

DZone, Inc. | www.dzone.com

By Scott Seely

ABOUT WCF

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 W

in
d

o
w

s
C

o
m

m
u

n
ic

at
io

n
 F

o
u

n
d

at
io

n
 4

.0

 w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#111

CONTENTS INCLUDE:
n	 About WCF
n	 Configuration Overview
n	 WCF Contracts
n	 Bindings
n	 Behaviors
n	 Hosted Services and more...

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Since .NET 3.0, Windows Communication Foundation (WCF) is the
preferred messaging system in .NET applications. It provides an
abstraction layer over transports. This abstraction allows developers
to focus on the types of messages their applications need to send
and receive. It removes the need for developers to have intimate
knowledge of how the messages themselves are sent and received.

Instead, developers focus on a concept called an endpoint which
listens for and receives messages. Endpoints are built using three
items: Address, Binding, and Contract.

The address defines where a message is sent.
http://www.dzone.com/ is an address.

A binding describes how to send the message. The binding
contains information such as the transport to use, how to encode
messages, and security requirements.

A contract defines how a message is structured. The contract
defines the message exchange pattern (MEP) used for each
exchange as well as which messages initiate a conversation or stop a
conversation. All message exchanges fall into one of three message
exchange patterns, or MEPs: one-way, request-response, and
duplex. One-way messages can act as event notifications. Request-
response messages send some data and expect a response in a
particular format. Duplex messages are a conversation. In duplex,
when one caller initiates a conversation, that caller promises to
make a set of one-way and request-response messages available to
the callee. Typically, duplex MEPs make use of sessions as well.

Getting Started with
Windows Communication Foundation 4.0

CONFIGURATION OVERVIEW

Configuration is a big feature in WCF. It permeates much of the
messaging framework. This section provides a map of configuration.
The configuration section group, <system.configuration>,
contains all WCF configuration settings. Within this configuration
section group, 14 different configuration sections exist. Some
of those sections have relationships with other sections. One,
system.serviceModel/extensions, is a configuration section for
configuration only!

behaviors Contains configuration for shared behaviors that can be applied
to endpoints and services.

bindings Contains information for shared bindings used to create
message processing pipelines. A computer program that can
run independently and can propagate a complete working
version of itself onto other hosts on a network.

client Contains information for clients to communicate with services.
Lookups are performed using a two part key: the name of the
configuration and the name of the contract.

comContracts An integration point used between COM+ and WCF to
configure the name and namespace for any hosted services.
This mimics the functionality normally provided by the
[ServiceContract] attribute via the Name and Namespace
properties.

commonBehaviors Defines a collection of behaviors applied to all services and
endpoints. These behaviors add to any others already present
on a service.

diagnostics Diagnostic settings for WCF, including WMI, performance
counter, message filters, and other settings.

extensions Defines configuration extensions for the bindings, behaviors,
bindingElement (for extending CustomBinding configuration),
and standardEndpoints.

machineSettings Allows the user to log personally identifiable information
in traces and message logs via the XML attribute,
enableLoggingKnownPii. This section can only be edited in
machine.config, located in the framework directory.

protocolMapping Used to map a protocol to a binding for easier configuration.

serviceHostingEnvironment Used to configure services hosted in ASP.NET.

services Defines which contracts a service instance will listen for
messages on and any base addresses the service will use. A
service may also add metadata and discovery endpoints via this
mechanism.

standardEndpoints Contains configuration for endpoints specified by the kind
attribute on any service endpoint configuration.

routing Provides message routes that a routing service uses to move
messages closer to its final destination.

tracking Defines tracking settings for a workflow service.

WCF CONTRACTS

WCF developers create two types of contracts: service contracts
and data contracts. Service contracts inform the WCF runtime how
to read, write, and dispatch received messages. Data contracts
inform the serialization infrastructure how to translate CLR objects
to and from an XML Infoset representation.

Service Contracts
The WCF runtime creates the infrastructure to host services and
dispatch messages. Developers declare the pieces of infrastructure
they need by marking up classes with attributes. The WCF runtime
then uses this information to allow for communication with callers
and the hosted classes. This information is also shared via Web
Services Description Language (WSDL) that WCF services can
generate. To declare a class or interface represents the contract for
a WCF service, mark the class with [ServiceContract].

DZone, Inc. | www.dzone.com

2
Getting Started with Windows Communication Foundation 4.0

[System.ServiceModel.ServiceContract]
public interface IMyService {
}

Through [ServiceContract], you will normally set the following
properties about the collection of operations on the service:

Namespace Sets the default namespace for the XML Schema Documents (XSD) for the
request and response messages. Default is http://tempuri.org.

SessionMode One of three values: Allowed, Required, NotAllowed. By default,
SessionMode is Allowed. If your contract requires session semantics,
set this value to System.ServiceModel.SessionMode.Required. If your
contract will fail with sessions, set it to System.ServiceModel.SessionMode.
NotAllowed.

CallbackContract CallbackContract: If the contract implements a duplex MEP, set this to the
interface representing the other side of the duplex conversation.

To make methods visible to external callers, mark the methods with
[OperationContract].

[System.ServiceModel.ServiceContract(
 Namespace = “http://www.dzone.com/WCF”)]
public interface IMyService
{
 [System.ServiceModel.OperationContract]
 string SayHi(string name);
}

The commonly set properties on [OperationContract] are:

IsOneWay Can only be set on methods that return void. Use this to indicate that the
method does not send a response. Default is false.

IsInitiating Use this to state that a given method can be called to instantiate a new
service. Default value is true.

IsTerminating Use this to state that when a given method is called, the current instance can
be disposed. Default value is false. If this value is set to true, you must also set
ServiceContractAttribute.SessionMode to SessionMode.Required.

Your code may also return exceptions to callers. In SOAP messaging,
errors are returned as Fault messages. A given operation may
return zero or more faults. One declares the types of faults being
returned through [FaultContract]. [FaultContract] has a constructor
that accepts a type describing what the fault details will look like.
This description is used by the callers to read any faults your service
might return.

[System.ServiceModel.ServiceContract(
 Namespace = “http://www.dzone.com/WCF”)]
public interface IMyService
{
 [System.ServiceModel.OperationContract()]
 [FaultContract(typeof(FaultDetails))]
 string SayHi(string name);
}

Data Contracts
WCF reads and writes objects to and from different formats using
serialization (write) and deserialization (read). WCF supports
serialization through several mechanisms: System.Xml.Serialization,
System.ISerializable, [System.Serializable], and through System.
Runtime.Serialization. The first three mechanisms exist to support
legacy code. When developing your own declarations, you will
normally use System.Runtime.Serialization to describe your data
contracts. In WCF 4.0, an unattributed type will automatically read
and write any public fields or properties using the name of the
property in the generated format. To control what gets written, mark
the type with [DataContract] and any members to be written with
[DataMember].

[System.Runtime.Serialization.DataContract]
public class Name
{
 [System.Runtime.Serialization.DataMember]
 public string FirstName { get; set; }

 [System.Runtime.Serialization.DataMember]
 public string LastName { get; set; }
}

When you explicitly mark a member with [DataMember], that
field will be read and written regardless if the member is private,
protected, or public.

BINDINGS

WCF supports messaging through a messaging pipeline. The
pipeline itself must have stages that represent the transport and
the serialization mechanism. In WCF, the pipeline is created by a
type derived from System.ServiceModel.Channels.Binding and the
stages are created by types derived from System.ServiceModel.
Channel.BindingElement. Besides the transport and serialization
mechanism, the BindingElement also adds stages for security,
reliability, and transactions. When creating a Binding, the
developer of the Binding decides how to surface the underlying
BindingElement properties. Some settings will be easily set, others
made private, and still others surfaced as different concepts.

Every binding has settings for timeouts: OpenTimeout,
ReceiveTimeout, CloseTimeout. These set the amount of time the
user of the Binding will wait for the pipeline to Open, Receive a
message, or Close. A Binding also identifies its URL scheme, which
is the scheme used by its transport. WCF ships with Bindings
supporting the following schemes: http, https, net.msmq, net.pipe,
net.p2p, and net.tcp. WCF also supports soap.udp, but only in an
internal class used to support WS-Discovery.

Each of the Bindings has a common set of properties
not required by the base class, Binding:

EnvelopeVersion Sets the version of any SOAP Envelope. Normally, this is set to None,
Soap11, Soap12. Use None for REST or other non-SOAP messaging;
Soap11 to send a SOAP 1.1 envelope and related headers; Soap12 to
send a SOAP 1.2 envelope and related headers.

MaxBufferPoolSize Most messages are received into memory. The buffer pool is used to
allocate memory for receiving messages. By default, each buffer in the
pool is 65536 bytes. Adjust this value to change the size of the individual
buffers.

ReaderQuotas This sets quotas on reading inbound messages. The type,
System.Xml.XmlDictionaryReaderQuotas is found in
System.Runtime.Serialization. The quotas set limits which limit the
damage a denial of service attack or poorly formed XML document
can do. By default, arrays can be no longer that 16384 elements
(MaxArrayLength), strings must be less than 8192 characters
(MaxStringContentLength), and XML nodes must be no more than 32
levels deep (MaxDepth).

Scheme Identifies the scheme used by the underlying transport protocol.

Depending on which protocol you want to use, you have different
bindings available. Most of the bindings in WCF support HTTP.
The rest of the supported protocols are represented by one
binding. The following table shows which bindings support
duplex communications, message level security, reliable
messaging, flowing transactions, and workflow context. Transport
level security is available through all bindings in WCF.

The commonly set properties on [DataContract] are:

Namespace Defines the URL used as the targetNamespace in the XSD describing the
type and used when serializing the data contract as an XML Infoset.

Name Defines the name of the item when read and written to an XML Infoset.

The commonly set properties on [DataMember] are:

Name Defines the name of the item when read and written to an XML Infoset.

IsRequired Set to true if the field must be present when the type is deserialized.
Default value is false.

EmitDefaultValue Indicates whether or not to write the member when set to the default
value. The default value of this member is true.

Order An integer used to alter the ordering of values when read or written.
By default, values are read and written in alphabetic order. The default
value of Order is 0. Members with the same Order value are serialized
alphabetically. Order is sorted ascending.

DZone, Inc. | www.dzone.com

3
Getting Started with Windows Communication Foundation 4.0

Binding Duplex Message level
security

Reliable Transactions

BasicHttpBinding *

BasicHttpContextBinding *

MsmqIntegrationBinding

NetMsmqBinding

NetNamedPipeBinding

NetPeerTcpBinding

NetTcpBinding

NetTcpContextBinding

WS2007FederationHttpBinding

WS2007HttpBinding

WSDualHttpBinding

WSFederationHttpBinding

WSHttpBinding

WSHttpContextBinding

* The BasicHttpBinding and BasicHttpContextBinding will sign the
timestamp on the message, but not sign and encrypt the body. For
full message level signing and encryption, use WSHttpBinding and
WSHttpContextBinding.

Bindings appear in configuration in the system.serviceModel/
bindings section under configuration that matches a camelCased
version of the binding name. For example, the collection
of WSHttpBinding can be found in system.serviceModel/
bindings/wsHttpBinding. Each configured binding has a
name. A binding without a name becomes the default set of
settings for that particular binding. For example, to create a
reliable WSHttpBinding, use the following configuration:

<system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name=”reliable”>
 <reliableSession enabled=”true”/>
 </binding>
 </wsHttpBinding>
 </bindings>
 </system.serviceModel>

BEHAVIORS

Behaviors influence the hosting environment for a service. They
are used to handle instancing, expose metadata, enhance
discoverability, and more. There are four types of behaviors: service,
contract, endpoint, and operation. All behaviors may be applied
in code. Service and endpoint behaviors may also be applied by
configuration. (Note: There is no notion of contract configuration
anywhere in WCF.) Service and contract behaviors are normally
applied via attributes in code.

A service behavior applies to a service instance and may alter
aspects of the service, all endpoints, and all contracts. A contract
behavior applies to a contract and all implementations of the
contract. Endpoint behaviors apply to a specific endpoint instances.
Finally, operation behaviors apply to specific operations.

Attribute-based Behaviors
There are two service behaviors:
[AspNetCompatibilityRequirements] and [ServiceBehavior].
[AspNetCompatibilityRequirements] has a single property,
RequirementsMode, that allows a service to declare that ASP
features such as identity impersonation are Required, Allowed, or
NotAllowed (default). When set to Required, configuration must
enable compatibility too:

 <system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=”true”/>
 </system.serviceModel>

[ServiceBehavior] contains several properties. The most commonly
used are:

ConcurrencyMode Controls the internal threading model to enable support
for reentrant or multithreaded services. By default,
concurrency is single threaded per instance.

InstanceContextMode Controls how instances are created for the service. By
default, each session gets a new service instance. Set
this property to PerSCall to allow for a new instance for
every method call. Set this property to Single if you need
singleton behavior for the service.

IncludeExceptionDetailsInFaults Returns exception details to clients when debugging
services. This property requires a request-response or
duplex capable binding.

[DeliveryRequirements], a contract behavior, allows a contract to
specify information about reliable messaging requirements imposed
on the service delivery.

[CallbackBehavior], an endpoint behavior, provides configuration
settings for the callback contract on a duplex service. The settings
are the same as the [ServicBehavior] except for settings for
instancing and transactions.
In configuration, you can declare information about security,
diagnostics, discovery, and throttling.

WCF contains many configuration elements. Here, we focus on
the commonly configured behaviors for services. The following
behaviors allow you to configure your service behaviors as
part of configuration within system.serviceModel/behaviors/
serviceBehaviors/:

serviceCredentials Allows the service to pick how it authenticates itself using X.509,
Windows, username/password, and other valid tokens.

serviceDebug Allows you to set up the HttpHelp page and to include exception
details in faults.

serviceDiscovery Enables the WS-Discovery endpoint.

serviceMetadata Enables the WS-MetadataExchange endpoint.

On an endpoint, you can configure other behaviors. The following
commonly used behaviors allow you to configure your endpoint
behaviors as part of configuration within system.serviceModel/
behaviors/endpointBehaviors/:

callbackDebug Allows you to state if a callback contract should include exception details
in faults.

clientCredentials Allows the client to pick how it authenticates itself using X.509, Windows,
username/password, and other valid tokens.

enableWebScript Enables a Web Script endpoint on the service. This allows the service
to return JavaScript when the URL end in /js or /jsdebug. This behavior
is automatically included if using the System.ServiceModel.Activation.
WebScriptServiceHostFactory on a .SVC.

webHttp Allows the endpoint to dispatch messages based on URL. This behavior
is automatically included if using the System.ServiceModel.Activation.
WebScriptServiceHostFactory or System.ServiceModel.Activation.
WebServiceHostFactory as the factory name on a .SVC.

HOSTING SERVICES

WCF services can listen for messages anywhere: Windows
Services, desktop applications, and Internet Information Services
(IIS). All environments use the same configuration elements. In
all cases, an instance of a ServiceHost will be used to reflect over
a service implementation to determine service requirements.
The ServiceHost then marries the code with any configuration
to produce an entity that can listen for, dispatch, and respond
to messages that arrive over the various transports.

To demonstrate hosting, we use the following contract:

DZone, Inc. | www.dzone.com

4
Getting Started with Windows Communication Foundation 4.0

namespace DZone.Contracts
{
 [System.ServiceModel.ServiceContract(
 Namespace = “http://www.dzone.com/WCF”)]
 public interface IMyService
 {
 [System.ServiceModel.OperationContract]
 string SayHi(string name);
 }
}
Implemented by the following class:
namespace DZone.Services
{
 public class MyService : DZone.Contracts.IMyService
 {
 public string SayHi(string name)
 {
 return string.Format(“Console: Hello, {0}”, name);
 }
 }
}

and use the following configuration:

<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name=”MyServiceBehavior”>
 <serviceMetadata httpGetEnabled=”true”/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service name=”DZone.Services.MyService”
 behaviorConfiguration=”MyServiceBehavior”>
 <host>
 <baseAddresses>
 <add baseAddress=”http://localhost/Demo”/>
 </baseAddresses>
 </host>
 <endpoint contract=”DZone.Contracts.IMyService”
 binding=”basicHttpBinding” address=”/MyService”/>
 <endpoint kind=”mexEndpoint” address=”/mex”
 binding=”mexHttpBinding” />
 </service>
 </services>
 </system.serviceModel>
</configuration>

The configuration declares that there is a serviceBehavior
named MyServiceBehavior which supports metadata exchange.
This behavior is attached to a service instance whose name is
DZone.Services.MyService and matches the name of the service
implementation. The host has a base address of http://localhost/
Demo. This base address is used for any bindings that support the
http scheme. The service exposes two endpoints. One endpoint
exposes an implementation of the DZone.Contracts.IMyService
contract listening off the http base address at /MyService. The other
endpoint hosts metadata exchange using a predefined binding
named mexHttpBinding listening off the http base address at /Mex.

Hosting in a Console/GUI application
Using this configuration, we can host the service in a
Console application with the following code:

var host = new ServiceHost(typeof(MyService))

 host.Open();
 Console.WriteLine(“Press [Enter] to exit”);
 Console.ReadLine();

try
{
 ((IDisposable)host).Dispose();
}
catch (CommunicationObjectFaultedException ex)
{
 // TODO: add code to log
}

Once the using block exits, host.Dispose() is called. You
can do something similar in a WinForm/WPF application by
opening the service on window Load and explicitly calling
ServiceHost.Dispose() when the window is closed/unloaded.

Hosting in a Windows Service
A Windows Service requires you to be able to respond to
Start and Resume events very quickly. In order to do this, you
do not want to block in the start if at all possible. Creating a
single WCF ServiceHost does not normally take much time.
However, we should always be prepared for things to take a
while and have the services behave nicely. To host the same
WCF service in a Windows Service, write the following code:

 private ServiceHost _host;

 protected override void OnStart(string[] args)
 {
 ThreadPool.QueueUserWorkItem(StartListening, this);
 }

 static void StartListening(object state)
 {
 var service = state as DemoService;
 if (service != null)
 {
 service._host = new ServiceHost(typeof(MyService));
 service._host.Faulted +=
 (s, e) =>
 {
 service.StopListening();
 service._host = null;
 StartListening(service);
 };
 }
 }

 protected override void OnStop()
 {
 StopListening();
 }

 void StopListening()
 {
 try
 {
 ((IDisposable)_host).Dispose();
 }
 catch (CommunicationObjectFaultedException ex)
 {
 // TODO: add code to log
 }
 }

The preceding code executes the initialization logic on a
separate thread via ThreadPool.QueueUserWorkItem. The
ServiceHost will run for a long time. If the ServiceHost gets
into a situation where it can no longer listen for messages by
entering the Faulted state, the code should start up a new
instance of the ServiceHost. When the service is done listening,
a CommunicationObjectFaultedException may be thrown on
Dispose. Because this exception is expected, the code will log
the exception. When the service stops, we call StopListening. If
you want to support Pause and Resume, add the following:

 protected override void OnPause()
 {
 StopListening();
 base.OnPause();
 }

 protected override void OnContinue()
 {
 ThreadPool.QueueUserWorkItem(StartListening, this);
 base.OnContinue();
 }

Hosting in IIS
To host a service in IIS, you create a .svc file which is
hosted at a path of your choosing in your web application.
That will give you a file that looks like this:

<%@ ServiceHost Service=”DZone.Services.MyService” %>

The config remains largely the same. IIS will automatically set
the http base address for the host to be the address of the
.svc file.

In IIS 7 and later, you can also host services with NetTcpBinding and
NetNamedPipeBinding. To do this, run the following commands:

TCP Activation:

 1. Run the following command (on one line):

%windir%\system32\inetsrv\appcmd.exe set site “Default Web Site” -+bindings.
[protocol=’net.tcp’,bindingInformation=’808:*’]

 2. Run the following command to enable the http and net. pipe
protocol on your site (on one line):

%windir%\system32\inetsrv\appcmd.exe set app
“Default Web Site/[your v-dir]” /enabledProtocols:http,net.tcp

Named Pipe Activation

DZone, Inc. | www.dzone.com

5
Getting Started with Windows Communication Foundation 4.0

CONSUMING SERVICES

When consuming services, you will typically create a proxy via
the Visual Studio ‘Add Service Reference’ tool. Enter the WSDL
or MetadataExchange endpoint for the service, typically just the
address of the .svc file for IIS hosted services, and then pick out the
service. Visual Studio will do the rest of the work, including adding
configuration. The developer may need to edit the application
configuration file (named [app name].exe.config if the client is
an executable or web.config if the client is a web application) to
enter in security credentials, but otherwise the work is done.

When consuming the previous service, write the following code,
catching the TimeoutException, CommunicationException,
and FaultException since any of these may be returned. For
both the CommunicationException and TimeoutException,
the code may want to have some retry logic built in to get a
new client instance and try again up to n times, logging the
exception each time. In all cases, the code should Abort the
connection to release all resources on the client machine.

When the configuration is generated for the client, the endpoints
will have names like binding_Contract. For IMyService, the
client endpoint is named BasicHttpBinding_IMyService
in configuration. The endpoint can then be created by
instantiating the generated proxy using the configured name.
A call to a IMyService implementation looks like this:

var client = new DZoneService.MyServiceClient(
“BasicHttpBinding_IMyService”);
try
{
 Console.WriteLine(client.SayHi(“DZone”));
}
catch (TimeoutException timeoutException)
{
 client.Abort();
}
catch (FaultException<KnownFaultType> faultException)
{
 client.Abort();
}
catch (FaultException faultException)
{
 client.Abort();
}
catch (CommunicationException communicationException)
{
 client.Abort();
}

DIAGNOSTICS

WCF also comes with a rich set of diagnostics information.
Unlike other aspects of WCF, diagnostics can only be set in
configuration. The diagnostics allows for tracing, message
logging, WMI inspection, and performance counters.

Tracing/WMI
All production applications should be deployed with System.
ServiceModel tracing configured but turned off. WMI
should be enabled so that an administrator can enable
tracing through WMI. The configuration looks like this:

 <system.diagnostics>
 <sources>
 <source name=”System.ServiceModel”
 switchValue=”Off”
 propagateActivity=”true”>
 <listeners>
 <add name=”ServiceModelTraceListener” />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData=”.\logs\web_tracelog.svclog”
 type=”System.Diagnostics.XmlWriterTraceListener, System,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 name=”ServiceModelTraceListener”
 traceOutputOptions=”Timestamp” />
 </sharedListeners>
 </system.diagnostics>
 <system.serviceModel>
 <diagnostics wmiProviderEnabled=”true” />
 </system.serviceModel>

If, in production, something goes wrong, the administrator
can run the following Powershell commands to update
the switchValue, capture data, change the switchValue
back to Off, and send the traces off to development:

$appDomain = Get-WmiObject -Namespace root\ServiceModel
 AppDomainInfo

$appDomain.TraceLevel = “Verbose, ActivityTracing”

$appDomain.put()

Note: the line to get the WMI object will change depending
on how many AppDomains hosting WCF endpoints are
running on the computer. Each AppDomainInfo has a
corresponding ProcessID and AppDomainId to help you pick
the right instance. Once that is done, you can set the trace
level as above and call put() to save the data. Above turns on
ActivityTracing which allows WCF to assign IDs to related traces
and show how one group of activity flows from another. Use
SvcTraceViewer.exe (part of the Windows SDK and ships as a
part of Visual Studio) to view and interpret the traces. When the
administrator is done collecting data, turn tracing back off:

$appDomain.TraceLevel = “Off”

$appDomain.put()

Note that changes to the trace level do not get saved to the
configuration file as this would cause the AppDomain to restart
on IIS.

OperationContext
Every incoming message is associated with an OperationContext.
Think of OperationContext as WCF’s version of HttpContext.
OperationContext.Current yields the current operation context
with pointers to the following commonly used properties:

IncomingMessageHeaders Headers on the incoming message.

OutgoingMessageHeaders Can use this to add more headers to the response.

IncomingMessageProperties The message properties serve as a mechanism to send
information in between layers within the message processing
pipeline about a specific message.

ServiceSecurityContext Gain access to the identity of the currently logged in user.
Also available through ServiceSecurityContext.Current.
Contains a property, AuthorizationContext, where you can
investigate the ClaimSets for the current user.

The OperationContext also has two often used methods:

SetTransactionComplete() Allows the service to complete a transaction in code instead
of automatically on exit.

GetCallbackChannel<T>() For duplex services, allows the service to send messages
back to the service.

 1. Run the following command (on one line):

%windir%\system32\inetsrv\appcmd.exe set site “Default Web Site”
-+bindings.[protocol=’net.pipe’,bindingInformation=’*’]

 2. Run the following command to enable the http and net. pipe
protocol on your site (on one line):

%windir%\system32\inetsrv\appcmd.exe set app
“Default Web Site/[your v-dir]” /enabledProtocols:http,net.pipe

With Vista SP1 and Server 2008, you can also enable these protocols
in the IIS Manager.

For the demo application, remove the <host> base
addresses and add in these two endpoints:

<endpoint contract=”DZone.Contracts.IMyService” address=”/MyService”
 binding=”netTcpBinding” />
<endpoint contract=”DZone.Contracts.IMyService” address=”/MyService”
 binding=”netNamedPipeBinding” />

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz
Apache Ant
Hadoop
Spring Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Getting Started with Windows Communication Foundation 4.0

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

With WMI on, you can also inspect all the running endpoints
including binding data, behaviors, and many other items.

Message Logging
Message logging is enabled in two places. First, create the message
logging trace source. If you are logging and tracing, you can get
all the traces into one file with the following configuration:

 <system.diagnostics>
 <sources>
 <source name=”System.ServiceModel”
 switchValue=”Off”
 propagateActivity=”true”>
 <listeners>
 <add name=”ServiceModelTraceListener” />
 </listeners>
 </source>
 <source name=”System.ServiceModel.MessageLogging”
 switchValue=”Off”
 propagateActivity=”true”>
 <listeners>
 <add name=”ServiceModelTraceListener” />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData=”.\logs\web_tracelog.svclog”
 type=”System.Diagnostics.XmlWriterTraceListener, System,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 name=”ServiceModelTraceListener”
 traceOutputOptions=”Timestamp” />
 </sharedListeners>
 </system.diagnostics>

In the ServiceModel configuration, you can set what you want to log:

Scott Seely is the author of several books on Web Services
and an instructor for Pluralsight. He is a Microsoft Regional
Director. Right now, he is working on Essential Windows
Communication Foundation, 2nd Edition for Addison Wesley.
He helped found the Chicago Code Camp with several other
local developers. He helps run the Lake County .NET Users’
Group with Tim Stall. Throughout the year, Scott can be found

speaking at the user groups throughout northern Illinois and Wisconsin. From
2000 through 2006, Scott worked for Microsoft. He spent his first two years as
a developer/writer for MSDN and then moved over to the Indigo/WCF team
as a developer. Scott is also founder of Friseton, LLC. Friseton specializes in
creating highly scalable parallelized systems, solving application performance
problems, and building distributed applications that utilize REST and WS-*.

Essential Windows Communication Foundation
For .NET Framework 3.5
Written by three experts at the Microsoft Technology
Center in Boston, this guide answers developers’
questions about WCF. Throughout the book’s 13
chapters, authors Steve Resnick, Richard Crane, and
Chris Bowen offer best practices, key advice, tips,
and problem-solving tricks. They solve developers’
problems with WCF through in-depth explanations
and an extensive amount of code samples.

 <diagnostics>
 <messageLogging
 logMessagesAtTransportLevel=”true”
 logMessagesAtServiceLevel=”true” />
 </diagnostics>

Typically, you will log messages at the transport level to see an
XML 1.0 text representation of what the ServiceModel saw including
message headers added by the message pipeline. You log at the
service level to see what the message looked like after the message
is decrypted.

Performance Counters
To enable performance counters, viewed in tools like PerfMon,
you add the following configuration to system.serviceModel:

<diagnostics performanceCounters=”ServiceOnly” />

Performance Counters can have one of four values:

Default WCF_Admin is created and SQM data is collected. The values
are never updated.

Off Performance counters are disabled.

ServiceOnly Only service level counters are enabled.

All Counters for the service, endpoints, and operations
are created.

BUY NOW
books.dzone.com/books/essential-wcf

