
To learn more, please visit jboss.com/paas

REDUCE COSTS,
INCREASE FLEXIBILITY WITH
JBOSS IN THE CLOUD
SEAMLESSLY INTEGRATES APPS WITH EXISTING
ENVIRONMENTS AND DEPLOYS THEM TO A CLOUD
INFRASTRUCTURE

RedHat Consulting offers its
JBoss Enterprise Middleware Cloud Services

DZone, Inc. | www.dzone.com

By Manik Surtani

OPEN SOURCE DATA GRIDS

In
fi

n
is

p
an

 w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#115

CONTENTS INCLUDE:
n	 Infinispan, the Open Source Data Grid Platform
n	 	Operational Modes
n	 Embedded Infinispan and other JVM Languages
n	 XML Schemas
n	 Migrating from other Data Grid or Cache Systems

What is Infinispan?
Infinispan is an open source data grid platform. Data grids are
commonly used as low-latency, highly-available and elastic
data storage backends, often as NoSQL solutions.

Data grids are often used in addition to traditional databases,
as a distributed cache for fast data access.

Hot
Tip

Infinispan is LGPL licensed and is backed by
an active, open and welcoming developer and
user community!

For more information, visit http://www.infinispan.org

How can I get it?
The best way to use Infinispan in your project is via Maven.
Infinispan’s Maven coordinates are:

<dependencies>
 …
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-core</artifactId>
 <version>LATEST_INFINISPAN_VERSION</version>
 </dependency>
 …
</dependencies>

However you would need to add the JBoss community
projects Maven repository to your list of repositories to be
able to locate and use Infinispan artifacts.

<repositories>
 …
 <repository>
 <id>jboss.org</id>
 <url>http://repository.jboss.org/nexus/content/groups/

public</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
 …
</repositories>

I don’t use Maven. Where can I download binaries?
If you do not use Maven, or wish to run an Infinispan server
(rather than in embedded, peer-to-peer mode), you can also
download compiled binaries from
http://www.jboss.org/infinispan/downloads

OPERATIONAL MODES

Client/server or peer-to-peer?

Getting started with

Infinispan
There are two ways in which you can interact with Infinispan.
One is in embedded mode, where you start an Infinispan
instance within your JVM. The other is client/server mode,
where you start a remote Infinispan instance and connect to it
using a client connector.

Your choice on which mode of interaction to use will
depend on a number of factors, including whether you
are using Infinispan as a clustering toolkit to cluster your
own framework, whether you intend to use Infinispan to
cache database lookups, or whether you plan to interact
with Infinispan from a non-JVM environment. These are
discussed in more detail at http://community.jboss.org/wiki/
InfinispanServerModules

Embedded (p2p) mode
When used in this mode, Infinispan instances reside within
your JVM alongside your code. You start up multiple
instances of your application on different servers and each
one starts and initializes an Infinispan instance. These
Infinispan instances discover each other, form a data grid,
and start sharing and distributing data.

This mode is what you will want to use if you are building an
application or a framework that needs to be cluster-aware,
or if you need an in-memory distributed cache to front a
database or some other expensive data source.

A practical example
To see this in action, make sure the Infinispan libraries
are available to your code—either via Maven, as above, or
via downloading the zipped distribution and extracting
the jar files.

seamlessly integrates apps with existing environments
and deploys them to a cloud infrastructure

RedHat Consulting offers its
JBoss Enterprise Middleware Cloud Services

To learn more, please visit jboss.com/paas

REDUCE COSTS, INCREASE FLEXIBILITY WITH

JBOSS IN THE CLOUD

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

Hot
Tip

Infinispan’s core construct is an instance of
the Cache interface. Extending java.util.Map,
Cache exposes simple methods to store and
retrieve objects.

Starting Infinispan instances from your code is simple. To start
a local, non-clustered cache instance:

DefaultCacheManager m = new DefaultCacheManager();
Cache<String, String> c = m.getCache();
c.put(“hello”, “world”);

To start a cluster-aware instance capable of detecting
neighboring instances on the same local area network and
sharing state between them:

GlobalConfiguration globalConf = GlobalConfiguration.
getClusteredDefault();
Configuration cfg = new Configuration();
Cfg.setCacheMode(Configuration.CacheMode.DIST_SYNC);
DefaultCacheManager m = new DefaultCacheManager(globalConf, cfg);
Cache<String, String> c = m.getCache();
c.put(“hello”, “world”);
c.containsKey(“hello”); // returns true
c.get(“hello”); // returns “world”
c.remove(“hello”); // returns “world”

This can also be done using a configuration file:

String configFile = “/path/to/my/infinispan_config.xml”;
DefaultCacheManager m = new DefaultCacheManager(configFile);
Cache<String, String> c = m.getCache();
c.put(“hello”, “world”);
c.containsKey(“hello”); // returns true
c.get(“hello”); // returns “world”
c.remove(“hello”); // returns “world”

Embedded Infinispan and other JVM languages
Since Infinispan complies to Java byte code, it can be used by
other JVM languages as well, such as Jython, JRuby, Scala and
Groovy, provided the necessary libraries are available on the
classpath. Here is an example of starting an embedded Infinis-
pan instance in a Groovy console:

groovy:000> import org.infinispan.*
===> [import org.infinispan.*]
groovy:000> import org.infinispan.manager.*
===> [import org.infinispan.*, import org.infinispan.manager.*]
groovy:000> m = new DefaultCacheManager()
===> org.infinispan.manager.DefaultCacheManager@1a8fa0d1@Address:null
groovy:000> c = m.getCache()
===> Cache ‘___defaultcache’@574813774
groovy:000> c.put(“hello”, “world”)
===> null
groovy:000> c.get(“hello”)
===> world
groovy:000> c.remove(“hello”)
===> world

Client/server mode
You may not always want Infinispan instances to reside in
the same JVM as your application. Sometimes this is for
security, sometimes for architectural reasons to maintain a
separate data layer, but this can also be because your client
application is not on a JVM platform. For example, .NET or
C++ clients can also make use of Infinispan if Infinispan is run
as a remote server.

Hot
Tip

A good discussion of remote data storage
architectures using data grids can be found here:
http://java.dzone.com/articles/data-service-data-
fabric

Infinispan comes with several different server endpoints,
speaking a variety of protocols. Here is a comparison of the
protocols that can be used with Infinispan:

STARTING AN INFINISPAN SERVER

Starting an Infinispan server is pretty easy. You need to
download and unzip the Infinispan distribution and use the
startServer script. E.g.,

$ bin/startServer.sh -r hotrod

The script takes in a set of switches to control the endpoint
behavior:

$ bin/startServer.sh --help
usage: startServer [options]
options:
 -h, --help Show this help message
 -V, --version Show version information
 -- Stop processing options
 -p, --port=<num> TCP port number to listen on (default: 11211 for
Memcached, 11311 for Hot Rod and 8181 for WebSocket server)
 -l, --host=<host or ip> Interface to listen on (default: 127.0.0.1,
localhost)
 -m, --master_threads=<num> Number of threads accepting incoming
connections (default: unlimited while resources are available)
 -t, --work_threads=<num> Number of threads processing incoming
requests and sending responses (default: unlimited while resources
are available)
 -c, --cache_config=<filename> Cache configuration file (default:
creates cache with default values)
 -r, --protocol= Protocol to understand by the server. This is
a mandatory option and you should choose one of these options:
[memcached|hotrod|websocket]
 -i, --idle_timeout=<num> Idle read timeout, in seconds, used to
detect stale connections (default: -1). If no new messages have been
read within this time, the server disconnects the channel. Passing
-1 disables idle timeout.
 -n, --tcp_no_delay=[true|false] TCP no delay flag switch (default:
true).
 -s, --send_buf_size=<num> Send buffer size (default: as defined by
the OS).
 -e, --recv_buf_size=<num> Receive buffer size (default: as defined
by the OS).
 -o, --proxy_host=<host or ip> Host address to expose in topology
information sent to clients. If not present, it defaults to
configured host. Servers that do not transmit topology information
ignore this setting.
 -x, --proxy_port=<num> Port to expose in topology information sent
to clients. If not present, it defaults to configured port. Servers
that do not transmit topology information ignore this setting.
 -D<name>[=<value>] Set a system property

2 Infinispan

http://www.dzone.com
http://docs.jboss.org/infinispan/4.0/apidocs/org/infinispan/Cache.html
http://java.dzone.com/articles/data-service-data-fabric
http://java.dzone.com/articles/data-service-data-fabric
http://www.refcardz.com

DZone, Inc. | www.dzone.com

Starting the REST endpoint
Infinispan ships a REST endpoint as a web archive (.WAR file).
To start the REST endpoint, simply deploy this WAR file in a
servlet container of your choice, such as JBoss Application
Server or Apache Tomcat.

Connecting using Java
You have a choice of protocols and clients you can use if
connecting from a Java application.

If using the REST endpoint, all you need is a simple HTTP
client library, such as Apache’s HTTPClient.

First, you need to make sure you have Apache HTTPClient
in your classpath — by declaring it as a Maven dependency
or by downloading the jars. Also make sure you have the
Infinispan REST module deployed and available.

Now you can connect to the REST endpoint:

HttpClient client = new HttpClient();
String cacheName =”___defaultcache”;
String key = “hello”;
String url = “http://infinispan_host/infinispan-server-rest/rest/” +
cacheName + “/” + key;

// Storing data
PutMethod put = new PutMethod(url);
put.setRequestHeader(“Content-type”, “text/plain”);
put.setRequestBody(“world”);
client.executeMethod(put);

// Retrieving data
GetMethod get = new GetMethod(url);
client.executeMethod(get);
System.out.printf(“Value of key %s is %s”, key, get.
getResponseBodyAsString());

If you choose to use the memcached protocol, the
SpyMemcached library can be used. Again, you would need
to make sure you have SpyMemcached in your classpath.

InetSocketAddress addr = new InetSocketAddress(“infinispan_host”,
portNum);
MemcachedClient c=new MemcachedClient(addr);
// Storing data
String key = “hello”
c.set(key, -1, “world”);
// Retrieving data
String result = c.get(key);
System.out.printf(“Value of key %s is %s”, key, result);

Finally, if you wish to use Hot Rod, you would need to declare
a dependency on Infinispan’s Hot Rod Java client library:

<dependencies>
 …
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-client-hotrod</artifactId>
 <version>LATEST_INFINISPAN_VERSION</version>
 </dependency>
 …
</dependency>

The Hot Rod client jar files are also included in the Infinispan
zipped distribution.

Using the client is very much like using the embedded API:

RemoteCacheManager rcm = new RemoteCacheManager(“infinispan_host”);
RemoteCache rc = rcm.getCache();
String key = “hello”;

// Storing data
rc.put(key, “world”);

// Retrieving data
System.out.printf(“Value of key %s is %s”, key, rc.get(key));

Connecting using non-JVM platforms
Infinispan supports connecting to the data grid from non-
Java platforms. The simplest option is to use the REST
endpoint. Here is an example of connecting to the Infinispan
REST endpoint using a Python script:

import httplib

cache_name = “___defaultcache”
key = “hello”

// Storing data
conn = httplib.HTTPConnection(“infinispan_host”)
conn.request(“PUT”, “/infinispan-server-rest/rest/%s/%s” % (cache_
name, key), “world”, {“Content-Type”: “text/plain”})

// Retrieving data
conn = httplib.HTTPConnection(“infinispan_host”)
conn.request(“GET”, “/infinispan-server-rest/rest/%s/%s” % (cache_
name, key))
print “Value of key %s is %s” % (key, conn.getresponse().read())

If running the memcached endpoint, it is possible for clients
to connect using any existing memcached client library. This
example uses the memcached library for Python:

import memcache

conn = memcache.Client([“infinispan_host”])
key = “hello”

// Storing data
conn.set(key, “world”)

// Retrieving data
print “Value of key %s is %s” % (key, conn.get(key))

Hot Rod, too, can be used from non-JVM platforms. However,
as of September 2010, the only known client libraries for Hot
Rod are written in Java.

Hot
Tip

The protocol specification is published online and
the community is encouraged to write more client
implementations for Hot Rod. The Java client can be
used as a reference implementation, as its source
code is open and publicly available

.Load-balancing server endpoints
Infinispan’s endpoints support load balancing and failover
to some degree. Different endpoints offer different degrees
of support.

The REST endpoint is the simplest, delegating all load
balancing and failover responsibility to an external HTTP
load balancer. Software load balancers such as mod_cluster
and hardware load balancers could be used. You should refer
to your servlet container documentation for details on load
balancing.

3 Infinispan

http://www.dzone.com
http://jboss.org/jbossas
http://jboss.org/jbossas
http://tomcat.apache.org/
http://hc.apache.org/httpclient-3.x/
http://code.google.com/p/spymemcached/
http://pypi.python.org/pypi/python-memcached/1.40
http://community.jboss.org/wiki/HotRodProtocol
http://www.jboss.org/infinispan/sourcecode
http://www.refcardz.com

DZone, Inc. | www.dzone.com

The memcached endpoint — like all memcached servers
— delegates the task of load balancing and failover to the
memcached client. Most memcached client libraries have
support for load balancing and failover, provided they are
initialized with a static list of servers to connect to.

Hot Rod provides the most flexibility in terms of load
balancing and failover.

Hot
Tip

The Hot Rod protocol has been designed specifically
with load balancing and failover in mind.

Clients can be written to take advantage of the server topology
that is provided to clients and regularly kept up-to-date.
Clients can even be made aware of hash functions used on the
back-end, so routing requests to a cluster of back-end nodes
can be done in an intelligent fashion to minimize latency and
remote lookup on the back-end. The reference implementation
Java client makes use of such features and provides built-in
load-balancing, failover, discovery of new backend nodes, as
well as intelligent routing of requests. More details on the Java
client can be found online.

ANATOMY OF AN INFINISPAN CONFIGURATION FILE

Infinispan’s configuration file is written in XML. Sensible
defaults are used throughout, and the simplest configuration
file contains just the following:

<infinispan />

This defines local, non-clustered caches using defaults throughout.

A basic clustered configuration looks like:

<infinispan>
 <global>
 <transport />
 </global>

 <default>
 <clustering mode=”R”>
 <sync />
 </clustering>
 </default>
</infinispan>

The default configuration is used as a template configuration
when calling DefaultCacheManager.getCache(). When calling
DefaultCacheManager.getCache(cacheName), a clone of the
default configuration is made. E.g.:

DefaultCacheManager cm =
new DefaultCacheManager(“configuration.xml”);

// returns the default cache
Cache<String, String> cache = cm.getCache();

// returns a new cache, with a configuration cloned from the default>
Cache<String, String> anotherCache = cm.getCache(“another”);

You can also name caches in your configuration file, such as:

<infinispan>
 <global>
 <transport />
 </global>

 <default>
 <clustering mode=”R”>
 <sync />
 </clustering>
 </default>

 <namedCache name=”asyncCache”>
 <clustering mode=”R”>
 <async />
 </clustering>
 </namedCache>

</infinispan>

With this configuration, DefaultCacheManager.getCache()
would return a simple, synchronously replicated cache.

DefaultCacheManager.getCache(“asyncCache”) would,
however, return an asynchronously replicated cache.

DefaultCacheManager cm = new DefaultCacheManager(“configuration.
xml”);

// returns the default cache – one that is synchronously replicated!
Cache<String, String> cache = cm.getCache();

// returns an asynchronously replicated cache
Cache<String, String> asyncCache = cm.getCache(“asyncCache”);

Named caches are hierarchical too, so they all inherit
from the default. In the example below, the cache
named “transactional” extends from the default cache.
As such, the cache named “transactional” will also be
synchronously replicated.

<infinispan>
 <global>
 <transport />
 </global>

 <default>
 <clustering mode=”R”>
 <sync />
 </clustering>
 </default>

 <namedCache name=”transactional”>
 <transaction
transactionManagerLookupClass=”org.infinispan.transaction.lookup.
GenericTransactionManagerLookup”/>
 </namedCache>
</infinispan>

DefaultCacheManager cm = new DefaultCacheManager(“configuration.
xml”);

// returns the default cache – one that is synchronously replicated!
Cache<String, String> cache = cm.getCcahe();

// returns an transactional, synchronously replicated cache
Cache<String, String> txCache = cm.getCache(“transactional”);

XML Schemas
Infinspan makes use of an XML schema to validate
configuration files.

The schema is packaged with the infinispan-core.jar archive,
and is also available online at http://www.infinispan.org/
schemas/infinispan-config-4.0.xsd

Typically, you would start your XML file with the
following declaration:

4 Infinispan

http://www.dzone.com
http://community.jboss.org/wiki/JavaHotRodclient
http://www.refcardz.com

DZone, Inc. | www.dzone.com

<?xml version=”1.0” encoding=”UTF-8”?>
<infinispan
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”urn:infinispan:config:4.0 http://www.
infinispan.org/schemas/infinispan-config-4.0.xsd”
 xmlns=”urn:infinispan:config:4.0”>
… Your Infinispan configuration …
</infinispan>

If you were to start your configuration file with a reference to
this XML schema, XML authoring tools will help validate your
configuration file.

Hot
Tip Some tools even provide autocomplete suggestions!

For example:

Commonly used configuration elements
Global selection

Element Name Element Description

transport This element configures the transport
used for network communications
across the cluster.

serialization Serialization and marshalling settings.

shutdown This element specifies behavior when
the JVM running the cache instance
shuts down.

globalJmxStatistics This element specifies whether
global statistics are gathered and
reported via JMX for all caches under
this cache manager.

replicationQueueScheduledExecutor Configuration for the scheduled
executor service used to periodically
flush replication queues, used if
asynchronous clustering is enabled
along with useReplQueue being set
to true.

asyncTransportExecutor Configuration for the executor service
used for asynchronous work on the
Transport, including asynchronous
marshalling and Cache ‘async
operations’ such as Cache.putAsync().

evictionScheduledExecutor Configuration for the scheduled
executor service used to periodically
run eviction cleanup tasks.

asyncListenerExecutor Configuration for the executor
service used to emit notifications to
asynchronous listeners.

Default/NamedCache sections

Element Name Element Description

transaction Defines transactional (JTA)
characteristics of the cache.

invocationBatching Defines whether invocation batching is
allowed in this cache instance, and sets
up internals accordingly to allow use
of this API.

loaders Holds the configuration for cache
loaders and stores.

clustering Defines clustered characteristics of
the cache.

lazyDeserialization A mechanism by which serialization
and deserialization of objects is
deferred until the point in time in
which they are used and needed.
This typically means that any
deserialization happens using the
thread context class loader of the
invocation that requires deserialization,
and is an effective mechanism to
provide classloader isolation.

deadlockDetection This element configures
deadlock detection.

eviction This element controls the eviction
settings for the cache.

customInterceptors Configures custom interceptors to be
added to the cache.

unsafe Allows you to tune various unsafe or
non-standard characteristics. Certain
operations such as Cache.put() that
are supposed to return the previous
value associated with the specified key
according to the java.util.Map contract
will not fulfill this contract if unsafe
toggle is turned on. Use with care.
See details at http://www.jboss.org/
community/wiki/infinispantechnicalfaqs

jmxStatistics This element specifies whether cache
statistics are gathered and reported
via JMX.

5 Infinispan

http://www.dzone.com
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_transport
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_serialization
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_shutdown
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_globalJmxStatisticshttp://
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_replicationQueueScheduledExec
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_asyncTransportExecutor
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_evictionScheduledExecutor
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_global_asyncListenerExecutor
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_transaction
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_invocationBatching
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_loaders
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_clustering
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_lazyDeserialization
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_deadlockDetection
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_eviction
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_customInterceptors
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_unsafehttp://
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_jmxStatistics
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

he pattern.
tion

f the term Continuous Integration

le this Refcard

h s

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

d

Perform an Integration Build periodically, continually, etc.

d utomated feedback from CI server to development team

they occur
d based on

brought to you by...

By Andy Harris

HTML BASICS

o
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares c

common.) All are essenti l
extension HT

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anyb d

expected. Early HTML had very limited layo

Browser manufacturers added

web developers cresult i

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
ALM
Hadoop
ColdFusion Web Services
Solr Essentials

By Daniel Rubio

ABOUT CLOUD COMPUTING

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher. Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and
more. “DZone is a developer’s dream,” says PC Magazine.

6 Infinispan

ABOUT THE AUTHOR RECOMMENDED BOOK

ISBN-13: 978-1-936502-00-4
ISBN-10: 1-936502-00-3

9 781936 502004

50795

locking Defines the local, in-VM locking
and concurrency characteristics of
the cache.

indexing Configures indexing of entries
in the cache for searching. Note
that infinispan-query.jar and its
dependencies needs to be available if
this option is to be used.

expiration This element controls the default
expiration settings for entries in
the cache.

MIGRATING FROM OTHER DATA GRID OR CACHE SYSTEMS

Infinispan provides a number of tools to help you migrate
configurations from EHCache, Oracle Coherence and even

JBoss Cache to Infinispan. These command-line tools help in
the migration process.

$ bin/importConfig.sh
Missing ‘source’, cannot proceed
Usage:
importConfig [-source <the file to be transformed>] [-destination
<where to store resulting XML>] [-type <the type of the source,
possible values being: [Coherence35x, Ehcache1x, JBossCache3x] >]

Further, Infinispan’s Cache interface is compliant with JSR-107
(JCACHE), which means applications written against other

JSR-107-like caches will work with minimal modifications.

More information
Please visit http://community.jboss.org/wiki/Infinispan for
more detailed information on Infinispan, including an easy-to-
use configuration reference.

MANIK SURTANI, is a Principal Software
Engineer and core JBoss research and
development engineer at Red Hat. He is
the founder of the Infinispan project, which
he currently leads along with the JBoss
Cache project. His interests lie in cloud and
distributed computing, autonomous systems,
and highly-available computing.

Manik has a background in artificial
intelligence and neural networks, a field that he left behind when he
moved from academic circles to the commercial world. Since then,
he worked with Java-related technologies at a start-up company that
focused on knowledge management and information exchange.
He also worked as a technical lead focusing on e-commerce
applications on large Java EE and peer-to-peer technology for a
London-based consultancy. Manik is a strong proponent of open
source development methodologies, ethos, and collaborative
processes, and has been involved in open source since his first
forays into computing.

Good search capability is one of
the primary demands of a business
application. Engines like Lucene provide
a great starting point, but with complex
applications it can be tricky to implement.
It’s tough to keep the index up to date,
deal with the mismatch between the index
structure and the domain model, handle
querying conflicts, and so on.

Hibernate Search is an enterprise search tool based on Hibernate
Core and Apache Lucene. It provides full text search capabilities
for Hibernate-based applications without the infrastructural code
required by other search engines. With this free, open-source
technology, you can quickly add high-powered search features in
an intelligent, maintainable way.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_locking
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_indexing
http://docs.jboss.org/infinispan/4.1/apidocs/config.html#ce_default_expirationhttp://

