

DZone, Inc. | www.dzone.com

By Tim Berglund and Matthew McCullough

MOTIVATIONS

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 C

lo
ju

re

 w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#122

CONTENTS INCLUDE:
n	 Motivations
n	 Language Foundations
n	 REPLs
n	 Function Catalog
n	 Interoperability
n	 The Clojure Ecosystem and more...

It all started with John McCarthy, the year 1958, and a
small language named Lisp. Why are we, five decades later,
discussing a sudden springing-to-life of incarnations of this
programming language predated only by Fortran? It turns
out that Lisp never really died. It was merely in hibernation all
those years, “pining for the fjords” of the Java Virtual Machine,
powerful CPUs, and abundant RAM. That
day has arrived. In fact, the multi-core
architecture and ever-harder concurrency
problems computer science is currently
aiming to solve are a perfect fit for a Lisp
dialect. Rich Hickey realized this and
began work on a language we now know
as Clojure (pronounced: \klö-zhər\).

In just a few short years, the Java Virtual
Machine (JVM) has gone from a platform
solely running the Java language, to
becoming the preferred platform for the
execution of hundreds of cutting edge
programming languages. Some of these
languages, such as Groovy, Scala and
Clojure are vying for the community’s
respect as the most innovative language
on the Java Virtual Machine. Let’s
explore why Clojure is one of those frontrunners and why it
deserves a place in the tool belt of any leading edge JVM
developer.

Don’t let yourself think Clojure is only for the elite, or for
solving a narrow class of programming problems. It is a
general-purpose dynamic language of the JVM, appropriate
for a broad variety of tasks by any developer willing to learn a
few potentially unfamiliar—but accessible—concepts.

Why the strange syntax?
Lisps are often ridiculed as having a plethora of parenthesis,
but they serve a very useful purpose. They reduce all ambiguity
and require no lengthy set of evaluation precedence rules;
deepest parens execute first. For the benefit of the developer,
the frequency of parentheses in Clojure were engineered down
to the barest minimum Lisp has ever seen.

Clojure’s simple syntax rules are a direct benefit of the code
being a direct version of the abstract syntax tree (AST).
Following the execution of the code becomes a matter of
traversing that tree, which is often a simple recursion to the
deepest pair of parentheses, then proceeds outward. For
example, Figure 1 shows a basic math problem’s Clojure syntax
and evaluation.

Functional Programming with Clojure
Simple Concurrency on the JVM

Get over 90 DZone Refcardz
FREE from Refcardz.com!

LANGUAGE FOUNDATIONS

Code Is Data
The fact that Clojure’s unconventional syntax asks you to type
in the AST directly has a surprising implication: namely, that
all Clojure code is data. In fact, there is no formal distinction
between code and data in Clojure. When code is represented
in text files, it exists as a set of nested forms (or S-expressions).

When these forms are parsed by the
reader (which is like a part of the
compiler), they become Clojure data
structures, no different in kind than the
data structures you create yourself in
Clojure code.

We call this property homoiconicity. In
a homoiconic language, code and data
are the same kind of thing. This is very
different from a language like Java,
in which variables and the code that
manipulates them live in two separate
conceptual spaces.

As a result of Clojure’s homoiconicity,
every Clojure program is a data structure,
and every Clojure data structure can
potentially be interpreted as a program.

The data structure that is the program is available for the
program to modify at run time. This arguably allows for the
most powerful metaprogramming possible in any language.

Data Types…?
Since all Clojure code is a Clojure data structure, we don’t

	
Figure 1: Parsing of a Clojure syntax tree

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2 Getting Started with Clojure

speak of data types and data structures the way we do in a
conventional language. Instead, we speak of forms. Forms are
text strings processed by the Clojure Reader.

Form Name Description Examples

String A string of characters,
implemented by
java.lang.String.

“angry monkey”,
“Mutable state
considered harmful”

Number A numeric literal that
evaluates to itself.

6.023E23, 42

Ratio A rational number. 22/7, 1/3, 24/601

Boolean A boolean literal form. False
and nil evaluate to false; true
and everything else evaluate
to true.

Also returned by predicate
functions.

true, false

Character A single character literal,
implemented by
java.lang.Character.

\z, \3, \space, \tab, \
newline, \return

Nil The null value in Clojure. nil

Keyword A form beginning with a colon
that evaluates to itself. Also a
function that looks itself up in
a map.

:deposed, :royalty

Symbol A name that refers to
something. Symbols may be
function names, data, Java
class names, and namespaces.

str-join, java.lang.
Thread, clojure.core, +,
source-path

Set A collection of unique
elements. Also a function that
looks up its own elements.

#{:bright :copper
:kettles},
#{1 3 5 7 13}

Map A collection of key/value
pairs. Note that commas are
optional. Also a function that
looks up its own keys.

{:species “monkey”
:emotion “angry”},
{“A” 23, “B” 83}

Vector An ordered collection with
high-performance indexing
semantics. Also a function
that looks up an element by
its position.

[1 1 2 3 5 8]

List An ordered collection, also
known as an S-expression, or
sexp. The fundamental data
structure of Clojure. When
the list is not quoted, the first
element is interpreted as a
function name, and is invoked.

‘(13 17 19 23),
(map str [13 17 19 23])

Note that all Clojure data structures are immutable, even things
like maps and lists that we normally think of as mutable. Any
time you perform an operation on a data structure to change
it, you are actually creating a whole new structure in memory
that has the modification. If this seems horribly inefficient, don’t
worry; Clojure represents data structures internally such that
it can create modified views of immutable data structures in a
performant way.

Mutability in Clojure
Clojure invites you to take a slightly different view of variables

from the imperative languages you are used to. Conceptually,
Clojure separates identity from value. An identity is a logical
entity that has a stable definition over time, and can be
represented by one of the reference types (ref, agent, and
atom). An identity “points to” a value, which by contrast
is always immutable. We could bind a name to a value as
follows—this is analogous to assignment in Java—but there is
no idiomatic way to change the value had by that name:

=> (def universal-answer 42)
#’user/universal-answer
=> universal-answer
42
=> ; Doing it wrong
=> (def universal-answer 43)
#’user/universal-answer

In the example above, 42 is the value bound to the name
universal-answer. If we wanted the universal answer to be able
to change, we might use an atom:

=> (def universal-answer (atom “what do you get when you multiply six
by nine”))
#’user/universal-answer
=> (deref universal-answer)
“what do you get when you multiply six by nine”

Note that we access the value of an atom using the deref
function. To change the value pointed to by an atom, we must
be explicit. For example, to change the universal answer to
be a function instead of a number or a string, we use the
reset! function:

=> (reset! universal-answer (fn [] (* 6 9)))
#<user$eval11$fn__12 user$eval11$fn__12@d5e92d7>
=> ((deref universal-answer))
54

The double parentheses around the deref call are necessary
because the value of universal-answer is a function. Wrapping
that function in parentheses causes Clojure to evaluate it,
returning the value 54.

Note that the number, the string, and the function above are
values, and do not change. The symbol universal-answer is an
identity, and changes its value over time.

In traditional concurrent programming, synchronizing access
to shared variables is the limiting factor in creating correct
programs, and is an intellectually daunting task besides.
Clojure provides an elegant solution in its reference types. In
addition to refs, we have atoms and agents for concurrently
managing mutable state. Together these three types
form a significantly improved abstraction over traditional
threading and synchronization. You can read more about
them here: http://clojure.org/refs, http://clojure.org/atoms,
http://clojure.org/agents.

Sequences
Clojure’s Aggregate forms (i.e., String, Map, Vector, List, and
Set) can all be interpreted as sequences, or simply “seqs”
(pronounced seeks). A seq is an immutable collection on which
we can perform three basic operations:

 • first: returns the first item in the sequence

=> (first [2 7 1 8 2 8 1 8 2 8 4 5 9 0])
2

 • rest: returns a new sequence containing all elements
except the first

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3 Getting Started with Clojure

=> (rest [2 7 1 8 2 8 1 8 2 8 4 5 9 0])
(7 1 8 2 8 1 8 2 8 4 5 9 0)

 • cons: returns a new sequence containing a new element
added to the beginning

=> (cons 2 [7 1 8 2 8 1 8 2 8 4 5 9 0])
(2 7 1 8 2 8 1 8 2 8 4 5 9 0)

These three functions form the backbone of seq
functionality, but there is a rich library of additional seq
functions in clojure.core.

See here for more details: http://clojure.org/sequences and
http://clojuredocs.org/quickref/Clojure%20Core#Collections+-
+SequencesSequences.

Clojure sequences can be infinite, like the set of all
positive integers:

=> (def positive-integers (iterate inc 1))

Since this sequence would take infinite memory to
realize, Clojure provides the concept of a lazy sequence.
Lazy sequences are only evaluated when they are needed at
run time. If we tried to print the sequence of all primes, we
would need infinite memory and time:

=> (use ‘[clojure.contrib.lazy-seqs :only (primes)])
=> primes
=> ; requires extreme patience

However, we can efficiently reach into that lazy sequence
and grab the members we need without constructing the
whole thing:

=> (use ‘[clojure.contrib.lazy-seqs :only (primes)])
=> (take 10 (drop 10000 primes))
=> (104743 104759 104761 104773 104779 104789 104801 104803 104827
104831)

Of course, lazy sequences are not magical. They will
require enough memory and computation to generate the
values we request, but they defer that computation until
needed, and usually don’t attempt eager computation of the
entire sequence.

REPLs

Running a REPL
A standard tool for experimenting with Clojure is a Read Eval
Print Loop, or REPL. It is an interactive prompt that remembers
the results of previous operations and allows you to use those
results in future statements.

The simple prerequisites are:
 • Java 1.5 or greater JDK
 • A download of the clojure.zip language archive from

http://clojure.org/downloads

After obtaining the prerequisites:
 • Unzip the clojure.zip archive.
 • Run java -cp clojure.jar clojure.main

A Web REPL
If getting a REPL up and running seems like too much effort
for a first encounter with Clojure, try “Lord of the REPLs”, a
Google App Engine Web application that immediately lets you
try out snippets of syntax. (http://lotrepls.appspot.com/)

Simply hit CTRL + Space and choose Clojure from the
language drop-down.

A similar Clojure-only Web REPL can be found at
http://tryclj.licenser.net/

Documentation
Docstrings
Clojure encourages every function to have a docstring. This
is similar to JavaDoc comments in Java. A docstring for a
function is enclosed by double quotes and precedes the name
of the function.

(defn sayhello
 “Introduce a friend by name.”
 [friendsname]
 (str “Let me introduce you to my friend “ friendsname))

The docstring can be viewed with the doc function:

(doc sayhello)

Which outputs:

user/sayhello
([friendsname])
 Say hello to a friend by name.
nil

If you can’t recall what a function’s name is, but you can
remember some keywords from the docstring, you can search
for those words in all functions with the find-doc function:

(find-doc “friend by name”)

Which outputs:

user/sayhello
([friendsname])
 Say hello to a friend by name.
nil

Source code
If the source for a function is available, it can be shown with a
straightforward call to source like so:	

Figure 2: Clojure’s basic REPL

	
Figure 3: Web Based REPL

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4 Getting Started with Clojure

FUNCTION CATALOG

The sheer volume of functions available in Clojure can be
overwhelming. However, a combination of ClojureDocs.org and
docstring referencing can aid in finding one that fits a specific
need. Here are a few excerpts of frequently used functions:

Arithmetic
Function Return Value

+ Sum of numbers.

- Subtraction of numbers.

* Multiplication of numbers.

/ Division of numbers.

mod Modulus of numbers.

inc Input number incremented by one.

dec Input number decremented by one.

min Smallest of the provided numbers.

max Greatest of the provided numbers.

Hot
Tip

An easily-navigable set of core function
documentation can be found at:
http://clojuredocs.org/quickref/Clojure%20Core

INTEROPERABILITY

Many new languages are being developed and hosted on the
JVM for its robust deployment model, excellent performance
characteristics, and rich ecosystem. These languages take
different approaches to interoperating with and embracing
the Java tradition they inherit. For its otherwise alien syntax,
Clojure has surprisingly clean Java interop, and this is no
accident. The decision to host Clojure on the JVM was not
merely an implementation detail; rather, the JVM is a first-
class part of Clojure’s world. Significant language features
were added to cooperate cleanly with the JVM. Clojure’s Java
interop is implemented without intrusive and abstraction-
leaking wrappers, but instead by direct programming of Java
objects in Clojure code.

Calling a static method on a class is easy:

=> (System/nanoTime)
1286079871663966000
=> (Math/E)
2.718281828459045

Calling an instance method on a Java object has a special
syntax (note that the Clojure String is also a Java object):

=> (.toUpperCase “angry monkey”)
“ANGRY MONKEY”
=> (.getClass :monkey)
clojure.lang.Keyword

Creating an OBJECT can be done with the familiar new
function, or with the special dot syntax:

=> (new String “monkey”)
“monkey”
=> (String. “monkey”)
“monkey”

Here is some code illustrating how to import classes and
interact with the Swing API:

(source sayhello)

which outputs:

(defn sayhello
 “Introduce a friend by name.”
 [friendsname]
 (str “Let me introduce you to my friend “ friendsname))
nil

Note that in some execution environments, it is necessary
to first import the repl-utils functions before calling source.
Leiningen and the standard Clojure 1.2 repl have the source
function available automatically.

(use ‘clojure.contrib.repl-utils)

Tooling
All the major development tools have Clojure plug-ins bringing
both syntax highlighting and a REPL to the table.

Emacs
Superior Lisp Interaction Mode for Emacs
http://github.com/nablaone/slime

Highlighting and Indentation
http://github.com/technomancy/clojure-mode

TextMate
Clojure-TMBundle
http://github.com/stephenroller/clojure-tmbundle

Eclipse
Counterclockwise
http://code.google.com/p/counterclockwise/

IntelliJ
La-Clojure
http://plugins.intellij.net/plugin/?id=4050

NetBeans
Enclojure
http://www.enclojure.org/

Testing (Predicates)
Function Description

nil? True if the parameter is nil.

identical? True if the parameters are the same object.

zero? True if zero, false otherwise.

pos? True if positive, false otherwise.

neg? True if negative, false otherwise.

even? True if even, false otherwise.

odd? True if odd, false otherwise.

min Smallest of the provided numbers.

max Greatest of the provided numbers.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5 Getting Started with Clojure

THE CLOJURE ECOSYSTEM

Clojure is more than just an experiment to bring Lisp to the
JVM. It is a growing component of production applications,
often focusing on exciting new frontiers of parallel, graph
navigation, and scalable computing.

Stories abound of Clojure in use at telecommunications firms,
analytics agencies, and social media companies. The following
short list can be of use in convincing colleagues that the
language is worth investigating for applicability to challenging
problem domains.

Revelytix: Semantic Emergent Analytics(TM) with semantic
technologies and query federation capabilities.
http://www.revelytix.com/

Akamai: Live Transcoding of Mobile Content
http://www.mail-archive.com/clojure@googlegroups.com/
msg29948.html

FlightCaster: Commercial Plane Delay Predictions
http://www.infoq.com/articles/flightcaster-clojure-rails

SoniAn: Cloud Powered Email Archiving http://sonian.com

GOING FURTHER

Community
Clojure has a vibrant community that happily fields questions
and offers up a plethora of code examples.

Official Sites
Homepage
http://clojure.org/

Source Code
http://github.com/clojure/clojure/

Blog
http://clojure.blogspot.com/

Support, Development, Mentoring
http://clojure.com/

Documentation, Tutorials
Community-authored code examples
http://clojuredocs.org
http://www.gettingclojure.com/cookbook:clojure-cookbook

Community-authored book
http://en.wikibooks.org/wiki/Clojure_Programming

Relevance Clojure Studio Training Materials
http://github.com/relevance/labrepl

(ns swing-example
 (:use [clojure.contrib.swing-utils]
 [clojure.contrib.lazy-seqs :only (fibs)])
 (:import [javax.swing JFrame JLabel JButton JTextField
SwingConstants]
 [java.awt GridLayout]))

; Define a function that builds a JFrame that runs the supplied
function
; on a button click, then displays the result in the frame
(defn function-frame [window-title button-text func]
 (let [text-field (JTextField.)
 result-label (JLabel. “—” SwingConstants/CENTER)
 button (doto (JButton. button-text)
 (add-action-listener
 (fn [_]
 (.setText result-label
 (str (func (Integer. (.getText text-
field))))))))]
 (doto (JFrame. window-title)
 (.setLayout (GridLayout. 3 1))
 (doto (.getContentPane)
 (.add button)
 (.add text-field)
 (.add result-label)
)
 (.pack))))

; Customize function-frame to calculate Fibonacci numbers
(def fib-frame (function-frame “Fibonacci”
 “Fib”
 #(nth (fibs) %)))

; Display the JFrame
(.setVisible fib-frame true)

Important Java Interop Functions and Macros

Name Description Example

doto Allows many Java
method calls in
succession on a
single object.

=>(def user (doto (User.)
(.setFirstName “Tim”)
(.setLastname “Berglund”)))

bean Creates an immutable
map out of the
properties of a JavaBean.

=>(bean user)
{:firstName “Tim”, :lastName
“Berglund”}

class Returns the Java class of
a Clojure expression.

=>(class (Date.))
java.util.Date

supers Returns a List of the
superclasses and
implemented interfaces
of a Clojure expression.

=> (supers (class
(Calendar/getInstance)))
#{java.lang.Cloneable java.
util.Calendar java.lang.
Comparable java.lang.Object
java.io.Serializable}

Open Source Tools & Frameworks
Leiningen
The JVM has many build tools such as Maven, Gradle and Ant
that are compatible with Clojure. However, Clojure has its own
build tool that is “designed to not set your hair on fire.” Setting
it up proves that this goal has been achieved.

On a *nix platform:

wget ‘http://github.com/technomancy/leiningen/raw/stable/bin/lein’

On Windows, download the binary distribution:

http://github.com/technomancy/leiningen

Then get help:

lein

Or create a new Clojure project:

lein new myfirstproj

Or run a REPL:

lein repl

Compojure
Clojure has a lightweight Web framework that allows for the

power of Lisp and a corresponding DSL to flex their muscles to
produce HTML content with minimal effort.

http://github.com/weavejester/compojure

Cascalog
The Hadoop MapReduce framework has garnered enough
attention for Internet-scale data processing to warrant a tool
called Cascalog. It provides a Clojure language interface to
query Hadoop NoSQL datastores.

http://github.com/nathanmarz/cascalog

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
OSMF
Clojure
HTML 5
Test Driven Development

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-02-8
ISBN-10: 1-936502-02-X

9 781936 502028

50795

6 Getting Started with Clojure

Videos
Rich Hickey on Clojure Concepts
http://www.infoq.com/presentations/Are-We-There-Yet-Rich-
Hickey

Stu Halloway on Clojure Protocols
http://vimeo.com/11236603

Rich Hickey on Clojure at W. Mass Developers’ Group
http://blip.tv/file/812787

Libraries
Build Tool
http://github.com/technomancy/leiningen

Statistical Computing
http://incanter.org/

Supplementary Libs
http://github.com/clojure/clojure-contrib/

Web Framework
http://github.com/weavejester/compojure/wiki

Books
Programming Clojure by Stu Halloway
http://pragprog.com/titles/shcloj/programming-clojure

Joy of Clojure by Michael Fogus and Chris Houser
http://joyofclojure.com/

Lisp in small pieces by Christian Queinnec
http://pagesperso-systeme.lip6.fr/Christian.Queinnec/WWW/
LiSP.html

SICP In Clojure
http://sicpinclojure.com/

Practical Clojure
http://apress.com/book/view/1430272317

Clojure in Action
http://www.manning.com/rathore/

Bookmarks
Clojure is still in its formative stages and new resources are
popping up all the time. One of the best ways to keep up with
the additions to its ecosystem is through a hand-crafted list of
bookmarks about this new JVM language.

http://delicious.com/matthew.mccullough/clojure
http://delicious.com/tlberglund/clojure
http://delicious.com/tag/clojure

Tim Berglund combines a broad perspective on software architecture and
team dynamics with a passion for hands-on development. He specializes in web
development using the Grails framework, bringing expertise in the browser, database
design, and enterprise integration to bear on browser-based solutions. His skill as
a teacher and his integrative approach to technology, team, and organizational
problem-solving makes him an ideal partner during periods of disruptive technology
change in your organization.

Tim embraces the Java platform, including both the Java language and its high-
productivity cousin, Groovy. He also helps clients bring agility to their database development using
the Liquibase database refactoring tool, having applied, coached, and lectured on it extensively. He is
committed to applying and helping teams excel with agile methods in all of his engagements.

Through his partnership with ThirstyHead.com, Tim offers public and private classroom training in
Groovy, Grails, and Liquibase, and is available to develop custom courseware by private engagement.

Tim is a frequent speaker at domestic and international conferences, including the Scandinavian
Developer Conference, JavaZone, Strange Loop, and the No Fluff Just Stuff tour.

Matthew McCullough is an energetic 15 year veteran of enterprise software
development, open source education, and co-founder of Ambient Ideas, LLC, a
Denver, Colorado, USA consultancy. Matthew is a published author, open source
creator, speaker at over 100 conferences, and author of three of the top 10 Refcardz
of all time. He writes frequently on software and presenting at his blog:
http://ambientideas.com/blog.

If you’re a Java programmer, if you care about concurrency, or
if you enjoy working in low-ceremony language such as Ruby or
Python, Programming Clojure is for you. Clojure is a general-
purpose language with direct support for Java, a modern Lisp
dialect, and support in both the language and data structures for
functional programming. Programming Clojure shows you how to
write applications that have the beauty and elegance of a good
scripting language, the power and reach of the JVM, and a modern,
concurrency-safe functional style. Now you can write beautiful code
that runs fast and scales well.

BUY NOW
books.dzone.com/books/programming-clojure

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

