Get More Refcardz! Visit refcardz.com

www.dzone.com

=
<
c
.2
-
(]
)
(=
3
o
(18
c
.2
-
(L]
2
c
=]
£
£
o
(8]
0
3
(]
e
=
<
5=
2
e}
[0}
=
©
—
wn
(o)}
C
=
()
O

.~ !DZone Refcardz

= About WCF

= Configuration Overview

= WCF Contracts

* Bindings

= Behaviors

= Hosted Services and more...

Getting Started with

Windows Communication Foundation 4.0

By Scott Seely

ABOUT WCF

Since .NET 3.0, Windows Communication Foundation (WCF) is the
preferred messaging system in .NET applications. It provides an
abstraction layer over transports. This abstraction allows developers
to focus on the types of messages their applications need to send
and receive. It removes the need for developers to have intimate
knowledge of how the messages themselves are sent and received.

Instead, developers focus on a concept called an endpoint which
listens for and receives messages. Endpoints are built using three
items: Address, Binding, and Contract.

The address defines where a message is sent.
http://www.dzone.com/ is an address.

A binding describes how to send the message. The binding
contains information such as the transport to use, how to encode
messages, and security requirements.

A contract defines how a message is structured. The contract
defines the message exchange pattern (MEP) used for each
exchange as well as which messages initiate a conversation or stop a
conversation. All message exchanges fall into one of three message
exchange patterns, or MEPs: one-way, request-response, and
duplex. One-way messages can act as event notifications. Request-
response messages send some data and expect a response in a
particular format. Duplex messages are a conversation. In duplex,
when one caller initiates a conversation, that caller promises to
make a set of one-way and request-response messages available to
the callee. Typically, duplex MEPs make use of sessions as well.

CONFIGURATION OVERVIEW

Configuration is a big feature in WCF. It permeates much of the
messaging framework. This section provides a map of configuration.
The configuration section group, <system.configuration>,

contains all WCF configuration settings. Within this configuration
section group, 14 different configuration sections exist. Some

of those sections have relationships with other sections. One,
system.serviceModel/extensions, is a configuration section for
configuration only!

behaviors Contains configuration for shared behaviors that can be applied

to endpoints and services.

bindings Contains information for shared bindings used to create
message processing pipelines. A computer program that can
run independently and can propagate a complete working

version of itself onto other hosts on a network.

client Contains information for clients to communicate with services.
Lookups are performed using a two part key: the name of the
configuration and the name of the contract.

comContracts An integration point used between COM+ and WCF to
configure the name and namespace for any hosted services.
This mimics the functionality normally provided by the
[ServiceContract] attribute via the Name and Namespace

properties.

commonBehaviors Defines a collection of behaviors applied to all services and
endpoints. These behaviors add to any others already present

on aservice.

diagnostics Diagnostic settings for WCF, including WMI, performance
counter, message filters, and other settings.
extensions Defines configuration extensions for the bindings, behaviors,

bindingElement (for extending CustomBinding configuration),
and standardEndpoints.

machineSettings Allows the user to log personally identifiable information
in traces and message logs via the XML attribute,
enableLoggingKnownpPii. This section can only be edited in

machine.config, located in the framework directory.

protocolMapping Used to map a protocol to a binding for easier configuration.

serviceHostingEnvironment | Used to configure services hosted in ASPNET.

Defines which contracts a service instance will listen for
messages on and any base addresses the service will use. A
service may also add metadata and discovery endpoints via this
mechanism.

services

standardEndpoints Contains configuration for endpoints specified by the kind

attribute on any service endpoint configuration.

Provides message routes that a routing service uses to move
messages closer to its final destination.

routing

tracking

WCF CONTRACTS

WCF developers create two types of contracts: service contracts
and data contracts. Service contracts inform the WCF runtime how
to read, write, and dispatch received messages. Data contracts
inform the serialization infrastructure how to translate CLR objects
to and from an XML Infoset representation.

Defines tracking settings for a workflow service.

Service Contracts

The WCF runtime creates the infrastructure to host services and
dispatch messages. Developers declare the pieces of infrastructure
they need by marking up classes with attributes. The WCF runtime
then uses this information to allow for communication with callers
and the hosted classes. This information is also shared via Web
Services Description Language (WSDL) that WCF services can
generate. To declare a class or interface represents the contract for
a WCF service, mark the class with [ServiceContract].

~ Don’t Miss An Issue!
Get over 90 DZone Refcardz
FREE from Refcardz.com!

Al
ozl . Dlone Retcands [

Gaiog el e

——

Visit Refcardz.com to get them all Free!

DZone, Inc. |

www.dzone.com

DZone Refcardz

Getting Started with Windows Communication Foundation 4.0

[System.ServiceModel.ServiceContract]
public interface IMyService {

The commonly set properties on [DataContract] are:

Through [ServiceContract], you will normally set the following
properties about the collection of operations on the service:

Namespace Sets the default namespace for the XML Schema Documents (XSD) for the

request and response messages. Default is http://tempuri.org.

SessionMode One of three values: Allowed, Required, NotAllowed. By default,
SessionMode is Allowed. If your contract requires session semantics,

set this value to System.ServiceModel.SessionMode.Required. If your
contract will fail with sessions, set it to System.ServiceModel.SessionMode.

NotAllowed.

Namespace Defines the URL used as the targetNamespace in the XSD describing the
type and used when serializing the data contract as an XML Infoset.
Name Defines the name of the item when read and written to an XML Infoset.

The commonly set properties on [DataMember] are:

Name Defines the name of the item when read and written to an XML Infoset.

IsRequired Set to true if the field must be present when the type is deserialized.

Default value is false.

Indicates whether or not to write the member when set to the default
value. The default value of this member is true.

EmitDefaultValue

CallbackContract | CallbackContract: If the contract implements a duplex MEP, set this to the

interface representing the other side of the duplex conversation.

To make methods visible to external callers, mark the methods with
[OperationContract].

[System.ServiceModel.ServiceContract(
Namespace = “http://www.dzone.com/WCF"”)]
public interface IMyService

[System.ServiceModel.OperationContract]
string SayHi(string name);

The commonly set properties on [OperationContract] are:

1sOneWay Can only be set on methods that return void. Use this to indicate that the
method does not send a response. Default is false.
IsInitiating Use this to state that a given method can be called to instantiate a new

service. Default value is true.

IsTerminating | Use this to state that when a given method is called, the current instance can
be disposed. Default value is false. If this value is set to true, you must also set

ServiceContractAttribute.SessionMode to SessionMode.Required.

Your code may also return exceptions to callers. In SOAP messaging,
errors are returned as Fault messages. A given operation may

return zero or more faults. One declares the types of faults being
returned through [FaultContract]. [FaultContract] has a constructor
that accepts a type describing what the fault details will look like.
This description is used by the callers to read any faults your service
might return.

[System.ServiceModel.ServiceContract(
Namespace = “http://www.dzone.com/WCF"”)]
public interface IMyService

[System.ServiceModel.OperationContract()]
[FaultContract(typeof(FaultDetails))]
string SayHi(string name);

Order An integer used to alter the ordering of values when read or written.

By default, values are read and written in alphabetic order. The default
value of Order is 0. Members with the same Order value are serialized
alphabetically. Order is sorted ascending.

WCF supports messaging through a messaging pipeline. The
pipeline itself must have stages that represent the transport and
the serialization mechanism. In WCF, the pipeline is created by a
type derived from System.ServiceModel.Channels.Binding and the
stages are created by types derived from System.ServiceModel.
Channel.BindingElement. Besides the transport and serialization
mechanism, the BindingElement also adds stages for security,
reliability, and transactions. When creating a Binding, the
developer of the Binding decides how to surface the underlying
BindingElement properties. Some settings will be easily set, others
made private, and still others surfaced as different concepts.

Every binding has settings for timeouts: OpenTimeout,
ReceiveTimeout, CloseTimeout. These set the amount of time the
user of the Binding will wait for the pipeline to Open, Receive a
message, or Close. A Binding also identifies its URL scheme, which
is the scheme used by its transport. WCF ships with Bindings
supporting the following schemes: http, https, net.msmgq, net.pipe,
net.p2p, and net.tcp. WCF also supports soap.udp, but only in an
internal class used to support WS-Discovery.

Each of the Bindings has a common set of properties
not required by the base class, Binding:

}
EnvelopeVersion Sets the version of any SOAP Envelope. Normally, this is set to None,
Soap11, Soap12. Use None for REST or other non-SOAP messaging;
Data Contracts Soap11 to send a SOAP 1.1 envelope and related headers; Soap12 to
WCF reads and writes objects to and from different formats using send a SOAP 1.2 envelope and related headers.
serialization (write) and deserialization (read). WCF supports : S —" r
serialization through several mechanisms: System.Xml.Serialization, Rl o<t inessagesharelieceved into emon AT bufterposiislisedito
S ISerializable, [Syst Serializable] dth h Svst allocate memory for receiving messages. By default, each buffer in the
yStme' el’l? I?a Ae' ys em' erializablel, ah roug ystem. pool is 65536 bytes. Adjust this value to change the size of the individual
Runtime.Serialization. The first three mechanisms exist to support .
legacy code. When developing your own declarations, you will - —
. e . . ReaderQuotas This sets quotas on reading inbound messages. The type,
normally use System.Runtime.Serialization to describe your data o X k
N N N System.Xml.XmlDictionaryReaderQuotas is found in
contra;ts. In WCF 4Or an unatt”bUte'd typ? will aUtomat|Ca||y read System.Runtime.Serialization. The quotas set limits which limit the
and write any pub|lc fields or properties using the name of the damage a denial of service attack or poorly formed XML document
property in the generated format. To control what gets written, mark can do. By default, arrays can be no longer that 16384 elements
the type with [DataContract] and any members to be written with (MaxArrayLength), strings must be less than 8192 characters
[Data Mem ber] (MaxStringContentLength), and XML nodes must be no more than 32
: levels deep (MaxDepth).
[Sy{tem . Illuntime .Serialization.DataContract] Scheme Identifies the scheme used by the underlying transport protocol.
public class Name

[System.Runtime.Serialization.DataMember]
public string FirstName { get; set; }

[System.Runtime.Serialization.DataMember]
public string LastName { get; set; }

When you explicitly mark a member with [DataMember], that
field will be read and written regardless if the member is private,
protected, or public.

Depending on which protocol you want to use, you have different
bindings available. Most of the bindings in WCF support HTTP.
The rest of the supported protocols are represented by one
binding. The following table shows which bindings support
duplex communications, message level security, reliable
messaging, flowing transactions, and workflow context. Transport
level security is available through all bindings in WCF.

DZone, Inc.

| www.dzone.com

DZone Refcardz

Getting Started with Windows Communication Foundation 4.0

Binding Duplex Message level | Reliable Transactions
security

BasicHttpBinding v*

BasicHttpContextBinding v

MsmqIntegrationBinding

NetMsmgBinding v

NetNamedPipeBinding v v v

NetPeerTcpBinding v v

NetTcpBinding v v v v

NetTcpContextBinding v v v v

WS2007FederationHttpBinding v v v

WS2007HttpBinding v v v

WSDualHttpBinding v v v v

WSFederationHttpBinding v v v

WSHttpBinding v v v

WSHttpContextBinding v v v

* The BasicHttpBinding and BasicHttpContextBinding will sign the
timestamp on the message, but not sign and encrypt the body. For
full message level signing and encryption, use WSHttpBinding and
WSHttpContextBinding.

Bindings appear in configuration in the system.serviceModel/
bindings section under configuration that matches a camelCased
version of the binding name. For example, the collection

of WSHttpBinding can be found in system.serviceModel/
bindings/wsHttpBinding. Each configured binding has a

name. A binding without a name becomes the default set of
settings for that particular binding. For example, to create a
reliable WSHttpBinding, use the following configuration:

<system.serviceModel>
<bindings>
<wsHttpBinding>
<binding name="reliable”>
<reliableSession enabled="true”/>
</binding>
</wsHttpBinding>
</bindings>
</system.serviceModel>

BEHAVIORS

Behaviors influence the hosting environment for a service. They

are used to handle instancing, expose metadata, enhance
discoverability, and more. There are four types of behaviors: service,
contract, endpoint, and operation. All behaviors may be applied

in code. Service and endpoint behaviors may also be applied by
configuration. (Note: There is no notion of contract configuration
anywhere in WCF.) Service and contract behaviors are normally
applied via attributes in code.

A service behavior applies to a service instance and may alter
aspects of the service, all endpoints, and all contracts. A contract
behavior applies to a contract and all implementations of the
contract. Endpoint behaviors apply to a specific endpoint instances.
Finally, operation behaviors apply to specific operations.

Attribute-based Behaviors

There are two service behaviors:
[AspNetCompatibilityRequirements] and [ServiceBehavior].
[AspNetCompatibilityRequirements] has a single property,
RequirementsMode, that allows a service to declare that ASP
features such as identity impersonation are Required, Allowed, or
NotAllowed (default). When set to Required, configuration must
enable compatibility too:

<system.serviceModel>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true”/>
</system.serviceModel>

[ServiceBehavior] contains several properties. The most commonly
used are:

ConcurrencyMode Controls the internal threading model to enable support
for reentrant or multithreaded services. By default,
concurrency is single threaded per instance.

InstanceContextMode Controls how instances are created for the service. By

default, each session gets a new service instance. Set
this property to PerSCall to allow for a new instance for
every method call. Set this property to Single if you need
singleton behavior for the service.

Returns exception details to clients when debugging
services. This property requires a request-response or
duplex capable binding.

IncludeExceptionDetailsinFaults

[DeliveryRequirements], a contract behavior, allows a contract to
specify information about reliable messaging requirements imposed
on the service delivery.

[CallbackBehavior], an endpoint behavior, provides configuration
settings for the callback contract on a duplex service. The settings
are the same as the [ServicBehavior] except for settings for
instancing and transactions.

In configuration, you can declare information about security,
diagnostics, discovery, and throttling.

WCF contains many configuration elements. Here, we focus on
the commonly configured behaviors for services. The following
behaviors allow you to configure your service behaviors as
part of configuration within system.serviceModel/behaviors/
serviceBehaviors/:

Allows the service to pick how it authenticates itself using X.509,
Windows, username/password, and other valid tokens.

serviceCredentials

Allows you to set up the HttpHelp page and to include exception
details in faults.

serviceDebug

serviceDiscovery Enables the WS-Discovery endpoint.

serviceMetadata Enables the WS-MetadataExchange endpoint.

On an endpoint, you can configure other behaviors. The following
commonly used behaviors allow you to configure your endpoint
behaviors as part of configuration within system.serviceModel/
behaviors/endpointBehaviors/:

callbackDebug Allows you to state if a callback contract should include exception details

in faults.

Allows the client to pick how it authenticates itself using X.509, Windows,
username/password, and other valid tokens.

clientCredentials

enableWebScript | Enables a Web Script endpoint on the service. This allows the service
to return JavaScript when the URL end in /js or /jsdebug. This behavior
is automatically included if using the System.ServiceModel. Activation.
WebScriptServiceHostFactory on a .SVC.

webHttp Allows the endpoint to dispatch messages based on URL. This behavior

is automatically included if using the System.ServiceModel.Activation.
WebScriptServiceHostFactory or System.ServiceModel.Activation.
WebServiceHostFactory as the factory name on a .SVC.

HOSTING SERVICES

WCEF services can listen for messages anywhere: Windows
Services, desktop applications, and Internet Information Services
(IIS). All environments use the same configuration elements. In
all cases, an instance of a ServiceHost will be used to reflect over
a service implementation to determine service requirements.
The ServiceHost then marries the code with any configuration

to produce an entity that can listen for, dispatch, and respond

to messages that arrive over the various transports.

To demonstrate hosting, we use the following contract:

DZone, Inc. | www.dzone.com

DZone Refcardz

Getting Started with Windows Communication Foundation 4.0

namespace DZone.Contracts
{
[System.ServiceModel.ServiceContract(
Namespace = “http://www.dzone.com/WCF”)
public interface IMyService
[System.ServiceModel.OperationContract]
string SayHi(string name);
}
Implemented by the following class:
namespace DZone.Services
public class MyService : DZone.Contracts.IMyService
public string SayHi(string name)
{

return string.Format(“Console: Hello, {0}", name);

and use the following configuration:

<configuration>
<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior name="MyServiceBehavior”>
<serviceMetadata httpGetEnabled="true"/>
</behavior>
</serviceBehaviors>
</behaviors>
<services>
<service name="DZone.Services.MyService”
behaviorConfiguration="MyServiceBehavior”>
<host>
<baseAddresses>
<add baseAddress="http://localhost/Demo”/>
</baseAddresses>
</host>
<endpoint contract="DZone.Contracts.IMyService”
binding="basicHttpBinding” address="/MyService”/>
<endpoint kind="mexEndpoint” address="/mex”
binding="mexHttpBinding” />
</service>
</services>
</system.serviceModel>
</configuration>

The configuration declares that there is a serviceBehavior

named MyServiceBehavior which supports metadata exchange.
This behavior is attached to a service instance whose name is
DZone.Services.MyService and matches the name of the service
implementation. The host has a base address of http://localhost/
Demo. This base address is used for any bindings that support the
http scheme. The service exposes two endpoints. One endpoint
exposes an implementation of the DZone.Contracts.IMyService
contract listening off the http base address at /MyService. The other
endpoint hosts metadata exchange using a predefined binding
named mexHttpBinding listening off the http base address at /Mex.

Hosting in a Console/GUI application
Using this configuration, we can host the service in a
Console application with the following code:

var host = new ServiceHost(typeof(MyService))
host.Open();
Console.WriteLine(“Press [Enter] to exit”);
Console.ReadLine();

try

{
((IDisposable)host).Dispose();

catch (CommunicationObjectFaultedException ex)

// TODO: add code to log

Once the using block exits, host.Dispose() is called. You

can do something similar in a WinForm/WPF application by
opening the service on window Load and explicitly calling
ServiceHost.Dispose() when the window is closed/unloaded.

Hosting in a Windows Service

A Windows Service requires you to be able to respond to
Start and Resume events very quickly. In order to do this, you
do not want to block in the start if at all possible. Creating a
single WCF ServiceHost does not normally take much time.
However, we should always be prepared for things to take a
while and have the services behave nicely. To host the same
WCEF service in a Windows Service, write the following code:

private ServiceHost _host;
protected override void OnStart(string[] args)

ThreadPool.QueueUserWorkItem(StartListening, this);

static void StartListening(object state)

var service = state as DemoService;
if (service != null)

service. host = new ServiceHost(typeof(MyService));
service. host.Faulted +=
(s, e) =>
{
service.StopListening();
service._host = null;
StartListening(service);

}
}

protected override void OnStop()

StopListening();

void StopListening()
{ try
((IDisposable) host).Dispose();
catch (CommunicationObjectFaultedException ex)

{
// TODO: add code to log
}

The preceding code executes the initialization logic on a
separate thread via ThreadPool.QueueUserWorkltem. The
ServiceHost will run for a long time. If the ServiceHost gets

into a situation where it can no longer listen for messages by
entering the Faulted state, the code should start up a new
instance of the ServiceHost. When the service is done listening,
a CommunicationObjectFaultedException may be thrown on
Dispose. Because this exception is expected, the code will log
the exception. When the service stops, we call StopListening. If
you want to support Pause and Resume, add the following:

protected override void OnPause()

StopListening();
base.OnPause();

}
protected override void OnContinue()

ThreadPool.QueueUserWorkItem(StartListening, this);
base.0OnContinue();

i

Hosting in IS

To host a service in IIS, you create a .svc file which is
hosted at a path of your choosing in your web application.
That will give you a file that looks like this:

|<%@ ServiceHost Service="DZone.Services.MyService” %>

The config remains largely the same. IIS will automatically set
the http base address for the host to be the address of the
svc file.

In IS 7 and later, you can also host services with NetTcpBinding and
NetNamedPipeBinding. To do this, run the following commands:

TCP Activation:

1. Run the following command (on one line):

swindirs\system32\inetsrv\appcmd.exe set site “Default Web Site” -+bindings.
[protocol="net.tcp’,bindingInformation="808:*"]

2. Run the following command to enable the http and net. pipe
protocol on your site (on one line):

%windir%s\system32\inetsrv\appcmd.exe set app
“Default Web Site/[your v-dir]” /enabledProtocols:http,net.tcp

Named Pipe Activation

DZone, Inc. | www.dzone.com

DZone Refcardz

Getting Started with Windows Communication Foundation 4.0

1. Run the following command (on one line):

%windir%s\system32\inetsrv\appcmd.exe set site “Default Web Site”
-+bindings. [protocol="net.pipe’,bindingInformation="*"]

2. Run the following command to enable the http and net. pipe
protocol on your site (on one line):

%windir%s\system32\inetsrv\appcmd.exe set app
“Default Web Site/[your v-dir]” /enabledProtocols:http,net.pipe

With Vista SP1 and Server 2008, you can also enable these protocols
in the IS Manager.

For the demo application, remove the <host> base
addresses and add in these two endpoints:

<endpoint contract="DZone.Contracts.IMyService” address="/MyService”
binding="netTcpBinding” />

<endpoint contract="DZone.Contracts.IMyService” address="/MyService”
binding="netNamedPipeBinding” />

OperationContext

Every incoming message is associated with an OperationContext.
Think of OperationContext as WCF's version of HttpContext.
OperationContext.Current yields the current operation context
with pointers to the following commonly used properties:

IncomingMessageHeaders Headers on the incoming message.

OutgoingMessageHeaders Can use this to add more headers to the response.

IncomingMessageProperties | The message properties serve as a mechanism to send
information in between layers within the message processing

pipeline about a specific message.

ServiceSecurityContext Gain access to the identity of the currently logged in user.
Also available through ServiceSecurityContext.Current.
Contains a property, AuthorizationContext, where you can

investigate the ClaimSets for the current user.

The OperationContext also has two often used methods:

Allows the service to complete a transaction in code instead
of automatically on exit.

SetTransactionComplete()

GetCallbackChannel<T>() For duplex services, allows the service to send messages

back to the service.

CONSUMING SERVICES

When consuming services, you will typically create a proxy via

the Visual Studio 'Add Service Reference’ tool. Enter the WSDL

or MetadataExchange endpoint for the service, typically just the
address of the .svc file for IIS hosted services, and then pick out the
service. Visual Studio will do the rest of the work, including adding
configuration. The developer may need to edit the application
configuration file (named [app name].exe.config if the client is

an executable or web.config if the client is a web application) to
enter in security credentials, but otherwise the work is done.

When consuming the previous service, write the following code,
catching the TimeoutException, CommunicationException,

and FaultException since any of these may be returned. For
both the CommunicationException and TimeoutException,

the code may want to have some retry logic built in to get a
new client instance and try again up to n times, logging the
exception each time. In all cases, the code should Abort the
connection to release all resources on the client machine.

When the configuration is generated for the client, the endpoints
will have names like binding_Contract. For IMyService, the

client endpoint is named BasicHttpBinding_IMyService

in configuration. The endpoint can then be created by
instantiating the generated proxy using the configured name.

A call to a IMyService implementation looks like this:

var client = new DZoneService.MyServiceClient(
“BasicHttpBinding IMyService”);
try
Console.WriteLine(client.SayHi(“DZone”));
gatch (TimeoutException timeoutException)
client.Abort();
catch (FaultException<KnownFaultType> faultException)
{ client.Abort();
catch (FaultException faultException)
client.Abort();
gatch (CommunicationException communicationException)

client.Abort();

DIAGNOSTICS

WCEF also comes with a rich set of diagnostics information.
Unlike other aspects of WCF, diagnostics can only be set in
configuration. The diagnostics allows for tracing, message
logging, WMl inspection, and performance counters.

Tracing/WMI

All production applications should be deployed with System.
ServiceModel tracing configured but turned off. WMI

should be enabled so that an administrator can enable
tracing through WMI. The configuration looks like this:

<system.diagnostics>
<sources>
<source name="System.ServiceModel”
switchValue="0ff"
propagateActivity="true"”>
<listeners>
<add name="ServiceModelTracelListener” />
</listeners>
</source>
</sources>
<sharedListeners>
<add initializeData=".\logs\web tracelog.svclog”
type="System.Diagnostics.XmlWriterTraceListener, System,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
name="ServiceModelTraceListener”
traceOutputOptions="Timestamp” />
</sharedListeners>
</system.diagnostics>
<system.serviceModel>
<diagnostics wmiProviderEnabled="true” />
</system.serviceModel>

If, in production, something goes wrong, the administrator
can run the following Powershell commands to update

the switchValue, capture data, change the switchValue
back to Off, and send the traces off to development:

$appDomain = Get-WmiObject -Namespace root\ServiceModel
AppDomainInfo

$appDomain.TraceLevel = “Verbose, ActivityTracing”

$appDomain.put()

Note: the line to get the WMI object will change depending

on how many AppDomains hosting WCF endpoints are

running on the computer. Each AppDomainlInfo has a
corresponding ProcessID and AppDomainld to help you pick
the right instance. Once that is done, you can set the trace
level as above and call put() to save the data. Above turns on
ActivityTracing which allows WCF to assign IDs to related traces
and show how one group of activity flows from another. Use
SvcTraceViewer.exe (part of the Windows SDK and ships as a
part of Visual Studio) to view and interpret the traces. When the
administrator is done collecting data, turn tracing back off:

$appDomain.TraceLevel = “Off"”

$appDomain.put()

Note that changes to the trace level do not get saved to the
configuration file as this would cause the AppDomain to restart
on lIS.

DZone, Inc. | www.dzone.com

6
Dzone RefcardZ Getting Started with Windows Communication Foundation 4.0

With WMI on, you can also inspect all the running endpoints <diagnostics>

including binding data, behaviors, and many other items. <messageLogging
logMessagesAtTransportLevel="true”
logMessagesAtServiceLevel="true” />

Message Logging </diagnostics>
Message logging is enabled in two places. First, create the message
logging trace source. If you are logging and tracing, you can get Typically, you will log messages at the transport level to see an
all the traces into one file with the following configuration: XML 1.0 text representation of what the ServiceModel saw including
message headers added by the message pipeline. You log at the
<Sz:$?égiignostics> service level to see what the message looked like after the message

is decrypted.

<source name="System.ServiceModel”
switchValue="0ff"
propagateActivity="true"”>
e i Performance Counters ' ' ‘
<add name="ServiceModelTraceListener” /> To enable performance counters, viewed in tools like PerfMon,
</listeners> . : : : .
ST you add the following configuration to system.serviceModel:
<source name="System.ServiceModel.MessagelLogging
switchValue="0ff"

propagateActivity="true"”> | <diagnostics performanceCounters="ServiceOnly” />
<listeners>
<add name="ServiceModelTracelListener” />
</listeners> Performance Counters can have one of four values:
</source>

</sources>

<52:g§d§;i§§2$£§20ata=" \logs\web_tracelog.svclog” Default WCF_Admin is created and SQM data is collected. The values
type="System.Diagnostics.XmlWriterTraceListener, System, are never updated.

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")
name="ServiceModelTraceListener” Off Performance counters are disabled.
traceOutputOptions="Timestamp”

</sha redLi:tgaer‘; B & ServiceOnly Only service level counters are enabled.
</system.diagnostics> X K K
All Counters for the service, endpoints, and operations

are created.

In the ServiceModel configuration, you can set what you want to log:

ABOUT THE AUTHOR RECOMMENDED BOOK
Scott Seely is the author of several books on Web Services [~ | Essential Windows Communication Foundation
and an instructor for Pluralsight. He is a Microsoft Regional) . . For .NET Framework 3.5
Director. Right now, he is working on Essential Windows oWy Written by three experts at the Microsoft Technolo
9 ! 9 Communication y P 9y
Communication Foundation, 2nd Edition for Addison Wesley. Foundation Center in Boston, this guide answers developers’
He helped found the Chicago Code Camp with several other FeriNET Ersmeviok St questions about WCF. Throughout the book’s 13
local developers. He helps run the Lake County .NET Users’ Ny chapters, authors Steve Resnick, Richard Crane, and
Group with Tim Stall. Throughout the year, Scott can be found et et Chris Bowen offer best practices, key advice, tips,
speaking at the user groups throughout northern Illinois and Wisconsin. From and problem-solving tricks. They solve developers'
2000 through 2006, Scott worked for Microsoft. He spent his first two years as problems with WCF through in-depth explanations
a developer/writer for MSDN and then moved over to the Indigo/WCF team SR cricid and an extensive amount of code samples.
as a developer. Scott is also founder of Friseton, LLC. Friseton specializes in Richard Crane
creating higphly scalable parallelized systems, solving applicatior?performance N BUY NOW
problems, and building distributed applications that utilize REST and WS-*. books.dzone.com/books/essential-wcf

O Drone Refcrds Browse our collection of 100 Free Cheat Sheets

Getting Started with

Cloud Computing

50

Upcoming Refcardz

Apache Ant
Hadoop
re e Spring Security
Subversion
DZone, Inc.
. ISBN-13: 978-1-934238-75-2
140 Preston Executive Dr. ISBN-10: 1-934238-75-9
Suite 100 50795
Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome g
. . refcardz@dzone.com i ~
tutorials, cheatsheets, blogs, feature articles, source code and more. 9%781934"238752 @

. . Sponsorship Opportunities
"DZone is a developer’s dream,” says PC Magazine. P P PP
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, Version 1.0
photocopying, or otherwise, without prior written permission of the publisher.

