

DZone, Inc. | www.dzone.com

By Ben Ellingson and Matthew McCullough

An IntroductIon to the LAnguAge And tooLs

o
b

je
ct

iv
e

-c
 f

o
r

th
e

 iP
h

o
n

e
 a

n
d

 iP
ad

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#110

contents IncLude:
n	 An Introduction to the Language and Tools
n	 The Syntax
n	 Memory Management
n	 Tools
n	 Debugging
n	 XCode Keyboard Shortcuts and more...

Hot
Tip

The keyword @interface can distract developers
coming from some languages such as Java,
suggesting this is a mere contract. However,
@interface is indeed the keyword for defining the
properties and method signatures of a concrete
class in Obj-C.

Objective-C is the primary language used to create
applications for Apple’s Mac OS X and iOS (iPhone and iPad)
platforms. Objective-C was created by Brad Cox and Tom Love
in the early 1980s. In 1988, Objective-C was licensed by NeXT,
a company founded and helmed by Steve Jobs during his
absence from Apple. Apple acquired NeXT in 1996, bringing
Objective-C to the Macintosh platform.

Objective-C is an object oriented superset of ANSI C. Its
object syntax is derived from Smalltalk. It supports single
inheritance, implementation of multiple interfaces via the
@protocol syntax, and the redefinition and augmentation of
(open) classes via categories. Apple’s iPhone SDK for the
iOS mobile operating system offers developers a rich set of
Objective-C APIs. This free SDK, which includes the Xcode
IDE, is used to create applications for the iPhone, iPad, and
iPod Touch.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Objective-C
for the iPhone and iPad

the syntAx

Class Declaration
Objective-C classes typically include an interface .h and an
implementation .m pair of files. The .h file contains property
and method declarations. The .m file contains method
implementations.

Example .h interface file
#import <Foundation/Foundation.h>
@interface Speaker : NSObject {
 NSInteger *ID;
 NSString *name;
}
@property NSInteger *ID;
@property(nonatomic,retain) NSString *name;
- (void) doSomething: (NSString *) value anotherValue: (int) value2;
@end

Example .m implementation file
#import “Speaker.h”
@implementation Speaker
@synthesize ID,name;
- (void) doSomething: (NSString *) value anotherValue: (int) value2 {
 // do something
}
@end

Inheritance
Class inheritance is specified in the .h interface file with the
syntax: @interface <MyClass> : <ParentClass>. The following
example tells the compiler that the Employee class inherits
from (extends) the Person class.

// Employee.h file
@interface Employee : Person {
}
@end

Interfaces
Objective-C interfaces are created using the @protocol
declaration. Any class can implement multiple interfaces.
Interfaces are typically declared in a .h header file and can be
included via #import statements in the .h header file of other
classes.

// Mappable.h: Declare the Mappable @protocol
@protocol Mappable
- (double) latitude;
- (double) longitude;
@end

// Location.h: Specify that Location class implements the Mappable
// @protocol
#import “Mappable.h”
@interface Location : NSObject <Mappable> {
}
@end

// Location.m: Provide implementations for the Mappable methods
@implementation Location
- (double) latitude {
 return 46.553666;
}
- (double) longitude {
 return -87.40551;
}
@end

Primitive Data Types
As a superset of ANSI C, Objective-C supports its same
primitive data types.

int Integral numbers without decimal points

float Numbers with decimal points

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
objective-c for the iPhone and iPad

- (void) setPages: (int) p;

Method type
(class or instance)

return type

method name

parameter type

parameter name

[book setPages: 100];

method target

method name

parameter value

double Same as float with twice the accuracy or size

char Store a single character such as the letter ‘a’

BOOL Boolean values with the constants YES or NO

Common Object Data Types
NSObject Root class of the object hierarchy

NSString String value

NSArray Collection of elements, fixed size, may include duplicates

NSMutableArray Variable sized array

NSDictionary Key-value pair collection

NSMutableDictionary Variable sized key-value pair collection

NSSet Unordered collection of distinct elements

NSData Byte buffer

NSURL URL resource

Instance Variables
Class instance variables are declared within a curly braced {}
section of the .h file.

// Book.h: Variables declared in a header file
@interface Book : NSObject {
 NSString *title;
 NSString *author;
 int pages;
}
@end

Notice that the object variable declarations are preceded by
* symbol. This indicates that the reference is a pointer to an
object and is required for all object variable declarations.

Dynamic Typing
Objective-C supports dynamic typing via the id keyword.

NSString *name1 = @”Bob”;
// name2 is a dynamically typed NSString object
id name2 = @”Bob”;
if ([name1 isEqualToString:name2]) {
 // do something
}

Methods
Methods are declared in the .h header file and implemented in
the .m implementation file.

// Book.h: Declare methods in the header file
@interface Book : NSObject {
}
- (void) setPages: (int) p;
- (int) pages;
@end

// Book.m: Implement methods in the implementation file
@implementation Book
- (void) setPages: (int) p {
 pages = p;
}
- (int) pages {
 return pages;
}
@end

Method Declaration Syntax

Method Invocation Syntax
Method invocations are written using square bracket []
notation.

Using Dot Notation Method Invocation
Objective-C 2.0 added the ability to invoke property accessor
methods (getters/setters) using “.” notation.

// Using dot notation calls the book instance’s setAuthor method
book.author = @”Herman Melville”;
// equivalent to
[book setAuthor: @”Herman Melville”];

Multi Parameter Methods
Multi-Parameter methods are more verbose than other
languages. Each parameter includes both an external name,
data type, and a local variable name. The external parameter
name becomes a formal part of the method name.

// declare a method with multiple parameters
- (void) addBookWithTitle: (NSString *) aTitle andAuthor: (NSString *)
anAuthor;

// invoke a method with multiple parameters
[self addBookWithTitle: @”Moby Dick” andAuthor: @”Herman Melville”];

Self and Super Properties
Objective-C objects include a self property and a super
property. These properties are mutable and can be assigned
in an advanced technique called “swizzling”. Most commonly,
the self attribute is used to execute a method on the
enclosing object.

[self setAuthor: @”Herman Melville”];

// Invoke methods on the “super” property to execute parent class
// behavior. a method that overrides a parent class method will likely call
// the parent class method
- (void) doSomething: (NSString *)value {
 [super doSomething: value];
 // do something derived-class specific
}

Properties using @property and @synthesize
Objective-C 2.0 added property declaration syntax in order to
reduce verbose coding of getter and setter methods.

// use of @property declaration for the title variable is equivalent to
// declaring a “setTitle” mutator and “title” accessor method.
@interface Book : NSObject {
 NSString *title;
}
@property (retain, nonatomic) NSString *title;
@end

// use the @synthesize declaration in the .m implementation file
// to automatically implement setter and getter methods.
@implementation Book
@synthesize title, author; //Multiple variables
@synthesize pages; //Single variable
@end

Multiple variables may be included in a single @synthesize
declaration. Alternatively, a class may include multiple
@synthesize declarations.

@property Attributes
Property attributes specify behaviors of generated getter
and setter methods. Attribute declarations are placed in
parenthesis () after the @property declaration. The most
common values used are (retain, nonatomic). retain
indicates that the [retain] method should be called on the
newly assigned value object. See the memory management
section for further explanation. nonatomic indicates that
the assignment operation does not check for thread access
protection, which may be necessary in multi-threaded
environments. readonly may be specified to indicate the
property’s value can not be set.

Object Initialization
Object instances are created in two steps. First, with a call to
alloc and second, with a call to init.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3
objective-c for the iPhone and iPad

// example of 2 step object initialization
Book *book = [[Book alloc] init];
// equivalent to
Book *book2 = [Book alloc];
book2 = [book init];

In order to perform specific object initialization steps, you will
often implement the init or an initWith method. Notice
the syntax used around the self property in the following
example. This is a standard init pattern found in Objective-C.
Also notice the method uses a dynamic id return type.

// Event.m: Implementation overrides the “init” method to assign a default
// date value
@implementation Event
- (id) init {
 self = [super init];
 if (self != nil) {
 self.date = [[NSDate alloc] init];
 }
 return self;
}
@end

Class Constructors
Classes often include constructor methods as a convenience.
The method type is + to indicate that it is a class (static)
method.

// Constructor method declaration
+ (Book *) createBook: (NSString *) aTitle withAuthor: (NSString *)
anAuthor;

// Invoke a class constructor
Book *book2 = [Book createBook: @”Moby Dick” withAuthor: @”Herman
Melville”];

#import Statements
#import statements are required to declare the classes and
frameworks used by your class. #import statements can be
included at the top of both .h header and .m implementation
files.

// import a class
#import “Book.h”

// import a framework
#import <MapKit/MapKit.h>

Control Flow
// basic for loop
for (int x=0; x < 10; x++) {
 NSLog(@”x is: %d”,x);
}

// for-in loop
NSArray *values = [NSArray arrayWithObjects:@”One”,@”Two”,@”Three”,nil];

for(NSString *value in values) {
 // do something
}

// while loop
BOOL condition = YES;
while (condition == YES) {
 // doSomething
}

// if / else statements
BOOL condition1 = NO;
BOOL condition2 = NO;
if (condition1) {
 // do something
} else if(condition2) {
 // do other thing
} else {
 // do something else
}

// switch statement
int x = 1;
switch (x) {
 case 1:
 // do something
 break;
 case 2:
 // do other thing
 break;
 default:
 break;
}

Strings
Objective-C string literals are prefixed with an “@” symbol (e.g.
@”Hello World”). This creates instances of the NSString class;
instead of C language CFStrings.

// create a string literal via the “@” symbol
NSString *value = @”foo bar”;
NSString *value2 = [NSString stringWithFormat:@”foo %@”,@”bar”];
// string comparison
if ([value isEqualToString:value2]) {
 // do something
}
NSURL *url = [NSURL URLWithString:@”http://www.google.com”];
NSString *value3 = [NSString stringWithContentsOfURL:url];
NSString *value4 = [NSString stringWithContentsOfFile: @”file.txt”];

NSLog / NSString Formatters
Formatters are character sequences used for variable
substitution in strings.

%@ for objects
%d for integers
%f for floats
// Logs “Bob is 10 years old”
NSLog(@”%@ is %d years old”, @”Bob”, 10);

Data Structures
Using NSArray
// Create a fixed size array. Notice that nil termination is required
NSArray *values = [NSArray arrayWithObjects:@”One”,@”Two”,nil];
// Get the array size
int count = [values count];
// Access a value
NSString *value = [values objectAtIndex:0];
// Create a variable sized array
NSMutableArray *values2 = [[NSMutableArray alloc] init];
[values2 addObject:@”One”];

Using NSDictionary
NSDictionary *di = [NSDictionary dictionaryWithObjectsAndKeys:
 @”One”,[NSNumber numberWithInt:1],
 @”Two”,[NSNumber numberWithInt:2],nil];
NSString *one = [di objectForKey: [NSNumber numberWithInt:1]];
NSMutableDictionary *di2 = [[NSMutableDictionary alloc] init];
[di2 setObject:@”One” forKey:[NSNumber numberWithInt:1]];

Memory Management
Objective-C 2.0 includes garbage collection. However,
garbage collection is not available for iOS apps. iOS apps
must manage memory by following a set of object ownership
rules. Each object has a retain count which indicates the
number of objects with an ownership interest in that object.
Ownership of an object is automatically taken when you call a
method beginning with alloc, prefixed with new, or containing
copy. Ownership is manually expressed by calling the retain
method. You relinquish object ownership by calling release or
autorelease.

When an object is created it has a retain count of 1
When the “retain” message is sent to an object, the retain count is incremented by 1
When the “release” message is sent to an object, the retain count is decremented by 1
When the retain count reaches 0, it is deallocated

// alloc sets the retain count to 1
Book *book = [[Book alloc] init];
// do something...

// Release message decrements the retain count,
// Retain count reaches 0. Book will be deallocated
[book release];

dealloc Method
When an object’s retain count reaches 0, it is sent a dealloc
message. You will provide implementations of the dealloc
method, which will call release on the instances retained
variables. Do not call dealloc directly.

// Book.m: Implement release of member variables
- (void) dealloc
{
 [title release];
 [author release];
 [super dealloc];
}

Autorelease Pools
An autorelease pool (NSAutoreleasePool) contains references to

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4
objective-c for the iPhone and iPad

objects that have received an autorelease message. When the
autorelease pool is deallocated, it sends a release message to
all objects in the pool. Using an autorelease pool may simplify
memory management; however, it is less fine grained and may
allow an application to hold onto more memory than it really
needs. Be watchful of which types and size of objects you use
with autorelease.

// call autorelease on allocated instance to add it to the autorelease pool
Book *book = [[[Book alloc] init] autorelease];

Categories
Categories are a powerful language feature which allows
you to add methods to an existing class without subclassing.
Categories are useful to extend the features of existing classes
and to split the implementation of large classes into several
files. Categories are not subclasses. Generally, do not use
methods in a category to extend existing methods except
when you wish to globally erase and redefine the original
method. Categories can not add instance variables to a class.

// BookPlusPurchaseInfo.h adds purchase related methods to the Book class
#import “Book.h”
@interface Book (PurchaseInfo)
- (NSArray *) findRetailers;
@end
// BookPlusPurchaseInfo.m implements the purchase related methods
#import “BookPlusPurchaseInfo.h”
@implementation Book (PurchaseInfo)
- (NSArray *) findRetailers {
 return [NSArray arrayWithObjects:@”Book World”,nil];
}
@end

// call a method defined in the BookPlusPurchaseInfo category
Book *book = [Book createBook:@”Moby Dick” withAuthor:@”Herman Melvile”];
NSArray *retailers = [book findRetailers];

Selectors
Selectors create method identifiers using the SEL datatype. A
value can be assigned to a SEL typed variable via the
@selector() directive. Selectors, along with NSObject’s
method performSelector: withObject: enable a class to
choose the desired message to be invoked at runtime.

// Execute a method using a SEL selector and the performSelector method
id target = [[Book alloc] init];

// Action is a reference to the “doSomething” method
SEL action = @selector(doSomething);

// The message sender need not know the type of target object
// or the message that will be called via the “action” SEL
[target performSelector: action withObject:nil];

Working With Files
iOS applications have access to files in an app-specific home
directory. This directory is a sand-boxed portion of the file
system. An app can read and write files within this its own
hierarchy, but it can not access any files outside of it.

// Get the path to a iOS App’s “Documents” directory
NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) lastObject];

// List the contents of a directory
NSFileManager *fileManager = [NSFileManager defaultManager];
NSArray *files = [fileManager contentsOfDirectoryAtPath:docDir error:nil];
for (NSString *file in files) {
 NSLog(file);
}

// Create a directory
NSString *subDir = [NSString stringWithFormat:@”%@/MySubDir”,docDir];
[fileManager createDirectoryAtPath:subDir attributes:nil];

// Does the file exist?
NSString *filePath = [NSString stringWithFormat:@”%@/MyFile.txt”,docDir];
BOOL exists = [fileManager fileExistsAtPath: filePath];

tooLs

Xcode
The IDE included in the iOS SDK is named Xcode. It is the

primary tool in the suite of utilities that ship with the SDK.
Xcode has a long history but has been given a dramatic set
of feature additions in the modern iPhone and iPad releases,
including detection of common user-coded memory leaks and
quick-fixing of other syntax and coding mistakes.

Plain text editors and command line Make files can be used to
produce iOS applications. However, Xcode offers compelling
features such as syntax highlighting and code completion.
These features make writing Objective-C in the Xcode IDE a
delight and a favorite of developers everywhere.

Once the code is in a valid-syntax state, compile it by choosing
Build  Build from the menus, or ⌘B. If there are code errors,
they will appear as a yellow or red icon in the lower right corner
of the IDE. Clicking on the icon will reveal a panel detailing the
warnings and errors.

Deploying an application to the simulator has two simple steps.
First, choose the Simulator target from the main Xcode toolbar.
Building and Deploying can be done in one seamless step
by pressing the Command and Enter keys. The simulator will
receive the compiled application and launch it.

To deploy to an iPhone or iPad, first select Device from the
aforementioned toolbar menu. Second, right click on the
element beneath the Target node of the Groups and Files tree
and choose Get Info. Choose the Properties tab and ensure
the Identifier matches the name or pattern you established with
Apple for your Provisioning Profile at http://developer.apple.com/iphone

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5
objective-c for the iPhone and iPad

Debugging
The Xcode platform provides a robust debugger and
supplementary mechanisms for stepping through code.
Breakpoints are easily set by single clicking in the gutter next
to any line of code. A blue arrow indicates a breakpoint is set
and active.

Once a breakpoint is hit, variables can be inspected and
the stack examined via the key combination ⌘ + ⇧ + Y. The
bottommost panel is called the console, and is where all
logging output, written via calls such as NSLog(@“My counter
is: %d”, myIntCount), is routed.

Hot
Tip

During the debugging and testing phase of
development, activate Zombies to place “markers”
in deallocated memory, thereby providing a stack
trace in the console if any invalid attempts are made
to access the freed memory. This is accomplished in
three simple steps:
 • Double-click the name of any node beneath the Executables
 group of an Xcode project.
 • In the dialog that opens, click the Arguments tab.
 • In the lower “Variables to be set” region, click the + button and
 create a new variable named “NSZombieEnabled” with its
 value set to “YES”.

Interface Builder
A tool as powerful as Xcode is Interface Builder. Its name
clearly expresses its use for designing Objective-C NIBs and
XIBs, which are the binary and XML form of user interface
definition files on the Mac, iPhone, and iPad.

NIBs, though graphically designed, actually instantiate the
objects declared via the tool when called upon via code.
Accordingly, it may help to think of IB (as it is known in the

Organizer
The Organizer window provides a list of favorite projects,
enumerates your attached iOS devices, streams the current
device console log to screen and displays details of past crash
logs. It can be opened from Xcode via ⌘+^+O.

community) primarily as a class-instance designer and property
value setter.

New elements can be added to a design canvas in a drag-
and-drop WYSIWYG approach via the Library panel, which
can be accessed via the ⌘ + ⇧ +L key combination. After
saving changes, the design’s behavior can be immediately
tested through the Simulate Interface command, which can be
invoked via ⌘ + R.

Simulator
The iPhone and iPad Simulator is another distinct application
in the iPhone SDK that communicates and integrates with the
Xcode IDE and with Interface Builder. In the Xcode section, we
saw how to deploy our application to the Simulator, which both
installs the application and launches it.

While the Simulator offers a great desktop testing experience
that requires no purchase of hardware, it has a few
shortcomings such as the lack of a camera, gyroscope, or
GPS facilities. The lack of camera is somewhat mitigated by a
supply of several stock photos in the Photo application. The
harsh absence of a gyroscope is minimized only by the shake
and rotate gestures possible through the Hardware menu. And
last, the omission of a true GPS simulator is performed by GPS
calls always resolving to 1 Infinite Loop, Cupertino, CA, USA.

The iPhone Simulator offers iPad, iPhone and iPhone 4
simulation modes. The modes are toggled via the Hardware
 Device menu.

The Simulator ships with a limited number of core applications;
namely, the Photos, Settings, Camera, Contacts and
Safari programs. These are the applications that offer API
connectivity from the source code of your application. For a
broader set of programs and more realistic mobile horsepower

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

rev. 1.001 10/08/09

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
objective-c for the iPhone and iPad

recoMMended BookABout the Authors

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

CPUs, testing on an actual iOS device is critical. Commercial
apps that you’ve purchased from the iTunes App Store cannot
be installed on the Simulator for DRM reasons and the vast
difference in CPU architecture of x86 desktops and ARM
mobile devices.

Xcode Keyboard Shortcuts
Common XCode Shortcuts
⌘ = command ⎇ = alt ▲ = up ⇧ = shift ⏎ = return ^ = control

⎇ ⌘ ▲ toggle between .h and .m file

⌘ ⇧ d quickly open a file via search dialog

⌘ b build

⌘ ⏎ build and run

⌘ ⇧ k clean the build

⌘ ⇧ r go to console view

⌘ 0 go to project view

⌘ ⇧ e show / hide upper right pane

⎇ ⌘ ⇧ e show / hide all but the active document window

^ 1 while in file editor - show / navigate list of recent files

^ 2 while in file editor - show / navigate list of class methods

⌘ y build and debug

⎇ ⌘ p debugger continue

⎇ double-click open quick documentation for class at mouse cursor

Unit Testing and Code Coverage
Currently, the unit testing tools for Objective-C are less mature
than those of other languages. XCode currently includes
the OCUnit unit testing framework. OCUnit tests are coded
similarly to those of xUnit tests in languages such as Java. The
Google Toolbox for Mac provides several useful enhancements
to OCUnit and is the testing solution currently recommended
by ThoughtWorks for the iOS platform. Complementing
OCUnit is OCMock, an Objective-C implementation of mock
objects. CoverStory can be used in concert with OCUnit and
OCMock to check the code coverage of your tests.

Resources
SDK
Apple Developer Programs - http://developer.apple.com/

iOS SDK - http://developer.apple.com/iphone/index.action

Testing
Google Toolbox for Mac - http://code.google.com/p/google-toolbox-for-mac/

OCMock - http://www.mulle-kybernetik.com/software/OCMock/

CoverStory - http://code.google.com/p/coverstory/

Blogs, Videos, Books
WWDC 2010 Session Videos - http://developer.apple.com/videos/wwdc/2010/

Objective-C Basics -
http://en.wikibooks.org/wiki/Cocoa_Programming/Objective-C_basics

iPhone Development Wiki - http://iphonedevwiki.net/index.php/Main_Page

The Objective-C Programming Language -
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

Bookmarks - http://delicious.com/matthew.mccullough/objectivec

Matthew McCullough is an energetic 15 year veteran of enterprise
software development, open source education, and co-founder
of Ambient Ideas, LLC, a Denver, Colorado, USA consultancy.
Matthew is a published author, open source creator, speaker at
over 100 conferences, and author of three of the top 10 Refcardz
of all time. He writes frequently on software and presenting at his
blog: http://ambientideas.com/blog.

Ben Ellingson is a software engineer and consultant. He is
the creator of nofluffjuststuff.com, many related No Fluff Just
Stuff websites and mobile applications. During Ben’s 13 years
of development experience, he has helped create systems for
conference management, video-on-demand, and online travel.
You can keep up with Ben’s work at http://benellingson.blogspot.com
and http://twitter.com/benellingson.

The second edition of this book thoroughly covers the
latest version of the language, Objective-C 2.0. And it
shows not only how to take advantage of the Foundation
framework’s rich built-in library of classes but also how to
use the iPhone SDK to develop programs designed for the
iPhone/iPad platform.

Buy noW
books.dzone.com/books/objective-c

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://code.google.com/p/google-toolbox-for-mac/
http://www.mulle-kybernetik.com/software/OCMock/
http://code.google.com/p/coverstory/

