd(name) Stops a timer created by a call
to console.time(name) and
writes the time elapsed.

console.profile([title]) Turns on the JavaScript profiler.
The optional argument title
would contain the text to be
printed in the header of the
profile report.

console.profileEnd() Turns off the JavaScript profiler
and prints its report.

console.count([title]) Writes the number of times
that the line of code where
count was called was executed.
The optional argument title will
print a message in addition to
the number of the count.

console.table() Allows output of tabular data
in console. E.g.
var myTable = new Array(3);
for (var i=0; i<3; i++)
 myTable[i] = [i+1, i+2, i+3, i+4];
console.table(table);

CONSOLE API REFERENCE

Task / Operation Purpose

console.log(object[, object, ...]) Writes a message to the
console. You may pass as many
arguments as you’d like, and
they will be joined together in a
space-delimited line.

console.debug(object[, object, ...]) Writes a message to the
console, including a hyperlink
to the line where it was called.

console.info(object[, object, ...]) Writes a message to the
console with the visual “info”
icon and color coding and a
hyperlink to the line where it
was called.

console.warn(object[, object, ...]) Writes a message to the
console with the visual
“warning” icon and color
coding and a hyperlink to the
line where it was called.

console.error(object[, object, ...]) Writes a message to the
console with the visual “error”
icon and color coding and a
hyperlink to the line where it
was called.

console.assert
(expression[, object, ...])

Tests that an expression is true.
If not, it will write a message
to the console and throw an
exception.

console.dir(object) Prints an interactive listing of
all properties of the object.
This looks identical to the view
that you would see in the
DOM tab.

console.dirxml(node) Prints the XML source tree of
an HTML or XML element. This
looks identical to the view that
you would see in the HTML
tab. You can click on any node
to inspect it in the HTML tab.

console.trace() Prints an interactive stack trace
of JavaScript execution at the
point where it is called.

console.group(object[, object, ...]) Writes a message to the
console and opens a nested
block to indent all future
messages sent to the console.
Call console.groupEnd() to
close the block.

console.groupCollapsed
(object[, object, ...])

Like console.group(), but the
block is initially collapsed.

console.groupEnd() Closes the most recently
opened block created by a call
to console.group() or console.
groupEnd()

console.time(name) Creates a new timer under
the given name. Call console.
timeEnd(name) with the same
name to stop the timer and
print the time elapsed.

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Firebug 1.5

RECOMMENDED BOOKSABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

Chandan Luthra is a Software Development Engineer with
IntelliGrape Software, New Delhi, India-a company specializing
in Groovy/Grails development. He is an agile and pragmatic
programmer and an active participant at local open source
software events, where he evangelizes Groovy, Grails,
Jquery, and Firebug. Chandan is a Linux and open source
enthusiast. He also involves himself in writing blogs and is an
active member on various tech-related mailing lists. He has

developed web applications for various industries, including entertainment,
finance, media and publishing, as well as others.

Deepak Mittal is a software developer based in New Delhi,
India, and he has been involved with software engineering
and web programming in Java/JEE world since the late
1990s. Deepak is a Linux and open source enthusiast. He is
an agile practitioner and speaks about open source, agile
processes, and free software at various user group meetings
and conferences. He has designed and built web applications
for industries including pharmaceutical, travel, media, and

publishing, as well as others. He loves to explore new technologies and has
been an early-adopter of quite a few mainstream technologies of today’s world.

With the advent of RIA (Rich Internet Applications), most
web pages are driven by a combination of JavaScript, AJAX,
CSS, and so on. Web developers and designers find it hard
to debug and fix the issues that crop up on the client side.
Firebug is a wonderful toolkit to have in your arsenal for
handling all such issues. This book covers all of Firebug’s
features and will help you utilize its capabilities with
maximum efficiency. AJAX development and debugging is
not one of the easiest tasks; this book explains step-by-step,

how to develop and debug AJAX components in your web page in a very easy
way, thereby increasing your productivity. Topics like performance tuning of the
web page are covered in detail.

BUY NOW
books.dzon.com/books/firebug

monitorEvents
(object[, types])

Turns on logging for all events
dispatched to an object. The optional
argument types may specify a specific
family of events to log. The most
commonly used values for types are
“mouse” and “key”.
The full list of available types includes
“composition”, “contextmenu”,
“drag”, “focus”, “form”, “key”, “load”,
“mouse”, “mutation”, “paint”, “scroll”,
“text”, “ui”, and “xul”.

unmonitorEvents
(object[, types])

Turns off logging for all events
dispatched to an object.

profile([title]) Turns on the JavaScript profiler. The
optional argument title would contain
the text to be printed in the header of
the profile report.

profileEnd() Turns off the JavaScript profiler and
prints its report.

STRING FORMATTING

All of the console logging functions can format a string with
any of the following patterns:

Symbol Type/Purpose

%s Formats the object as a string

%d, %i, %l, %f Formats the object as a number

%o Formats the object as a hyperlink to the inspector

%1.o, %2.0, etc.. Formats the object as an interactive table of its
properties

%.o Formats the object as an array of its property
names

%x Formats the object as an interactive XML
markup tree

%1.x, %2.x, etc.. Formats the object as an interactive XML
markup tree with n levels expanded

*If you need to include a real % symbol, you can escape it with
a backslash like so: “\%”.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

