
The commercial en�ty for Apache Solr and Lucene.

Built on Solr

 Simplified, Accelerated Produc�vity

 Cost Effec�ve Architecture

lucidimagina�on.com
Apache Solr and Lucene are trademarks of The Apache So�ware Founda�on.

For the Developer Access Release
of LucidWorks Enterprise, go to

h�p://bit.ly/lucidworks

This DZone Refcard is brought to you by...

http://bit.ly/lucidworks

DZone, Inc. | www.dzone.com

By Chris Hostetter

ABOUT SOLR

A
p

ac
h

e
 S

o
lr

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#120

CONTENTS INCLUDE:
n	 About Solr
n	 Running Solr
n	 schema.xml
n	 Field Types
n	 Analyzers
n	 Hot Tips and more...

Solr makes it easy for programmers to develop sophisticated,
high performance search applications with advanced features
such as faceting, dynamic clustering, database integration and
rich document handling.

Solr (http://lucene.apache.org/solr/) is the HTTP based server
product of the Apache Lucene Project. It uses the Lucene Java
library at its core for indexing and search technology, as well
as spell checking, hit highlighting, and advanced analysis/
tokenization capabilities.

The fundamental premise of Solr is simple. You feed it a lot of
information, then later you can ask it questions and find the
piece of information you want. Feeding in information is called
indexing or updating. Asking a question is called a querying.

brought to you by...

Apache Solr:
Getting Optimal Search Results

	
Figure 1: A typical Solr setup

Core Solr Concepts
Solr’s basic unit of information is a document: a set of
information that describes something, like a class in Java.
Documents themselves are composed of fields. These are
more specific pieces of information, like attributes in a class.

RUNNING SOLR

Solr Installation
The LucidWorks for Solr installer (http://www.lucidimagination.
com/Downloads/LucidWorks-for-Solr) makes it easy to set
up your initial Solr instance. The installer brings you through
configuration and deployment of the Web service on either
Jetty or Tomcat.

Solr Home Directory
Solr Home is the main directory where Solr will look for
configuration files, data and plug-ins.

When LucidWorks is installed at ~/LucidWorks the Solr Home
directory is ~/LucidWorks/lucidworks/solr/.

Single Core and Multicore Setup
By default, Solr is set up to manage a single “Solr Core”
which contains one index. It is also possible to segment Solr
into multiple virtual instances of cores, each with its own
configuration and indices. Cores can be dedicated to a single
application, or to different ones, but all are administered
through a common administration interface.

Multiple Solr Cores can be configured by placing a file named
solr.xml in your Solr Home directory, identifying each Solr
Core, and the corresponding instance directory for each.
When using a single Solr Core, the Solr Home directory is
automatically the instance directory for your Solr Core.

Configuration of each Solr Core is done through two main
config files, both of which are placed in the conf subdirectory
for that Core:
 • schema.xml: where you describe your data
 • solrconfig.xml: where you describe how people can

interact with your data.

By default, Solr will store the index inside the data
subdirectory for that Core.

Solr Administration
Administration for Solr can be done through
http://[hostname]:8983 /solr/admin which provides a section
with menu items for monitoring indexing and performance
statistics, information about index distribution and replication,
and information on all threads running in the JVM at the time.
There is also a section where you can run queries, and an
assistance area.

 Free download at bit.ly/solrguide

Check out the Solr and Lucene docs,
webcasts, white papers and tech ar�cles at
lucidimagina�on.com

Get the Solr
Reference

Guide!

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://bit.ly/lucidworks
http://bit.ly/solrguide

DZone, Inc. | www.dzone.com

2 Apache Solr: Getting Optimal Search Results

SCHEMA.XML

To build a searchable index, Solr takes in documents
composed of data fields of specific field types. The schema.xml
configuration file defines the field types and specific fields that
your documents can contain, as well as how Solr should handle
those fields when adding documents to the index or when
querying those fields. When you perform a query,
schema.xml is structured as follows:

<schema>
 <types>
 <fields>
 <uniqueKey>
 <defaultSearchField>
 <solrQueryParser>
 <copyField>
</schema>

Hot
Tip

Shorthand for Class References
When referencing classes in Solr, the string solr
is used as shorthand in place of full Solr package
names, such as org.apache.solr.schema
or org.apache.solr.analysis.

Numeric Types
Solr supports two distinct groups of field types for dealing with
numeric data:
 • Numerics with Trie Encoding: TrieDateField,

TrieDoubleField, TrieIntField, TrieFloatField,
and TrieLongField.

 • Numerics Encoded As Strings: DateField,
SortableDoubleField, SortableIntField,
SortableFloatField, and SortableLongField.

Which Type to Use?
Trie encoded types support faster range queries, and sorting
on these fields is more RAM efficient. Documents that do not
have a value for a Trie field will be sorted as if they contained
the value of “0”. String encoded types are less efficient for
range queries and sorting, but support the sortMissingLast
and sortMissingFirst attributes.

Class Description

BinaryField Binary data that needs to be base64 encoded when reading or writing

BoolField Contains either true or false. Values of “1”, “t”, or “T” in the first
character are interpreted as true. Any other values in the first character
are interpreted as false.

ExternalFileField Pulls values from a file on disk.

RandomSortField Does not contain a value. Queries that sort on this field type will return
results in random order. Use a dynamic field to use this feature.

StrField String

TextField Text, usually multiple words or tokens

UUIDField Universally Unique Identifier (UUID). Pass in a value of “NEW” and Solr
will create a new UUID.

Hot
Tip

Date Field
Dates are of the format YYYY-MM-DDThh:mm:ssZ.
The Z is the timezone indicator (for UTC) in the
canonical representation. Solr requires date and
times to be in the canonical form, so clients are
required to format and parse dates in UTC when
dealing with Solr. Date fields also support date math,
such as expressing a time two months from now
using NOW+2MONTHS.

Field Type Properties
The field class determines most of the behavior of a field type,
but optional properties can also be defined in schema.xml.

Some important Boolean properties are:

Property Description

indexed If true, the value of the field can be used in queries to retrieve matching
documents. This is also required for fields where sorting is needed.

stored If true, the actual value of the field can be retrieved in query results.

sortMissingFirst
sortMissingLast

Control the placement of documents when a sort field is not present in
supporting field types.

multiValued If true, indicates that a single document might contain multiple values
for this field type.

FIELD TYPES

A field type includes three important pieces of information:

 • The name of the field type
 • Implementation class name
 • Field attributes

Field types are defined in the types element of schema.xml.

<fieldType name=”textTight” class=”solr.TextField”>
…
</fieldType>

The type name is specified in the name attribute of the
fieldType element. The name of the implementing class, which
makes sure the field is handled correctly, is referenced using
the class attribute.

ANALYZERS

Field analyzers are used both during ingestion, when a
document is indexed, and at query time. Analyzers are
only valid for <fieldType> declarations that specify the
TextField class. Analyzers may be a single class or they may
be composed of a series of zero or more CharFilter, one
Tokenizer and zero or more TokenFilter classes.

Analyzers are specified by adding <analyzer> children to the
<fieldType> element in the schema.xml config file. Field Types
typically use a single analyzer, but the type attribute can be
used to specify distinct analyzers for the index vs query.

The simplest way to configure an analyzer is with a single
<analyzer> element whose class attribute is the fully qualified
Java class name of an existing Lucene analyzer.

For more configurable analysis, an analyzer chain can be
created using a simple <analyzer> element with no class
attribute, with the child elements that name factory classes
for CharFilter, Tokenizer and TokenFilter to use, and in the
order they should run, as in the following example:

<fieldType name=”nametext” class=”solr.TextField”>
 <analyzer>
 <charFilter class=”solr.HTMLStripCharFilterFactory”/>
 <tokenizer class=”solr.StandardTokenizerFactory”/>
 <filter class=”solr.StandardFilterFactory”/>
 <filter class=”solr.LowerCaseFilterFactory”/>
 </analyzer>
</fieldType>

CharFilter
CharFilter pre-process input characters with the possibility to
add, remove or change characters while preserving the original
character offsets.

http://www.dzone.com
http://www.refcardz.com
http://bit.ly/lucidworks

DZone, Inc. | www.dzone.com

The following table provides an overview of some of the
CharFilter factories available in Solr 1.4:

CharFilter Description

MappingCharFilterFactory Applies mapping contained in a map to the character
stream. The map contains pairings of String input to
String output.

PatternReplaceCharFilterFactory Applies a regular expression pattern to the string in the
character stream, replacing matches with the specified
replacement string.

HTMLStripCharFilterFactory Strips HTML from the input stream and passes the
result to either a CharFilter or a Tokenizer. This filter
removes tags while keeping content. It also removes
<script>, <style>, comments, and processing
instructions.

Tokenizer
Tokenizer breaks up a stream of text into tokens. Tokenizer
reads from a Reader and produces a TokenStream containing
various metadata such as the locations at which each token
occurs in the field.

The following table provides an overview of some of the
Tokenizer factory classes included in Solr 1.4:

Tokenizer Description

StandardTokenizerFactory Treats whitespace and punctuation as delimiters.

NGramTokenizerFactory Generates n-gram tokens of sizes in the given range.

EdgeNGramTokenizerFactory Generates edge n-gram tokens of sizes in the given range.

PatternTokenizerFactory Uses a Java regular expression to break the text stream
into tokens.

WhitespaceTokenizerFactory Splits the text stream on whitespace, returning sequences of
non-whitespace characters as tokens.

TokenFilter
TokenFilter consumes and produces TokenStreams.
TokenFilter looks at each token sequentially and decides to
pass it along, replace it or discard it.

A TokenFilter may also do more complex analysis by buffering
to look ahead and consider multiple tokens at once.

The following table provides an overview of some of the
TokenFilter factory classes included in Solr 1.4:

TokenFilter Description

KeepWordFilterFactory Discards all tokens except those that are listed in the given
word list. Inverse of StopFilterFactory.

LengthFilterFactory Passes tokens whose length falls within the min/max limit
specified.

LowerCaseFilterFactory Converts any uppercases letters in a token to lowercase.

PatternReplaceFilterFactory Applies a regular expression to each token, and substitutes
the given replacement string in place of the matched
pattern.

PhoneticFilterFactory Creates tokens using one of the phonetic encoding
algorithms from the org.apache.commons.codec.language
package.

PorterStemFilterFactory An algorithmic stemmer that is not as accurate as table-
based stemmer, but faster and less complex.

ShingleFilterFactory Constructs shingles (token n-grams) from the token stream.

StandardFilterFactory Removes dots from acronyms and ‘s from the end of tokens.
This class only works when used in conjunction with the
StandardTokenizerFactory

StopFilterFactory Discards, or stops, analysis of tokens that are on the given
stop words list.

SynonymFilterFactory Each token is looked up in the list of synonyms and if a
match is found, then the synonym is emitted in place of the
token.

TrimFilterFactory Trims leading and trailing whitespace from tokens.

WordDelimitedFilterFactory Splits and recombines tokens at punctuations, case change
and numbers. Useful for indexing part numbers that have
multiple variations in formatting.

Hot
Tip

Testing Your Analyzer
There is a handy page in the Solr admin interface that
allows you to test out your analysis against a field
type at the http://[hostname]:8983/solr/admin/
analysis.jsp page in your installation.

FIELDS

Once you have field types set up, defining the fields
themselves is simple: all you need to do is supply the name and
a reference to the name of the declared type you wish to use.
You can also provide options that override the options for that
field type.

<field name=”price” type=”sfloat” indexed=”true”/>

Dynamic Fields
Dynamic fields allow you to define behavior for fields that are
not explicitly defined in the schema, allowing you to have fields
in your document whose underlying <fieldType/> will be driven
by the field naming convention instead of having an explicit
declaration for every field.

Dynamic fields are also defined in the fields element of the
schema, and have a name, field type, and options.

<dynamicField name=”*_i” type=”sint” indexed=”true” stored=”true”/>

OTHER SCHEMA ELEMENTS

Copying Fields
Solr has a mechanism for making copies of fields so that
you can apply several distinct field types to a single piece of
incoming information.

<copyField source=”cat” dest=”text” maxChars=”30000” />

Unique Key
The uniqueKey element specifies which field is a unique
identifier for documents. Although uniqueKey is not required,
it is nearly always warranted by your application design. For
example, uniqueKey should be used if you will ever update a
document in the index.

<uniqueKey>id</uniqueKey>

Default Search Field
If you are using the Lucene query parser, queries that don’t
specify a field name will use the defaultSearchField. The
dismax query parser does not use this value in Solr 1.4.

<defaultSearchField>text</defaultSearchField>

Query Parser Operator
In queries with multiple clauses that are not explicitly required
or prohibited, Solr can either return results where all conditions
are met or where one or more conditions are met. The default
operator controls this behavior. An operator of AND means that
all conditions must be fulfilled, while an operator of OR means
that one or more conditions must be true.

In schema.xml, use the solrQueryParser element to control
what operator is used if an operator is not specified in the
query. The default operator setting only applies to the Lucene
query parser (not the DisMax query parser, which uses the mm
parameter to control the equivalent behavior).

3 Apache Solr: Getting Optimal Search Results

http://www.dzone.com
http://www.refcardz.com
http://bit.ly/lucidworks

DZone, Inc. | www.dzone.com

SOLRCONFIG.XML

Configuring solrconfig.xml
solrconfig.xml, found in the conf directory for the Solr Core,
comprises of a set of XML statements that set the configuration
value for your Solr instance.

AutoCommit
The <updateHandler> section affects how updates are done
internally. The <autoCommit> subelement contains further
configuration for controlling how often pending updates will be
automatically pushed to the index.

Element Description

<maxDocs> Number of updates that have occurred since last commit

<maxTime> Number of milliseconds since the oldest uncommitted update

If either of these limits is reached, then Solr automatically
performs a commit operation. If the <autoCommit> tag is miss-
ing, then only explicit commits will update the index.

HTTP RequestDispatcher Settings
The <requestDispatcher> section controls how the
RequestDispatcher implementation responds to HTTP requests.

Element Description

<requestParsers> Contains attributes for enableRemoteStreaming and
multipartUploadLimitInKB

<httpCaching> Specifies how Solr should generate its HTTP caching-related headers

Internal Caching
The <query> section contains settings that affect how Solr will
process and respond to queries.

There are three predefined types of caches that you can
configure whose settings affect performance:

Element Description

<filterCache> Used by SolrIndexSearcher for filters for unordered sets of all
documents that match a query.

Solr usese the filterCache to cache results of queries that use the fq
search parameter.

<queryResultCache> Holds the sorted and paginated results of previous searches

<documentCache> Holds Lucene Document objects (the stored fields for each document).

Request Handlers
A Request Handler defines the logic executed for any request.
Multiple instances of various request handlers, each with
different names and configuration options can be declared.
The qt url parameter or the path of the url can be used to
select the request handler by name.

Most request handlers recognize three main sub-sections in
their declaration:
 • default, which is used when a request does not include

a parameter.

 • append, which is added to the parameter values specified
in the request.

 • invariant, which overrides values specified in the query.

LucidWorks for Solr includes the following indexing handlers:
 • XMLUpdateRequestHandler: processes XML messages

containing data and other index modification instructions.

 • BinaryUpdateRequestHandler: processes messages from
the Solr Java client.

 • CSVRequestHandler: processes CSV files
containing documents

 • DataImportHandler: processes commands to pull data
from remote data sources

 • ExtractingRequestHandler (aka Solr Cell): uses
Apache Tika to process binary files such as Office/PDF
and index them

The out-of-the-box searching handler is SearchHandler.

Search Components
Instances of SearchComponent define discrete units of logic that
can be combined together and reused by Request Handlers (in
particular SearchHandler) that know about them.
The default SearchComponent used by SearchHandler is
query, facet, mlt (MoreLikeThis), highlight, stats, debug.
Additional Search Components are also available with
additional configuration.

Response Writers
Response writers generate the formatted response of a search.
The wt url parameter selects the response writer to use by
name. The default response writers are json, php, phps, python,
ruby, xml, and xslt.

INDEXING

Indexing is the process of adding content to a Solr index, and
as necessary, modifying that content or deleting it. By adding
content to an index, it becomes searchable by Solr.

Client Libraries
There are a number of client libraries available to access
Solr. SolrJ is a Java client included with the Solr 1.4 release
which allows clients to add, update and query the Solr
index. http://wiki.apache.org/solr/IntegratingSolr provides a list of
such libraries.

Indexing Using XML
Solr accepts POSTed XML messages that add/update,
commit, delete and delete by query using the
http://[hostname]:8983/solr/update url. Multiple documents can be
specified in a single <add> command.

<add>
 <doc>
 <field name=”employeeId”>05991</field>
 <field name=”office”>Bridgewater</field>
 </doc>
 [<doc> ... </doc>[<doc> ... </doc>]]
</add>

Command Description

commit Writes all documents loaded since last commit

optimize Requests Solr to merge the entire index into a single segment to improve
search performance

Delete by id deletes the document with the specified ID (i.e.
uniqueKey), while delete by query deletes documents that
match the specified query:

<delete><id>05991</id></delete>
<delete><query>office:Bridgewater</query></delete>

Indexing Using CSV
CSV records can be uploaded to Solr by sending the data to
the http://[hostname]:8983/solr/update/csv URL.

4 Apache Solr: Getting Optimal Search Results

http://www.dzone.com
http://www.refcardz.com
http://bit.ly/lucidworks

DZone, Inc. | www.dzone.com

The CSV handler accepts various parameters, some of which
can be overridden on a per field basis using the form:

f.fieldname.parameter=value

These parameters can be used to specify how data should be
parsed, such as specifying the delimiter, quote character and
escape characters. You can also handle whitespace, define
which lines or field names to skip, map columns to fields, or
specify if columns should be split into multiple values.

Indexing Using SolrCell
Using the Solr Cell framework, Solr uses Tika to automatically
determine the type of a document and extract fields from it.
These fields are then indexed directly, or mapped to other
fields in your schema.

The URL for this handler is http://[hostname]:8983:solr/update/extract.

The Extraction Request Handler accepts various parameters
that can be used to specify how data should be mapped to
fields in the schema, including specific XPaths of content to be
extracted, how content should be mapped to fields, whether
attributes should be extracted, and in which format to extract
content. You can also specify a dynamic field prefix to use when
extracting content that has no corresponding field.

Indexing Using Data Import Handler
The Data Import Handler (DIH) can pull data from relational
databases (through JDBC), RSS feeds, emails repositories, and
structure XML using XPath to generate fields.

The Data Import Handler is registered in solrconfig.xml, with
a pointer to its data-config.xml file which has the following
structure:

<dataConfig>
 <dataSource/>
 <document>
 <entity>
 <field column=”” name=””/>
 <field column=”” name=””/>
 </entity>
 </document>
</dataConfig>

The Data Import Handler is accessed using the
http://[hostname]:8983/solr/dataimport URL but it also includes
a browser-based console which allows you to experiment
with data-config.xml changes and demonstrates all of the
commands and options to help with development. You can
access the console at this address:
http://[hostname]:port/solr/admin/dataimport.jsp

SEARCHING

Data can be queried using either the http://[hostname]:8983/solr/

select?qt=name URL, or by using the http://[hostname]:8983/solr/name
syntax for SearchHandler instances with names that begin with
a “/”.

SearchHandler processes requests by delegating to its Search
Components which interpret the various request parameters.
The QueryComponent delegates to a query parser, which
determines which documents the user is interested in. Different
query parsers support different syntax.

Query Parsing
Input to a query parser can include:

 • Search strings—that is, terms to search for in the index.

 • Parameters for fine-tuning the query by increasing the
importance of particular strings or fields, by applying
Boolean logic among the search terms, or by excluding
content from the search results.

 • Parameters for controlling the presentation of the query
response, such as specifying the order in which results
are to be presented or limiting the response to particular
fields of the search application’s schema.

Search parameters may also specify a filter query. As part of a
search response, a filter query runs a query against the entire
index and caches the results. Because Solr allocates a separate
cache for filter queries, the strategic use of filter queries can
improve search performance.

Common Query Parameters
The table below summarizes Solr’s common query parameters:

Parameter Description

defType The query parser to be used to process the query

sort Sort results in ascending or descending order based on the documents
score or another characteristic

start An offset (0 by default) to the results that Solr should begin displaying

rows Indicates how many rows of results are displayed at a time (10 by default)

fq Applies a filter query to the search results

fl Limits the query’s results to a listed set of fields

debugQuery Causes Solr to include additional debugging information in the response,
including score explain information for each document returned

explainOther Allows client to specify a Lucene query to identify a set of documents not
already included in the response, returning explain information for each of
those documents

wt Specified the Response Writer to be used to format the query response

Lucene Query Parser
The standard query parser syntax allows users to specify
queries containing complex expressions, such as: .
http://[hostname]:8983/solr/select?q=id:SP2514N+price:[*+TO+10].

The standard query parser supports the parameters described
in the following table:

Parameter Description

q Query string using the Lucene Query syntax

q.op Specified the default operator for the query expression, overriding that in
schema.xml. May be AND or OR

df Default field, overriding what is defined in schema.xml

DisMax Query Parser
The DisMax query parser is designed to provide an experience
similar to that of popular search engines such as Google, which
rarely display syntax errors to users.

Instead of allowing complex expressions in the query string,
additional parameters can be used to specify how the query
string should be used to find matching documents.

Parameter Description

q Defines the raw user input strings for the query

q.alt Calls the standard query parser and defined query input strings, when q is
not used

qf Query Fields: the fields in the index on which to perform the query

mm Minimum “Should” Match: a minimum number of clauses in the query that
must match a document. This can be specified as a complex expression.

5 Apache Solr: Getting Optimal Search Results

http://www.dzone.com
http://www.refcardz.com
http://bit.ly/lucidworks

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
OSMF
Clojure
HTML 5
Test Driven Development

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 2.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-02-8
ISBN-10: 1-936502-02-X

9 781936 502028

50795

pf Phrase Fields: Fields that give a score boost when all terms of the q
parameter appear in close proximity

ps Phrase Slop: the number of positions all terms can be apart in order to
match the pf boost

tie Tie Breaker: a float value (less than 1) used as a multiplier with more then
one of the qf fields containing a term from the query string. The smaller the
value, the less influence multiple matching fields have

bq Boost Query: a raw Lucene query that will be added to the users query to
influence the score

bf Boost Function: like bq, but directly supports the Solr function query syntax

ADVANCED SEARCH FEATURES

Faceting makes it easy for users to drill down on search results
on sites such as movie sites and product review sites, where
there are many categories and many items within a category.

There are three types of faceting, all of which use indexed terms:
 • Field Faceting: treats each indexed term as a

facet constraint.

 • Query Faceting: allows the client to specify an arbitrary
query and uses that as a facet constraint.

 • Date Range Faceting: creates date range queries on
the fly.

Solr provides a collection of highlighting utilities which can
be called by various Request Handlers to include highlighted
matches in field values. Popular search engines such as Google
and Yahoo! return snippets in their search results: 3-4 lines of
text offering a description of a search result.

When an index becomes too large to fit on a single system, or
when a query takes too long to execute, the index can be split
into multiple shards on different Solr servers, for Distributed
Search. Solr can query and merge results across shards. It’s up
to you to get all your documents indexed on each shard of your
server farm. Solr does not include out-of-the-box support for
distributed indexing, but your method can be as simple as a
round robin technique. Just index each document to the next
server in the circle.

Clustering groups search results by similarities discovered when
a search is executed, rather than when content is indexed. The
results of clustering often lack the neat hierarchical organization
found in faceted search results, but clustering can be useful
nonetheless. It can reveal unexpected commonalities among
search results, and it can help users rule out content that isn’t
pertinent to what they’re really searching for.

The primary purpose of the Replication Handler is to replicate
an index to multiple slave servers which can then use load-
balancing for horizontal scaling. The Replication Handler can
also be used to make a back-up copy of a server’s index, even
without any slave servers in operation.

MoreLikeThis is a component that can be used with the
SearchHandler to return documents similar to each of the
documents matching a query. The MoreLikeThis Request
Handler can be used instead of the SearchHandler to find
documents similar to an individual document, utilizing faceting,
pagination and filtering on the related documents.

Chris Hostetter is Senior Staff Engineer at Lucid
Imagination, a member of the Apache Software
Foundation, and serves as a committer for the Apache
Lucene/Solr Projects. Prior to joining Lucid Imagination in
2010 to work full time on Solr development, he spent 11
years as a Principal Software Engineer for CNET Networks
thinking about searching “structured data” that was never
as structured as it should have been.

Designed to provide complete, comprehensive
documentation, the Reference Guide is intended to be
more encyclopedic and less of a cookbook. It is structured
to address a broad spectrum of needs, ranging from new
developers getting started to well experienced developers
extending their application or troubleshooting. It will be of
use at any point in the application lifecycle, for whenever
you need deep, authoritative information about Solr.

Download Now
http://bit.ly/solrguide

6 Apache Solr: Getting Optimal Search Results

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://bit.ly/lucidworks

