Get More Refcardz! Visit refcardz.com

www.dzone.com

o)
(O
=
O
C
©
)
-
@)
-
=
)
-
Jr)
—
O
4
<
[
2
o
(%
Q
omu
0
(o)

.~ !DZone Refcardz

= An Introduction to the Language and Tools
* The Syntax

* Memory Management

= Tools

= Debugging

= XCode Keyboard Shortcuts and more...

Objective-C

for the iPhone and iPad

By Ben Ellingson and Matthew McCullough

AN INTRODUCTION TO THE LANGUAGE AND TOOLS

Objective-C is the primary language used to create
applications for Apple’s Mac OS X and iOS (iPhone and iPad)
platforms. Objective-C was created by Brad Cox and Tom Love
in the early 1980s. In 1988, Objective-C was licensed by NeXT,
a company founded and helmed by Steve Jobs during his
absence from Apple. Apple acquired NeXT in 1996, bringing
Objective-C to the Macintosh platform.

Objective-C is an object oriented superset of ANSI C. Its
object syntax is derived from Smalltalk. It supports single
inheritance, implementation of multiple interfaces via the
@protocol syntax, and the redefinition and augmentation of
(open) classes via categories. Apple's iPhone SDK for the
iOS mobile operating system offers developers a rich set of
Objective-C APIs. This free SDK, which includes the Xcode
IDE, is used to create applications for the iPhone, iPad, and
iPod Touch.

THE SYNTAX

Class Declaration

Obijective-C classes typically include an interface .h and an
implementation .m pair of files. The .h file contains property
and method declarations. The .m file contains method
implementations.

Example .h interface file

#import <Foundation/Foundation.h>
@interface Speaker : NSObject {
NSInteger *ID;
NSString *name;

}

@property NSInteger *ID;

@property(nonatomic, retain) NSString *name;

- (void) doSomething: (NSString *) value anotherValue: (int) value2;
@end

Example .m implementation file

#import “Speaker.h”

@implementation Speaker

@synthesize ID,name;

- (void) doSomething: (NSString *) value anotherValue: (int) value2 {
// do something

}
@end

Inheritance

Class inheritance is specified in the .h interface file with the
syntax: @interface <MyClass> : <ParentClass>. The following
example tells the compiler that the Employee class inherits
from (extends) the Person class.

// Employee.h file

@interface Employee : Person {

}
@end

The keyword @interface can distract developers
coming from some languages such as Java,
suggesting this is a mere contract. However,

@interface is indeed the keyword for defining the
properties and method signatures of a concrete
class in Obj-C.

Interfaces

Objective-C interfaces are created using the @protocol
declaration. Any class can implement multiple interfaces.
Interfaces are typically declared in a .h header file and can be
included via #import statements in the .h header file of other
classes.

// Mappable.h: Declare the Mappable @protocol
@protocol Mappable

- (double) latitude;

- (double) longitude;

@end

// Location.h: Specify that Location class implements the Mappable
// @protocol

#import “Mappable.h”
@interface Location : NSObject <Mappable> {
}

@end

// Location.m: Provide implementations for the Mappable methods
@implementation Location
- (double) latitude {

return 46.553666;

}
- (double) longitude {
return -87.40551;

}
@end

Primitive Data Types
As a superset of ANSI C, Objective-C supports its same
primitive data types.

int Integral numbers without decimal points

float Numbers with decimal points

~. Don’t Miss An Issue!
Get over 90 DZone Refcardz
FREE from Refcardz.com!

A
07 < Done Refeardz

Visit Refcardz.com to get them all Free!

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

/-1 DZone Refcardz

Objective-C for the iPhone and iPad

double Same as float with twice the accuracy or size
char Store a single character such as the letter ‘a’
BOOL Boolean values with the constants YES or NO

Common Object Data Types

NSObject Root class of the object hierarchy

NSString String value

NSArray Collection of elements, fixed size, may include duplicates
NSMutableArray Variable sized array

NSDictionary Key-value pair collection

NSMutableDictionary | Variable sized key-value pair collection

NSSet Unordered collection of distinct elements
NSData Byte buffer
NSURL URL resource

Instance Variables
Class instance variables are declared within a curly braced {}
section of the .h file.

// Book.h: Variables declared in a header file
@interface Book : NSObject {

NSString *title;

NSString *author;

int pages;

}
@end

Notice that the object variable declarations are preceded by
* symbol. This indicates that the reference is a pointer to an
object and is required for all object variable declarations.

Dynamic Typing
Objective-C supports dynamic typing via the id keyword.

NSString *namel = @”Bob”;
// name2 is a dynamically typed NSString object
id name2 = @”Bob”;
if ([namel isEqualToString:name2]) {
// do something

Methods
Methods are declared in the .h header file and implemented in
the .m implementation file.

// Book.h: Declare methods in the header file
@interface Book : NSObject {
}

- (void) setPages: (int) p;
- (int) pages;
@end

// Book.m: Implement methods in the implementation file
@implementation Book
- (void) setPages: (int) p {

pages = p;

- (int) pages {
return pages;

}
@end

Method Declaration Syntax

Method type return type parameter type

(class or instance) l method name l parameter name
{
- (void) setPages: (int) p;

Method Invocation Syntax
Method invocations are written using square bracket [1]

notation.

method target parameter value

l method name
|

[book setPages: 100];

Using Dot Notation Method Invocation
Objective-C 2.0 added the ability to invoke property accessor

uon

methods (getters/setters) using “.” notation.

// Using dot notation calls the book instance’s setAuthor method
book.author = @’Herman Melville”;

// equivalent to

[book setAuthor: @”Herman Melville”];

Multi Parameter Methods

Multi-Parameter methods are more verbose than other
languages. Each parameter includes both an external name,
data type, and a local variable name. The external parameter
name becomes a formal part of the method name.

// declare a method with multiple parameters
- (void) addBookWithTitle: (NSString *) aTitle andAuthor: (NSString *)
anAuthor;

// invoke a method with multiple parameters
[self addBookWwithTitle: @”Moby Dick” andAuthor: @”Herman Melville”];

Self and Super Properties

Objective-C objects include a self property and a super
property. These properties are mutable and can be assigned
in an advanced technique called “swizzling”. Most commonly,
the self attribute is used to execute a method on the
enclosing object.

[self setAuthor: @”Herman Melville”];

// Invoke methods on the “super” property to execute parent class
// behavior. a method that overrides a parent class method will likely call
// the parent class method
- (void) doSomething: (NSString *)value {
[super doSomething: value];
// do something derived-class specific

¥

Properties using @property and @synthesize
Objective-C 2.0 added property declaration syntax in order to
reduce verbose coding of getter and setter methods.

// use of @property declaration for the title variable is equivalent to
// declaring a “setTitle” mutator and “title” accessor method.
@interface Book : NSObject {

NSString *title;

@property (retain, nonatomic) NSString *title;
@end

// use the @synthesize declaration in the .m implementation file
// to automatically implement setter and getter methods.
@implementation Book

@synthesize title, author; //Multiple variables

@synthesize pages; //Single variable

@end

Multiple variables may be included in a single @synthesize
declaration. Alternatively, a class may include multiple
@synthesize declarations.

@property Attributes

Property attributes specify behaviors of generated getter
and setter methods. Attribute declarations are placed in
parenthesis () after the @property declaration. The most
common values used are (retain, nonatomic). retain
indicates that the [retain] method should be called on the
newly assigned value object. See the memory management
section for further explanation. nonatomic indicates that
the assignment operation does not check for thread access
protection, which may be necessary in multi-threaded
environments. readonly may be specified to indicate the
property’s value can not be set.

Object Initialization
Object instances are created in two steps. First, with a call to
alloc and second, with a call to init.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

N

/1 DZone Refcardz

Objective-C for the iPhone and iPad

// example of 2 step object initialization
Book *book = [[Book alloc] init];

// equivalent to

Book *book2 = [Book alloc];

book2 = [book init];

In order to perform specific object initialization steps, you will
often implement the init or an initWith method. Notice
the syntax used around the self property in the following
example. This is a standard init pattern found in Objective-C.
Also notice the method uses a dynamic id return type.

Strings

Obijective-C string literals are prefixed with an “@" symbol (e.g.
@"Hello World"). This creates instances of the NSString class;
instead of C language CFStrings.

// Event.m: Implementation overrides the “init” method to assign a default
// date value
@implementation Event
- (id) init {
self = [super init];
if (self != nil) {
self.date = [[NSDate alloc] init];

}
return self;

@end

// create a string literal via the “@” symbol
NSString *value = @"foo bar”;
NSString *value2 = [NSString stringWithFormat:@”foo %@”,@"bar"];
// string comparison
if ([value isEqualToString:value2]) {
// do something

}
NSURL *url = [NSURL URLWithString:@”http://www.google.com”];
NSString *value3 = [NSString stringWithContentsOfURL:url];

NSString *value4 = [NSString stringWithContentsOfFile: @"file.txt”];

NSLog / NSString Formatters
Formatters are character sequences used for variable
substitution in strings.

Class Constructors

Classes often include constructor methods as a convenience.
The method type is + to indicate that it is a class (static)
method.

%@ for objects

%d for integers

%f for floats

// Logs “Bob is 10 years old”

NSLog(@"%@ is %d years old”, @”Bob”, 10);

Data Structures
Using NSArray

// Constructor method declaration
+ (Book *) createBook: (NSString *) aTitle withAuthor: (NSString *)
anAuthor;

// Invoke a class constructor
Book *book2 = [Book createBook: @”Moby Dick” withAuthor: @”Herman
Melville”];

// Create a fixed size array. Notice that nil termination is required
NSArray *values = [NSArray arrayWithObjects:@”0One”,@"Two”,nil];

// Get the array size

int count = [values count];

// Access a value

NSString *value = [values objectAtIndex:0];

// Create a variable sized array

NSMutableArray *values2 = [[NSMutableArray alloc] init];

[values2 addObject:@”0One”];

#import Statements

#import statements are required to declare the classes and
frameworks used by your class. #import statements can be
included at the top of both .h header and .m implementation
files.

Using NSDictionary

NSDictionary *di = [NSDictionary dictionaryWithObjectsAndKeys:
@”0ne”, [NSNumber numberWithInt:1],
@"Two”, [NSNumber numberWithInt:2],nil];
NSString *one = [di objectForKey: [NSNumber numberWithInt:11];
NSMutableDictionary *di2 = [[NSMutableDictionary alloc] init];
[di2 setObject:@"0ne” forKey:[NSNumber numberWithInt:11];

// import a class
#import “Book.h”

// import a framework
#import <MapKit/MapKit.h>

Control Flow

// basic for loop
for (int x=0; x < 10; x++) {
NSLog(@"x is: %d”,x);

// for-in loop
NSArray *values = [NSArray arrayWithObjects:@”0One”,@"Two”,@"Three”,nil];

for(NSString *value in values) {
// do something

// while loop

BOOL condition = YES;

while (condition == YES) {
// doSomething

// if / else statements
BOOL conditionl = NO;
BOOL condition2 = NO;
if (conditionl) {
// do something
} else if(condition2) {
// do other thing
} else {
// do something else

}
// switch statement
int x = 1;
switch (x) {
case 1:
// do something
break;
case 2:
// do other thing
break;
default:
break;
}

Memory Management

Objective-C 2.0 includes garbage collection. However,
garbage collection is not available for iOS apps. iOS apps
must manage memory by following a set of object ownership
rules. Each object has a retain count which indicates the
number of objects with an ownership interest in that object.
Ownership of an object is automatically taken when you call a
method beginning with alloc, prefixed with new, or containing
copy. Ownership is manually expressed by calling the retain
method. You relinquish object ownership by calling release or
autorelease.

When an object is created it has a retain count of 1

When the “retain” message is sent to an object, the retain count is incremented by 1
When the “release” message is sent to an object, the retain count is decremented by 1
When the retain count reaches 0, it is deallocated

// alloc sets the retain count to 1
Book *book = [[Book alloc] init];
// do something...

// Release message decrements the retain count,

// Retain count reaches 0. Book will be deallocated
[book release];

dealloc Method
When an object’s retain count reaches 0, it is sent a dealloc

message. You will provide implementations of the dealloc
method, which will call release on the instances retained
variables. Do not call dealloc directly.

// Book.m: Implement release of member variables
- (void) dealloc

[title release];
[author release];
[super dealloc];

Autorelease Pools
An autorelease pool (NSAutoreleasePool) contains references to

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Objective-C for the iPhone and iPad

objects that have received an autorelease message. When the
autorelease pool is deallocated, it sends a release message to
all objects in the pool. Using an autorelease pool may simplify
memory management; however, it is less fine grained and may
allow an application to hold onto more memory than it really
needs. Be watchful of which types and size of objects you use
with autorelease.

// call autorelease on allocated instance to add it to the autorelease pool
Book *book = [[[Book alloc] init] autoreleasel];

Categories

Categories are a powerful language feature which allows

you to add methods to an existing class without subclassing.
Categories are useful to extend the features of existing classes
and to split the implementation of large classes into several
files. Categories are not subclasses. Generally, do not use
methods in a category to extend existing methods except
when you wish to globally erase and redefine the original
method. Categories can not add instance variables to a class.

// BookPlusPurchaseInfo.h adds purchase related methods to the Book class
#import “Book.h”
@interface Book (PurchaseInfo)
- (NSArray *) findRetailers;
@end
// BookPlusPurchaseInfo.m implements the purchase related methods
#import “BookPlusPurchaseInfo.h”
@implementation Book (PurchaseInfo)
- (NSArray *) findRetailers {
return [NSArray arrayWithObjects:@”Book World”,nil];

@end
// call a method defined in the BookPlusPurchaseInfo category

Book *book = [Book createBook:@”Moby Dick” withAuthor:@”Herman Melvile”];
NSArray *retailers = [book findRetailers];

Selectors

Selectors create method identifiers using the SEL datatype. A
value can be assigned to a SEL typed variable via the
@selector() directive. Selectors, along with NSObject's
method performSelector: withObject: enable a class to
choose the desired message to be invoked at runtime.

// Execute a method using a SEL selector and the performSelector method
id target = [[Book alloc] init];

// Action is a reference to the “doSomething” method
SEL action = @selector(doSomething);

// The message sender need not know the type of target object
// or the message that will be called via the “action” SEL
[target performSelector: action withObject:nil 1;

Working With Files

iOS applications have access to files in an app-specific home
directory. This directory is a sand-boxed portion of the file
system. An app can read and write files within this its own
hierarchy, but it can not access any files outside of it.

// Get the path to a i0S App’s “Documents” directory
NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) lastObject];

// List the contents of a directory
NSFileManager *fileManager = [NSFileManager defaultManager];
NSArray *files = [fileManager contentsOfDirectoryAtPath:docDir error:nil];
for (NSString *file in files) {
NSLog(file);

// Create a directory
NSString *subDir = [NSString stringWithFormat:@"%@/MySubDir”,docDir];
[fileManager createDirectoryAtPath:subDir attributes:nil];

// Does the file exist?
NSString *filePath = [NSString stringWithFormat:@"%@/MyFile.txt”,docDir];
BOOL exists = [fileManager fileExistsAtPath: filePath];

TOOLS

Xcode
The IDE included in the iOS SDK is named Xcode. It is the

primary tool in the suite of utilities that ship with the SDK.
Xcode has a long history but has been given a dramatic set

of feature additions in the modern iPhone and iPad releases,
including detection of common user-coded memory leaks and
quick-fixing of other syntax and coding mistakes.

Plain text editors and command line Make files can be used to
produce iOS applications. However, Xcode offers compelling
features such as syntax highlighting and code completion.
These features make writing Objective-C in the Xcode IDE a
delight and a favorite of developers everywhere.

4 5 @HelloWorldlml * <No selected symboi> & ML e
#import <Foundation/Foundation.h>

am

int main (int argc, const char = argv[]) {
NSAutoreleasePool % pool = [[NSAutoreleasePool alloc] init];

// insert code here...
NSLog(@"Hello, World!");

[pool drainl;
return @;

Once the code is in a valid-syntax state, compile it by choosing
Build = Build from the menus, or %B. If there are code errors,

they will appear as a yellow or red icon in the lower right corner
of the IDE. Clicking on the icon will reveal a panel detailing the
warnings and errors.

[pool drain]

b § |
return 9; 0 Expected ';' before 'return’ ;|
:) hl i I |

@ Failed B 1 A

Deploying an application to the simulator has two simple steps.
First, choose the Simulator target from the main Xcode toolbar.
Building and Deploying can be done in one seamless step

by pressing the Command and Enter keys. The simulator will
receive the compiled application and launch it.

®e0o0 ml HelloWorl
EI] ISimuIator -3.2|D... 'I
Page Device

Groups & Files |+ Simulator
¥ [HelloWorld
¥| _|Classes

W| Hellg ¥ Debug
.]
M

| Release
[1] Hellg

[w] Hellg Active Target

» [] Other S ¥ o8 HelloWorld

b | Resourc)

b [|Framew /CHVE Bxecutabie

» [] Product. ¥ HelloWorld - iPad Simulator 3.2
PTargets A ;
» 4 Executable - '
*'\CJ/. Find Result. ¥ 1386

To deploy to an iPhone or iPad, first select Device from the
aforementioned toolbar menu. Second, right click on the
element beneath the Target node of the Groups and Files tree
and choose Get Info. Choose the Properties tab and ensure
the Identifier matches the name or pattern you established with
Apple for your Provisioning Profile at http://developer.apple.com/iphone

8060

Target "HelloWorld" Info

I General Build Rules | Properties | Commen

Executable: [S{EXECUTABLE_NAME}

Identifier: com.yourcompany.${PRODUCT_NAME:rfc1034identifier}

Type: APPL Cri

Icon File:

Version: | 1.0

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

DZone Refcardz

Objective-C for the iPhone and iPad

Organizer

The Organizer window provides a list of favorite projects,
enumerates your attached iOS devices, streams the current
device console log to screen and displays details of past crash
logs. It can be opened from Xcode via 8+A+0.

ann Organizer =
N
_ Buid Ciean Mum A
e
3

I - PR — Name: Manhews Fad
B peatthew's 1G5 iFhone Capacity: 15.05 GB
PHONE DEVELOPMINT Model: ad
+ Archied Apsiicarions Serial Number; CB014308238
Deveioper Brofie . :
i o e 0
Device Logs Identifier; <78fedSba3es315a012360764330

1) Provisianing Profies
@ Screenshots
» Sottmare imagrs

Software Version: 3.2 (78367)

+. 0- @ —_—_—————— =~

Debugging

The Xcode platform provides a robust debugger and
supplementary mechanisms for stepping through code.
Breakpoints are easily set by single clicking in the gutter next
to any line of code. A blue arrow indicates a breakpoint is set

and active.
2 [window addSubview:viewController.view];
D [window makeKeyAndVisiblel;
24 return YES;
25 }

Once a breakpoint is hit, variables can be inspected and
the stack examined via the key combination 8 + 1 + Y. The
bottommost panel is called the console, and is where all
logging output, written via calls such as NSLog (@“My counter
is: %d”, myIntCount), is routed.

ann = HelloWorkdAppDelegate.m - HelloWarld =

(o [smoistar-32] . - (= | N Lo 2 @ ﬂ & »
e Do Beeshpciots BobdandDeboq Tasks Bewart Comince Step Omee Sep ia Step O

& Truead-1- ccom apple main-hresd» 3 Varisbie e Summary

aubzrz0
oxa03stos
oi3HLIS0

o 0x0. © ke ralue ey

e e a)

- (BOOL)application: (UIApplication *)application didFinishLaunchingWit()
[window _addSubview:viewController.view]; I
[window makeKeyAndVisible];
return YES;

L

Hellowarlal 134: 207

yiv) |
GDE: 209040 3t brex¥point 1 098 coue 1) - - apghcam didFINIETLIAChnGWRODUGE: - Line 23 Dsuceedes

During the debugging and testing phase of
development, activate Zombies to place “markers”

in deallocated memory, thereby providing a stack
trace in the console if any invalid attempts are made
to access the freed memory. This is accomplished in

three simple steps:
® Double-click the name of any node beneath the Executables
group of an Xcode project.
® |n the dialog that opens, click the Arguments tab.
® In the lower “Variables to be set” region, click the + button and
create a new variable named “NSZombieEnabled” with its
value set to “YES”.

Interface Builder

A tool as powerful as Xcode is Interface Builder. Its name
clearly expresses its use for designing Objective-C NIBs and
XIBs, which are the binary and XML form of user interface
definition files on the Mac, iPhone, and iPad.

NIBs, though graphically designed, actually instantiate the
objects declared via the tool when called upon via code.
Accordingly, it may help to think of IB (as it is known in the

community) primarily as a class-instance designer and property
value setter.

New elements can be added to a design canvas in a drag-
and-drop WYSIWYG approach via the Library panel, which

can be accessed via the % + 1 +L key combination. After
saving changes, the design’s behavior can be immediately
tested through the Simulate Interface command, which can be

invoked via % + R.
800 Library

(‘Objects | Classes Media

[Tl Uibrary)

Image View - Displays a single
image, or an animatian described
by an array of images. m

Web View - Displays embedded
web content and enables content
navigation.

d

Map View - Displays maps and
provides an embeddable interface
to navigate map content. s

v
== I Tt Viomar Dicmluse sltinia

Split View Controller
UIsplitViewController

A compasite view controller that manages
left and right view controllers.

% @]

Simulator

The iPhone and iPad Simulator is another distinct application
in the iPhone SDK that communicates and integrates with the
Xcode IDE and with Interface Builder. In the Xcode section, we
saw how to deploy our application to the Simulator, which both
installs the application and launches it.

While the Simulator offers a great desktop testing experience
that requires no purchase of hardware, it has a few
shortcomings such as the lack of a camera, gyroscope, or

GPS facilities. The lack of camera is somewhat mitigated by a
supply of several stock photos in the Photo application. The
harsh absence of a gyroscope is minimized only by the shake
and rotate gestures possible through the Hardware menu. And
last, the omission of a true GPS simulator is performed by GPS
calls always resolving to 1 Infinite Loop, Cupertino, CA, USA.

The iPhone Simulator offers iPad, iPhone and iPhone 4
simulation modes. The modes are toggled via the Hardware
=> Device menu.

CIEIEE window Help
iPad

ot * | iphone
Rotate Left s+ ¥ iPhone 4
Rotate Right 2

Shake Gesture ~xz

Home oxH

Lock L.

Simulate Memory Warning
Toggle In-Call Status Bar
Simulate Hardware Keyboard
TV Out >

8.2

Conticts__Safarl

The Simulator ships with a limited number of core applications;
namely, the Photos, Settings, Camera, Contacts and

Safari programs. These are the applications that offer API
connectivity from the source code of your application. For a
broader set of programs and more realistic mobile horsepower

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com

41 DZone Refcardz

Objective-C for the iPhone and iPad

CPUs, testing on an actual iOS device is critical. Commercial
apps that you've purchased from the iTunes App Store cannot
be installed on the Simulator for DRM reasons and the vast
difference in CPU architecture of x86 desktops and ARM

Unit Testing and Code Coverage

Currently, the unit testing tools for Objective-C are less mature
than those of other languages. XCode currently includes

the OCUnit unit testing framework. OCUnit tests are coded

mobile devices.

Xcode Keyboard Shortcuts
Common XCode Shortcuts
¥ =command T =alt A =up T =shift J =return

similarly to those of xUnit tests in languages such as Java. The
Google Toolbox for Mac provides several useful enhancements
to OCUnit and is the testing solution currently recommended
by ThoughtWorks for the iOS platform. Complementing

A = control

% a e s [OCUnit is OCMock, an Objective-C implementation of mock
O 0ggle petween .n and.mile
objects. CoverStory can be used in concert with OCUnit and
#® 1d quickly open a file via search dialog OCMock to check the code coverage of your tests.
® b build
R r
8 JI build and run esources
SDK
¥ 07k clean the build Apple Developer Programs - http://developer.apple.com/
] iOS SDK - http://developer.apple.com/iphone/index.action
¥ aor go to console view
$®0 go to project view Testing
- - Google Toolbox for Mac - http://code.google.com/p/google-toolbox-for-mac/
* e show / hide upper right pane OCMock - http://www.mulle-kybernetik.com/software/OCMock/
B e dhewr/ liidke &l bk idhe aeive deaumamt windw CoverStory - http://code.google.com/p/coverstory/
A1 while in file editor - show / navigate list of recent files Blogs, Videos, Books
i i - : | . . i
A2 il il cellier-dhemd s M ehdkss malees WWDC 2010 Se.ssmn Videos - http://developer.apple.com/videos/wwdc/2010/
Objective-C Basics -
By build and debug http://en.wikibooks.org/wiki/Cocoa Programming/Objective-C basics
- iPhone Development Wiki - http://iphonedevwiki.net/index.php/Main_Page
X #Ep debugger continue The Objective-C Programming Language -
= chubileaidk open quick documentation for class at mouse cursor http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
Bookmarks - http://delicious.com/matthew.mccullough/objectivec

ABOUT THE AUTHORS

Ben Ellingson is a software engineer and consultant. He is

the creator of nofluffjuststuff.com, many related No Fluff Just
Stuff websites and mobile applications. During Ben's 13 years
of development experience, he has helped create systems for
conference management, video-on-demand, and online travel.
You can keep up with Ben's work at http://benellingson.blogspot.com
and http://twitter.com/benellingson.

RECOMMENDED BOOK
____ The second edition of this book thoroughly covers the
latest version of the language, Objective-C 2.0. And it
shows not only how to take advantage of the Foundation
framework's rich built-in library of classes but also how to
use the iPhone SDK to develop programs designed for the

iPhone/iPad platform.
BUY NOW

books.dzone.com/books/objective-c

Programming in
Objective-C 2.0

Matthew McCullough is an energetic 15 year veteran of enterprise
software development, open source education, and co-founder

of Ambient Ideas, LLC, a Denver, Colorado, USA consultancy.
Matthew is a published author, open source creator, speaker at
over 100 conferences, and author of three of the top 10 Refcardz
of all time. He writes frequently on software and presenting at his
blog: http://ambientideas.com/blog.

Browse our collection of 100 Free Cheat Sheets

Upcoming Refcardz
Free PDF

Apache Ant
DZone, Inc.

M 4% DZone Refcardz

Getting Started with
Cloud Computing
5

) Daniel Fubio

Hadoop
Spring Security
Subversion

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

|| |||| ||| ||| ll
9781934238752 “H“

rev. 1.001 10/08/09

140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome

$7.95

refcardz@dzone.com

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine. Sponsorship Opportunities

sales@dzone.com
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://code.google.com/p/google-toolbox-for-mac/
http://www.mulle-kybernetik.com/software/OCMock/
http://code.google.com/p/coverstory/

