
Simplified media player development
www.osmf.org

• Customizable user interface

• Full support for the Adobe® Flash® platform

• Service provider plug-ins

© 2010 Adobe Systems Incorporated. All rights reserved. Adobe, the Adobe logo, and Flash are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. All other
trademarks are the property of their respective owners.

This DZone Refcard is brought to you by...

http://www.osmf.org

DZone, Inc. | www.dzone.com

By R Blank

ABOUT OSMF

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 W

e
b

 V
id

e
o

 U
si

n
g

 O
S

M
F

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#121

CONTENTS INCLUDE:
n	 About OSMF
n	 �Strobe Media Playback and Flash

Media Playback
n	 Basic OSMF Player
n	 Composite Elements
n	 Streaming
n	 Key Events and more...

brought to you by...

Open Source Media Framework:
Building Simple Custom Video Players

The Open Source Media Framework (OSMF) is an Adobe-led,
open-source ActionScript 3 coding framework for loading, playing
and displaying media. The website is http://osmf.org.

Just as Adobe created the Flex Framework to standardize and
expedite the creation of applications on the Flash Platform,
OSMF is a means to standardize media handling in your Flash
Platform experiences.

Why are the loading and playback of sounds, videos and images
each handled so differently in AS3? Why is building a streaming
video player so much more difficult than building a progressive
video player? Why is controlling volume so non-intuitive?

With OSMF, all those annoying questions disappear, as we now
have a simple, clean and standard way of working with all media
inside of Flash.

Getting OSMF
OSMF is a framework—which means that you need to install the
OSMF library if you wish to use it in your code.

Download the current version of OSMF (v1.5 at the time of
authoring) from http://opensource.adobe.com/wiki/display/
osmf/Downloads. The Source .zip from this page includes both
the ActionScript source for OSMF, as well as the compiled SWC
component for use in development. You may also download the
ASDoc documentation for the OSMF classes at the same URL.

Installing OSMF
If you are using Flash Builder, add OSMF.swc to the libs folder in
your project, or to your standard library paths. Please note that
Flash Builder 4 ships with a version of OSMF.swc that you will likely
want to remove prior to installing the new OSMF.swc into your
library paths. To remove the default version of OSMF from your
project, select ‘Project > Properties’ from the menu. Select ‘Flex
Build Path’ from the menu on the left side of the dialog box, and
then click on the the ‘Library path’ tab. Expand the tree branch for
the version of the Flex Framework you are using, select the OSMF.
swc and then click on ‘Remove’. Click ‘OK’.

If you are using Flash CS4 or Flash Professional CS5, then you will
want to copy OSMF.swc to:

	 On Windows: \Program Files\Adobe\Adobe Flash CS[#]\
Common\Configuration\ActionScript 3.0\libs
	 On Mac: /Applications/Adobe Flash CS[#]/Common/
Configuration/ActionScript 3.0/libs

Testing OSMF Installation
Write these two lines of ActionScript and try to compile your
project—if this code works, you have successfully installed OSMF:

import org.osmf.media.MediaPlayer;
var mediaPlayer : MediaPlayer = new MediaPlayer();

CAPABILITIES

Supported Media Formats
OSMF supports any type of media that can be loaded by Flash,
including (streaming audio) mp3, AAC, Speex, and Nellymoser;
(streaming video) FLV, F4V, MP4, MPEG-4: MP4, M4V, F4V, 3GPP;
(audio) mp3; (video) FLV, F4V, MP4, MP4V-ES, M4V, 3GPP, 3GPP2,
QuickTime; (images) PNG, GIF, or JPG; and SWF files.

Support for Standards
OSMF also comes packaged with support for media standards
including Video Ad Serving Template (VAST), Media Abstract
Sequencing Template (MAST), Media RSS (MRSS), Distribution
Format Exchange Profile (DFXP), and Synchronized Multimedia
Integration Language (SMIL).

Flash Player 10 or 10.1?
There are different versions of OSMF depending on whether you
are publishing to Flash Player 10 or 10.1 (OSMF is unsupported in
Flash Player 9 and earlier), and both are included in the standard
OSMF download. Which do you want to use?

If you want to utilize HTTP Streaming, DRM, and Multicast, then
you must use OSMF for FP 10.1—otherwise, the functionality of
both versions is equivalent.

Plug-ins
OSMF includes a plug-in architecture, enabling you and other third
party developers to create useful and reusable functionality for
OSMF experiences. Due to space considerations, plug-ins are not
covered in this Refcard. For more information on OSMF plug-ins,
visit http://opensource.adobe.com/wiki/display/osmf/Plugins. For
a list of available OSMF plug-ins (for example, to facilitate playing
media from Akamai’s CDN, or to implement Omniture tracking),
visit http://osmf.org/partner.php.

Simplified media player development
www.osmf.org

• Customizable user interface

• Full support for the Adobe® Flash® platform

• Service provider plug-ins

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.osmf.org

DZone, Inc. | www.dzone.com

2 Getting Started with Web Video Using OSMF

THE BASIC OSMF PLAYER

MediaContainer
The MediaContainer is used to display media stored in
MediaElement instances.

var container : MediaContainer = new MediaContainer();

As the MediaContainer makes our media visible to humans, it must
reside in the Display List to be seen.

addChild(container);

Finally, we add our MediaElement to our MediaContainer by
calling the addMediaElement method:

container.addMediaElement(videoElement);

Imports
Even if you are accustomed to coding on the timeline in Flash
Professional, you still must import OSMF classes for them to be
used. You can always reference the OSMF documentation (which
can be downloaded as a .zip from http://opensource.adobe.com/
wiki/display/osmf/Downloads) to determine the location of the
classes you need to import. For this simple OSMF player, four
imports are required.

Putting it all Together
These are the four imports and six lines of code in the basic
OSMF video player:

import org.osmf.containers.MediaContainer;
import org.osmf.elements.VideoElement;
import org.osmf.media.MediaPlayer;
import org.osmf.media.URLResource;
var container : MediaContainer = new MediaContainer();
addChild(container);
var videoElement : VideoElement =new VideoElement(new URLResource(“my.flv”));
container.addMediaElement(videoElement);
var mediaPlayer : MediaPlayer = new MediaPlayer();
mediaPlayer.media=videoElement;

MORE USEFUL STUFF

Thus far, we’ve covered the basics—which are obviously an
important place to start. But the real benefits of working with
OSMF become clear once you start doing more—and you see how
easy and standardized it all is.

Controlling Media Playback
We use the MediaPlayer to control media playback, with
three methods. The default behavior of the MediaPlayer is to
automatically play loaded media. To pause the media, we tell the
MediaPlayer to pause:

mediaPlayer.pause();

Similarly, to play (resume) our media:

mediaPlayer.play();

And to jump around within our media file, we call the seek()
method, passing in as a parameter the position within our media
(in seconds) to which we wish to seek:

mediaPlayer.seek(5);

Customizing Layout
By default, a MediaContainer instance will display any visual
media at its default size (100%) and position (0,0). We use
the LayoutMetadata (org.osmf.layout.LayoutMetadata) class
to customize the appearance of visual media, by creating a
LayoutMetadata object, defining its properties, and then attaching
it to our MediaElement.

First, we import the LayoutMetadata class.

OSMF is a coding framework and includes no GUI or graphical
options at all—OSMF is just logic. There are no OSMF-based
components in Flash Professional, or the Flex Framework. If you
want a quick video player, or a sample OSMF video player to use
as a starting point, you can use Strobe Media Playback (SMP) and
Flash Media Playback (FMP).

SMP is an open-source Flash video player, built on OSMF, that
includes a full GUI, with elements like a play button, a volume
slider and a progress bar. You can use SMP to get a kick-start
working with OSMF, and then customize and redeploy SMP for your
own uses. For more information on, and to download SMP, visit
http://osmf.org/strobe_mediaplayback.html.

FMP is a version of SMP hosted by Adobe. Simply visit the FMP
Configurator at http://www.osmf.org/configurator/fmp/, enter the
location of your video file, copy the embed code, and paste it into
any web page and voila!—you have an OSMF player in seconds.
For more information on FMP, visit http://www.adobe.com/
products/flashmediaplayback/.

Both SMP and FMP are easily skinnable, and playback options are
rapidly customized through FlashVar parameters.

STROBE MEDIA PLAYBACK AND FLASH MEDIA PLAYBACK

At the heart of any OSMF experience are three classes: the
MediaElement, the MediaPlayer, and the MediaContainer.

MediaElement
The MediaElement is used to load media.

You generally would not use the MediaElement directly—there are
several descendants of the MediaElement, including AudioElement
(to load audio) and ImageElement (to load images). In this
example, we will use the VideoElement (to load video). When
creating a new VideoElement, you pass in a URLResource pointing
to the video you wish to play, as in:

var videoElement = new VideoElement(new URLResource(“my.flv”));

MediaPlayer
The MediaPlayer is used to play media stored in
MediaElement instances.

The MediaPlayer has a media property; we use this to instruct the
MediaPlayer which piece of media to playback. The MediaPlayer
may be reused to play multiple pieces of content.

var mediaPlayer : MediaPlayer = new MediaPlayer();
mediaPlayer.media=videoElement;

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3 Getting Started with Web Video Using OSMF

import org.osmf.layout.LayoutMetadata ;

Then, we create a LayoutMetadata object:

var layout : LayoutMetadata = new LayoutMetadata();

Next, we customize the properties of our LayoutMetadata object.
Four common properties to set are width, height, x and y:

layout.width=640;
layout.height=480;
layout.x=20;
layout.y=40;

Finally, we need to link our LayoutMetadata with the MediaElement
instance it is intended to influence:

mediaElement.addMetadata(LayoutMetadata.LAYOUT_NAMESPACE, layout);

Then, when our mediaElement is displayed in a MediaContainer, it
will have our intentional, customized layout.

Key MediaPlayer Properties
The MediaPlayer includes several useful properties, which I’ve
included here for reference:

MediaPlayer.duration
The duration (in seconds) of the playback length of the media
loaded into the MediaElement playing back in this MediaPlayer
instance (read-only).

MediaPlayer.volume
The volume (from 0 to 1) of the audio track of the MediaElement
currently loaded into this MediaPlayer instance. By default, this is
set to 1.

MediaPlayer.autoPlay
A boolean value determining whether or not to automatically begin
playback on MediaElement instances loaded into this MediaPlayer
instance. By default, this is true (playback begins immediately).

MediaPlayer.loop
A boolean value determining whether or not to automatically
loop the playback of any MediaElement instances loaded into
this MediaPlayer instance. When set to true, upon completion of
playback, the MediaPlayer instance will rewind the loaded media
and begin playback again. By default, this is set to false (media
does not loop).

MediaPlayer.autoRewind
A boolean value determining whether or not this MediaPlayer
instance will automatically rewind-and-pause when reaching the
end of playback of any MediaElement instances loaded into it. By
default this is set to true (will automatically return to the beginning
of the media upon completion of playback). This property is
ignored if the loop property is set to true.

Media Factories
Thus far, when we wanted to create a new MediaElement instance
to load a video, we created a new VideoElement. But, of course,
that code will now only work to load a video. Sometimes we want
to write code more generically than that. What if we want to load
an image instead? Or a sound file? Or some text? Do we have to
re-write our code?

Actually, no. OSMF includes Media Factories—adorable, little
assembly plants that can churn out any flavor of MediaElement
instances. Just tell a Media Factory to load a file from a URL, and
the factory will know exactly what type of MediaElement to create.

First, we import the DefaultMediaFactory class:

import org.osmf.media.DefaultMediaFactory ;

Then, we create a DefaultMediaFactory:

var mediaFactory : DefaultMediaFactory = new DefaultMediaFactory();

Finally, we tell the mediaFactory to produce a MediaElement from
a URLResource, pointing to a file:

var mediaElement : MediaElement = mediaFactory.createMediaElement(new
URLResource(“my.flv”));

You will note that our MediaElement is strong-typed to
MediaElement, instead of VideoElement—because we do not
necessarily know at author time, what type of MediaElement will
be required.

COMPOSITE ELEMENTS

CompositeElements are complex types of the MediaElement class.
CompositeElements encapsulate multiple MediaElement instances
in a single object.

As with MediaElements, we do not create CompositeElements
directly, but instead work with descendants of the
CompositeElement class.

SerialElements are used to play multiple MediaElements
sequentially (one after the other). SerialElements can be used to
emulate playlists.

ParallelElements are used to play multiple MediaElements
concurrently (at the same time). ParallelElements can be used for
any number of purposes, but could, for example, be used
to combine playback of images and music (a dynamic slideshow,
for example).

Creating CompositeElements
Determine whether you want a SerialElement or a ParallelElement.
As you work with both types of CompositeElements identically in
ActionScript, for the purposes of this example, we will work with a
SerialElement to play two videos sequentially.

First, we import the SerialElement class:

import org.osmf.elements.SerialElement ;

Then, we create a new SerialElement:

var serialElement : SerialElement = new SerialElement () ;

Populating CompositeElements
To populate our CompositeElement instance, we must first have
our constituent MediaElement instances (in this case, we’ll define
two VideoElement instances for sequential playback).

var mediaElement1 : MediaElement = mediaFactory.createMediaElement(new
URLResource(“some.flv”));
var mediaElement2 : MediaElement = mediaFactory.createMediaElement(new
URLResource(“other.flv”));

Once we have our MediaElement instances, we can add them
to our CompositeElement, using the addChild() method (in a
SerialElement, the MediaElement instances are played in the order
in which they are added to the SerialElement):

serialElement.addChild (mediaElement1) ;
serialElement.addChild (mediaElement2) ;

Playing CompositeElements
Once our CompositeElement is populated, it is ready for playback.
We play CompositeElements exactly the same way as simple
MediaElement instances. We simply set the media property of our
MediaPlayer to point to our CompositeElement:

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4 Getting Started with Web Video Using OSMF

mediaPlayer.media = serialElement;

Displaying CompositeElements
We add a CompositeElement instance to the display the same way
we reveal a MediaElement—by attaching it to a MediaContainer:

mediaContainer.addMediaElement(serialElement);

We do NOT customize the layout of CompositeElement instances.
Recall, CompositeElements can support multiple different pieces
of media, of different types and characteristics, alone or in parallel;
thus you will want to control the layout of each MediaElement
individually anyway.

To customize the layout of media stored in CompositeElements,
we work with LayoutMetadata objects, and apply them to the
individual MediaElement instances (as we learned above).

layout : LayoutMetadata = new LayoutMetadata();
layout.width = 320;
layout.height = 240;
layout.x = 320;
layout.y = 240;
mediaElement1.addMetadata(LayoutMetadata.LAYOUT_NAMESPACE, layout);
mediaElement2.addMetadata(LayoutMetadata.LAYOUT_NAMESPACE, layout);

STREAMING

Streaming media, unlike progressively loaded media, is delivered
(or ‘streamed’) in a series of packets that are continually delivered
to the user during playback. For this reason, unlike progressively
delivered media, media files that are streamed are never actually
stored on viewer computers. Streaming is a very effective way to
deliver large audio and video files and, in particular, streaming
facilitates rapid and immediate seeking (with progressive media,
you can only seek to those portions of the media that have already
downloaded).

If you are interested in working more with streaming, and you are
on a Windows or Linux machine, you can install a local developer
version of Flash Media Server (which you may download from
http://adobe.com/products/flashmediaserver/). If you are working
on Mac, or you wish to develop your FMS work on a live server, you
can lease FMS inexpensively from http://Influxis.com.

URL Formatting for Streaming
Before we get into the code for streaming, if you aren’t used to
working with Flash Media Server, you may not be used to the rather
awkward logic FMS requires with respect to streaming media file
extensions.

If you are streaming an FLV, you strip the ‘.flv’ when calling the file,
as in:

rtmp://myFMS.com/appDirectory/my

Basic RTMP Streaming
OSMF makes streaming incredibly easy. If you return to our ‘Basic
OSMF Example, we can change the URL in this line of code:

var videoElement : VideoElement = new VideoElement(new URLResource(“my.flv”));

to (assuming you had a Flash Media Server setup at myFMS.com):

var videoElement : VideoElement = new VideoElement(new URLResource(“rtmp://myFMS.
com/appDirectory/my”));

And voila! Our player is now a streaming video player. Seriously,
that’s it. But it gets better.

HTTP Streaming
The above is an example of RTMP streaming—or streaming with
the real-time media protocol (used by Adobe’s Flash Media Server).

With Flash Player 10.1, you can now stream your media without
an RTMP server, straight from your web server, utilizing HTTP
Streaming (assuming your web server is configured to support it,
which the majority are). It’s just what it sounds like—streaming
video without Flash Media Server.

Can you guess how difficult the code is? Well, it’s the same code as
we’ve already worked with, but instead of pointing to an FLV, F4V,
MP4 or MP3, we point to an F4M file, or a Flash Media Manifest
file, which is an XML file containing information about a Flash
media asset. For example:

var videoElement : VideoElement = new VideoElement(new URLResource(“http://my.com/
my.f4m”));

For more information on F4M, reference the specification at http://
opensource.adobe.com/wiki/display/osmf/Flash+Media+Manifest
+File+Format+Specification.

Dynamic Streaming
Sometimes you want to prepare multiple versions of the same
video, at different quality bitrates, so that viewers can enjoy the
highest quality video possible, given their bandwidth.
And, because a viewer’s bandwidth can change over time, you will
want to query the active bandwidth repeatedly, and
change to a higher or lower quality video if the viewer’s bandwidth
has shifted.

This process is called Dynamic Streaming—delivering the highest
quality video possible, at all times during the viewing experience,
from a collection of videos encoded at different bitrates.

Though not quite as simple as basic streaming (after all,
there’s more information we have to setup to get this working),
implementing dynamic streaming with OSMF is remarkably easy.

DynamicStreamingResource
In all of the prior examples, we have utilized a URLResource to
wrap the URL to our media file, when creating our VideoElement,
as in:

var videoElement : VideoElement = new VideoElement(new URLResource(“my.flv”));

To implement dynamic streaming, we need to use a different
class—the DynamicStreamingResource. When we create a
DynamicStreamingResource, instead of pointing to a media file, we
point to a Flash Media Server application directory.
First, we import the DynamicStreamingResource class:

import org.osmf.net.DynamicStreamingResource ;

Then, we create a new DynamicStreamingResource:

var resource : DynamicStreamingResource = new DynamicStreamingResource (“rtmp://
myFMS.com/myAppDir”) ;

DynamicStreamingItem
Our resource now points to an entire directory, instead of a single
file. Next, we must populate our DynamicStreamingResource with
the information pointing to our actual video files.

To do so, we create a DynamicStreamingItem instance
for each bitrate we intend to support. When creating a
DynamicStreamingItem, we specify a filename (respecting FMS
file extension rules, noted above), and a minimum supported
bandwidth (in kilobits-per-second, or kbps) required to view this
version of the video:

new DynamicStreamingItem (“my_high” , 1500)

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5 Getting Started with Web Video Using OSMF

In our code, we will store these DynamicStreamingItem instances in
a vector (vectors are similar to arrays, but the values stored in the
indices of a vector must conform to the same datatype—in
this case, all values stored in our vector will be
DynamicStreamingItem instances).

For our example, we will support three separate bitrates in our
player: 400kbps (low), 800kbps (medium) and 1.5mbps (high).
To start, of course, we will need to import the
DynamicStreamingItem class:

import org.osmf.net.DynamicStreamingItem ;

Then, we will create our vector of DynamicStreamingItems (with
a fixed length of 3, because we wish to support precisely three
bitrates):

var vector : Vector.<DynamicStreamingItem> = new Vector.<DynamicStreamingItem> (
3) ;

Next, we will populate our vector with the three
DynamicStreamingItem instances.

vector [0] = new DynamicStreamingItem (“my_high” , 1500) ;
vector [1] = new DynamicStreamingItem (“my_low” , 400) ;
vector [2] = new DynamicStreamingItem (“my_medium” , 800) ;

Note that the ordering of DynamicStreamingItems in the vector
is irrelevant.

Then, before we move on, we ensure that the streamItems property
of our DynamicStreamingResource points to our vector:

resource.streamItems = vector ;

Bringing it all Together
There may be some new and long class names involved, but
building a dynamic streaming player with OSMF is remarkably
easy—the code is very brief (only 12 lines in this example) and
very similar to the basic six lines of code we used to progressively
play a single video:

var player : MediaPlayer = new MediaPlayer () ;
var container : MediaContainer = new MediaContainer () ;
addChild (container) ;
var resource : DynamicStreamingResource = new DynamicStreamingResource (“rtmp://
myFMS.com/myAppDir”) ;
vector [0] = new DynamicStreamingItem (“my_high” , 1500) ;
vector [1] = new DynamicStreamingItem (“my_low” , 400) ;
vector [2] = new DynamicStreamingItem (“my_medium” , 800) ;
resource.streamItems = vector ;
videoElement = new VideoElement(resource) ;
player.media = videoElement ;
container.addMediaElement (videoElement) ;

Subclipping
When you stream with an RTMP server, it is easy to play segments
from entire videos—referred to as subclipping, or playing clips
within clips.

We do this with the StreamingURLResource, which we can use
instead of a regular URLResource. A StreamingURLResource
points only to a specific portion of a streamed video, determined
by in and out points (measured in seconds), set when you create
the instance:

new StreamingURLResource(url, streamType , clipStartTime , clipEndTime);

There are many potential uses for subclipping, but an obvious
one is the insertion of interstitial advertising. Let’s say we wish to
stream a one-minute clip, and progressively deliver a video ad half
way through (at 30 seconds). This will require two subclips (aka
StreamingURLResources) and a regular URLResource (for the ad),
connected by a SerialElement (so that they play sequentially, rather
than concurrently).

To start, we import the StreamingURLResource class:

import org.osmf.net.StreamingURLResource ;

Then we can write the following code:

var serialElement : SerialElement = new SerialElement();
var resource1 = new StreamingURLResource(“rtmp://myFMS.com/app/vid1” , null, 0,
30);
serialElement.addChild(new VideoElement(resource1));
var resource2 : URLResource = new URLResource (“myAd.flv”) ;
serialElement.addChild(new VideoElement(resource2));
var resource3 = new StreamingURLResource(“rtmp://myFMS.com/app/vid1”, null, 30,
60);
serialElement.addChild(new VideoElement(resource3));
var mediaPlayer : MediaPlayer = new MediaPlayer(serialElement);
var container : MediaContainer = new MediaContainer();
addChild(container);
container.addMediaElement(serialElement);

KEY EVENTS

A huge amount of OSMF just works. But when you start building
larger and customized experiences (for example, a playlist-driven
media player, with a control bar to manage playback), you will need
to write a bit of your own code, to handle and respond to events
coming from OSMF. For example, you may wish to know when to
enable a custom pause button, or to toggle its state to look like a
play button; or perhaps you wish to build a custom progress bar,
and need to track the position of the media.

OSMF is a rich framework, there is a lot you can do with it, and
there are many events within OSMF you can listen to and exploit.
However, to get started building custom controls, there are a
few events—all coming from the MediaPlayer—that are the most
important to learn about and work with.

Remember: MediaPlayer instances can be re-used to playback
multiple MediaElement and CompositeElement instances,
of multiple types—so these events can be dispatched during
playback of a MediaElement, or in between playback of different
MediaElement instances.

MediaErrorEvent
The MediaErrorEvent (org.osmf.events.MediaErrorEvent) is
dispatched on a MediaElement when there is an error loading the
specified media (such as if the specified video file does not exist).
The MediaErrorEvent can also be heard on the MediaPlayer to
which the MediaElement is associated—so you may listen for this
event on either type of object.

The code to listen for, and trace out the details of, a
MediaErrorEvent is:

mediaPlayer.addEventListener (MediaErrorEvent.MEDIA_ERROR , _onMediaError) ;
function _onMediaError (evt : MediaErrorEvent) : void
{
	 trace (“_onMediaError () , evt.error : “ + evt.error) ;
}

TimeEvent
The TimeEvent (org.osmf.events.TimeEvent) is dispatched on
MediaPlayer instances on three occasions:

TimeEvent.CURRENT_TIME_CHANGE is dispatched when the time
property of the MediaPlayer has changed (e.g., your video has
advanced, and you want to update a progress bar).

TimeEvent.COMPLETE is dispatched when the playback of
the MediaElement currently playing back in the MediaPlayer is
complete (e.g., when your video has ended).

TimeEvent.DURATION_CHANGE is dispatched when the duration
of the MediaElement currently playing back in the MediaPlayer
has changed, for example, when you swap out associated
MediaElement instances (when you change which MediaElement
instance is stored in the media property), or advance
MediaElements in a SerialElement.

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

he pattern.
tion

f he term Continuous Integration

le this Refcard

h s

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

d

Perform an Integration Build periodically, continually, etc.

d utomated feedback from CI server to development team

they occur
ld based on

brought to you by...

By Andy Harris

HTML BASICS

o
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares c

common.) All are essenti l
extension HT

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anyb d

expected. Early HTML had very limited layo

Browser manufacturers added

web developers cresult i

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Network Security
ALM
Solr
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKSABOUT THE AUTHOR

ISBN-13: 978-1-934238-75-2
ISBN-10: 1-934238-75-9

9 781934 238752

50795

6 Getting Started with Web Video Using OSMF

The code to listen for, and trace out the details of, a TimeEvent is:

mediaPlayer.addEventListener (TimeEvent.CURRENT_TIME_CHANGE , onTimeEvent) ;
mediaPlayer.addEventListener (TimeEvent.COMPLETE , onTimeEvent) ;
mediaPlayer.addEventListener (TimeEvent.DURATION_CHANGE , onTimeEvent) ;
function onTimeEvent (evt : TimeEvent) : void
{
	 trace (“onTimeEvent () , evt.name: “ + evt.name + “ , evt.time : “ +
evt.time) ;
}

MediaPlayerCapabilityChangeEvent
The MediaPlayerCapabilityChangeEvent (org.osmf.events.
MediaPlayerCapabilityChangeEvent) is dispatched on MediaPlayer
instances when the capabilities of the instance have changed.

MediaPlayerCapabilityChangeEvent.CAN_PLAY_CHANGE is
dispatched on MediaPlayer instances when the playable state of
the media loaded into the associated MediaElement changes.
The value is either true (e.g., when your video has loaded and can
begin playback), or false (e.g., when your video can no longer be
played).

MediaPlayerCapabilityChangeEvent.CAN_SEEK_CHANGE is
dispatched on MediaPlayer instances when the seekable state of
the media loaded into the associated MediaElement changes. The
value is either true (the media is now seekable) or false (the media
is not seekable).

mediaPlayer.addEventListener (MediaPlayerCapabilityChangeEvent.CAN_LOAD_CHANGE ,
onCapabilityChange) ;
mediaPlayer.addEventListener (MediaPlayerCapabilityChangeEvent.CAN_PLAY_CHANGE ,
onCapabilityChange) ;
mediaPlayer.addEventListener (MediaPlayerCapabilityChangeEvent.CAN_SEEK_CHANGE ,
onCapabilityChange) ;
function onCapabilityChange (evt : MediaPlayerCapabilityChangeEvent) : void
{
	 trace (“onCapabilityChange () , evt.enabled : “ + evt.enabled) ;
}

MediaPlayerStateChangeEvent
The MediaPlayerStateChangeEvent (org.osmf.events.
MediaPlayerStateChangeEvent) is very useful at informing us
in changes to the playback state of the media controlled by
MediaPlayer instances. To listen for this event on MediaPlayer
instances, and trace out the useful information from the event, we
can use the following code:

mediaPlayer.addEventListener (MediaPlayerStateChangeEvent.MEDIA_PLAYER_STATE_
CHANGE , onMediaPlayerStateChange) ;
function onMediaPlayerStateChange (evt : MediaPlayerStateChangeEvent) : void
{
	 trace (“onMediaPlayerStateChange () , evt.state : “ + evt.state) ;
}

It then becomes important to know what the state property is
set to on the MediaPlayerStateChangeEvent—so we know what
state change led to the firing of this event. All possible state
change values are available as public static constants on the
MediaPlayerState class (org.osmf.media.MediaPlayerState).

If state =... That Means...

MediaPlayerState.PLAYING The media is playing.

MediaPlayerState.LOADING The media is loading.

MediaPlayerState.BUFFERING The media is buffering.

MediaPlayerState.UNINITIALIZED The MediaPlayer is empty (there is no
loaded media).

MediaPlayerState.READY The media has completed loading and
is ready for playback; or the media has
completed playback, has rewound, and is
ready for playback again.

R Blank is CTO of Almer/Blank, an Adobe Solution
Partner based in Venice, California, that specializes
in video and application development for the Flash
platform. He is also the Training Director at the Rich
Media Institute, the Adobe Authorized Training
Center that he co-founded. As well, R serves on the
faculty. His personal blog is RBlank.com.

If you want to build interactive applications on
the desktop, in the browser, or on mobile devices,
this new edition of the ActionScript 3.0 Bible is all
you need.

BUY NOW
books.dzone.com/books/actionscript3

http://refcardz.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

