
This DZone Refcard is brought to you by...

DZone

Selenium Load Testing & Performance
Monitoring Solution
TestMakerTM is the Open Source Test (OST) solution to:

PushToTest is the trusted Selenium partner to Ford,

PepsiCo, Intuit, Cisco, and Deutsche Bank.

PushToTest Global Services delivers Selenium

training, consulting, integration, and professional

technical support. We provide on-site, near-shore,

and off-shore experts. PushToTest training moves

your team from manual to automated testing and off

proprietary test tools to Open Source Testing (OST.)

1. Repurpose Your Selenium Scripts
To Be Functional Tests, Load and
Performance Tests, and Business
Service Production Monitors

2. Advanced Selenium Functions
Not Available Anywhere Else.
For Example, Data-enable Your
Selenium Scripts With No Coding.
And advanced reporting.

3. Run Your Selenium Scripts in a
Grid or Cloud, or Both! Inside
or Outside Your Firewall. Up to
Millions of Virtual Users. No
Coding. And advanced reporting.

The free live webinar will be held on
the following dates:

January 18, 2011, Tuesday, 8 am to 9
am (Pacific, California Time)

February 1, 2011, Tuesday, 8 am to 9
am (Pacific, California Time)

February 15, 2011, Tuesday, 8 am to 9
am (Pacific, California Time)

REGISTER FOR FREE
http://seleniumworkshop.com

For more information
about PushToTest products and services

visit http://www.pushtotest.com
or contact PushToTest sales at sales@pushtotest.com

or call +1 408 871 0122 (USA, California Pacific Time)

http://www.pushtotest.com

DZone, Inc. | www.dzone.com

By Matt Stine

WHAT IS SELENIUM 2.0?

S
e

le
n

iu
m

 2
.0

 w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#125

CONTENTS INCLUDE:
n	 What is Selenium 2.0?
n	 Architecture
n	 Installation
n	 Driver Implementations
n	 Page Interaction Model
n	 Mobile Device Support and more...

Selenium 2.0 is a tool that makes the development of automated
tests for web sites and web applications easier. It represents
the merger of the original Selenium project with the WebDriver
project. WebDriver contributes its object-oriented API for
Document Object Model (DOM) interaction and browser
control as well as its various browser driver implementations.

The WebDriver approach to browser control differs significantly
from the Selenium approach. Whereas Selenium runs as a
JavaScript application inside the targeted browser, WebDriver
drives the browser directly through the most sensible means
available. For Firefox, this meant using JavaScript wrapped
in an XPCOM component; however, for Internet Explorer, this
meant using C++ to drive IE’s Automation APIs.

The merger of these two projects allows each technology’s
strengths to mitigate the other’s weaknesses. For example,
Selenium has good support for most common use cases, but
WebDriver opens up many additional possibilities via its ability
to step outside of the JavaScript sandbox. Going forward, both
of these APIs will live side by side in a synergistic relationship,
allowing automated test developers to easily leverage the right
tool for the job.

Selenium 2.0 currently supports writing cross-browser tests
in Java (and other languages on the JVM including Groovy),
Python, Ruby, and C#. It currently allows developers to target
Firefox, Internet Explorer, and Chrome with automated tests.
It also can be used with HtmlUnit for “headless” application
testing. Furthermore, driver implementations exist for the iOS
(iPhone/iPad), Android, and BlackBerry platforms.

The remainder of this Refcard will focus on the WebDriver
contributions to the Selenium 2.0 project and will take a brief
look at how to leverage the Selenium API via WebDriver.

Selenium 2.0:
Using the Webdriver API to Create Robust User Acceptance Tests

ARCHITECTURE

The WebDriver team chose to focus on four primary
architecture concerns:

 1. The User: WebDriver drives the browser from your end
user’s point of view.

 2. A “Best Fit” Language: each browser has a language that
is most natural to use from an automation perspective.
The various drivers are implemented as much as possible
in that language.

 3. A Layered Design: developers should be able to write
their tests in the supported language of their choice, and
these tests should work with all driver implementations.

	
 4. Reduction in Cost of Change: share as much code

as possible between the driver projects. This is
accomplished via the use of “Automation Atoms,”
which are JavaScript libraries implementing various
read-only DOM query tasks. These Atoms are used for
two purposes. The first is to compose a monolithic driver
(such as the FireFox driver) written primarily in JavaScript.
The second is to augment existing drivers written in other
languages with tiny fragments of highly compressed
JavaScript. This augmentation will reduce execution and
parsing time.

INSTALLATION

Java
From http://code.google.com/p/selenium/downloads/list
download the following two files and add them to your
classpath (version numbers are the latest as of this writing):

 • selenium-server-standalone-2.0a7.jar contains the
Selenium server (required to use Selenium 1.x classes)
and the RemoteWebDriver server, which can be
executed via java -jar.

Therefore, the developer API exists as a thin wrapper
around the core of each driver.

brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.pushtotest.com
http://seleniumworkshop.com

DZone, Inc. | www.dzone.com

2 Selenium 2.0: Using the WebDriver API to Create Robust User Acceptance Tests

 • selenium-java-2.0a7.zip contains the Java language
bindings for Selenium 2.0. All of the necessary
dependencies are bundled.

Java (Maven)
Add the following to your pom.xml:

<dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium</artifactId>
 <version>2.0a7</version>
</dependency>

<dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-server</artifactId>
 <version>2.0a7</version>
</dependency>

Ruby
Run the following command:
gem install selenium-webdriver

Python
Run one of the following commands:
easy_install selenium

or
pip install selenium

C#
Download selenium-dotnet-2.0a6.zip and add references to
WebDriver.Common.dll and WebDriver.Firefox.dll (or your
browser of choice) to your Visual Studio project.

DRIVER IMPLEMENTATIONS

There are currently four official driver implementations for
desktop browsers:

Firefox
The Firefox driver is the most mature of the browser-based
drivers.

From Java:
WebDriver driver = new FirefoxDriver();

From Ruby:
driver = Selenium::WebDriver.for :firefox

From Python:
from selenium.firefox.webdriver import WebDriver
driver = WebDriver()

From C#:
IWebDriver driver = new FirefoxDriver();

Internet Explorer
The Internet Explorer driver has been tested and is known to
work on IE 6, 7, and 8 on Windows XP and Vista. Compared to
the other drivers, it is relatively slow.

From Java:
WebDriver driver = new InternetExplorerDriver();

From Ruby:
driver = Selenium::WebDriver.for :internet_explorer

From Python:
from selenium.ie.webdriver import WebDriver
driver = WebDriver()

From C#:
IWebDriver driver = new InternetExplorerDriver();

Chrome
The Chrome driver is comparatively new. Because Chrome
is based on Webkit, you may be able to verify that your
application works in other Webkit-based browsers such as
Safari. However, because Chrome uses V8 JavaScript engine
rather than the Safari Nitro engine, you may experience some
differences in behavior.

From Java:
WebDriver driver = new ChromeDriver();

From Ruby:
driver = Selenium::WebDriver.for :chrome

From Python:
from selenium.chrome.webdriver import WebDriver
driver = WebDriver()

From C#:
IWebDriver driver = new ChromeDriver();

HtmlUnit
The HtmlUnit driver is the fastest and most lightweight of the
group. It is the only pure Java implementation, so it is the
only solution that will run anywhere the JVM is available.
Because it utilizes HtmlUnit to interact with your application
instead of driving an actual browser, it carries along the
associated baggage:

 • You cannot visually inspect what’s going on during
your test.

 • HtmlUnit uses Rhino as its JavaScript+DOM
implementation. No major browser does this, and it is
disabled by default.

 • If you do enable JavaScript, the HtmlUnit Driver will
emulate the behavior of Internet Explorer.

From Java:
WebDriver driver = new HtmlUnitDriver();

Although it isn’t recommended, it is possible to configure the
HtmlUnitDriver to emulate a specific browser:
HtmlUnitDriver driver = new HtmlUnitDriver(BrowserVersion.FIREFOX_3);

SELENIUM RC EMULATION

It is possible to emulate Selenium Remote Control (RC)
using the WebDriver Java implementation on any of its
supported browsers. This allows you to maintain both
WebDriver and Selenium test assets side by side and to
engage in an incremental migration from Selenium to
WebDriver. In addition, running the normal Selenium RC
server is not required.

WebDriver driver = new FirefoxDriver();

String baseUrl = “http://downforeveryoneorjustme.com/”;
Selenium selenium = new WebDriverBackedSelenium(driver, baseUrl);

selenium.open(“http://downforeveryoneorjustme.com/”);
selenium.type(“domain_input”, “google.com”);
selenium.click(“//div[@id=’container’]/form/a”);

assertTrue(selenium.isTextPresent(“It’s just you”));

http://www.dzone.com
http://www.refcardz.com
http://www.pushtotest.com

DZone, Inc. | www.dzone.com

3 Selenium 2.0: Using the WebDriver API to Create Robust User Acceptance Tests

greatly simplify interaction with select elements and their
association options:

Method Purpose

selectByIndex(int index)/
deselectByIndex(int index)

Selects/deselects the option at the given index.

selectByValue(String value)/
deselectByValue(String value)

Selects/deselects the option(s) that has a value matching
the argument.

selectByVisibleText(String text)/
deselectByVisibleTest(String text)

Selects/deselects the option(s) that displays text matching
the argument.

deselectAll() Deselects all options.

getAllSelectedOptions() Returns a List<WebElement> of all selected options.

getFirstSelectedOption() Returns a WebElement representing the first selected
option.

getOptions() Returns a List<WebElement> of all options.

isMultiple() Returns true if this is a multi-select list; false otherwise.

You can create an instance of Select from a WebElement that is
known to represent a select element:

WebElement element = driver.findElement(By.id(“mySelect”));
Select select = new Select(element);

If the element does not represent a select element, this
constructor will throw an UnexpectedTagNameException.

Interacting with Rendered Elements
If you’re driving an actual browser such as Firefox, you also can
access a fair amount of information about the rendered state
of an element by casting it to RenderedWebElement. This is
also how you can simulate mouse-hover events and perform
drag-and-drop operations.

WebElement element = driver.findElement(By.id(“header”));
RenderedWebElement renderedElement = (RenderedWebElement) element;

RenderedWebElement Methods
Method Purpose

dragAndDropBy(int moveRightBy,
int moveDownBy)

Drags and drops the element moveRightBy pixels to
the right and moveDownBy pixels down. Pass negative
arguments to move left and up.

dragAndDropOn(RenderedWeb
Element element)

Drags and drops the element on the supplied element.

getLocation() Returns a java.awt.Point representing the top left-hand
corner of the element.

getSize() Returns a java.awt.Dimension representing the width and
height of the element.

getValueOfCssProperty(String
propertyName)

Returns the value of the provided property.

hover() Simulates a mouse hover event over the element.

isDisplayed() Returns true if the element is currently displayed;
otherwise false.

PAGE INTERACTION MODEL

After navigating to a page…

driver.get(“http://www.google.com”)

…WebDriver offers a plethora of means for interacting with
the elements on that page via its findElement methods.
These methods accept an argument of type By, which defines
several static methods implementing different means of
element location:

Locators
Locator Example (Java)

id attribute By.id(“myElementId”)

name attribute By.name(“myElementName”)

XPATH By.xpath(“//input[@id=’myElementId’]”)

Class name By.className(“even-table-row”)

CSS Selector By.cssSelector(“h1[title]”)

Link Text By.linkText(“Click Me!”)
By.partialLinkText(“ck M”)

Tag Name By.tagName(“td”)

In each case, findElement will return an instance of
WebElement, which encapsulates all of the metadata for that
DOM element and allows you to interact with it.

WebElement Methods
Method Purpose

clear() Clears all of the contents if the element is a text entity.

click() Simulates a mouse click on the element.

getAttribute(String name) Returns the value associated with the provided attribute name
(if present) or null (if not present).

getTagName() Returns the tag name for this element.

getText() Returns the visible text contained within this element (including
subelements) if not hidden via CSS.

getValue() Gets the value of the element’s “value” attribute.

isEnabled() Returns true for input elements that are currently enabled;
otherwise false.

isSelected() Returns true if the element (radio buttons, options within a
select, and checkboxes) is currently selected; otherwise false.

sendKeys(CharSequence…
keysToSend)

Simulates typing into an element.

setSelected() Select an element (radio buttons, options within a select, and
checkboxes).

submit() Submits the same block if the element if the element is a form
(or contained within a form). Blocks until new page is loaded.

toggle() Toggles the state of a checkbox element.

In addition to this set of methods designed for interacting
with the element in hand, WebElement also provides two
methods allowing you to search for elements within the current
element’s scope:

Method Purpose

findElement(By by) Finds the first element located by the provided method (see
Locators table).

findElements(By by) Finds all elements located by the provided method.

WebDriver provides a support class named Select to

On the downside, you may notice some inconsistencies in
behavior since the entire Selenium API is not implemented (eg.,
keyPressNative is unsupported) and Selenium Core is emulated.
You may also experience slower performance in some cases.

PAGE OBJECT PATTERN

The Page Object pattern is a useful tool for separating the
orthogonal concerns of testing the logical functionality of an
application from the mechanics of interacting with that
functionality. The Page Object pattern acts as an API to an HTML
page and describes to the test writer the “services” provided by
that page, while at the same time not exposing the underlying
implementation. The Page Object itself is the only entity that
possesses deep knowledge of the HTML’s structure.

Consider the Google home page. The user is able to
enter search terms and perform two possible actions: to
conduct the search or to automatically navigate to the

http://www.dzone.com
http://www.refcardz.com
http://www.pushtotest.com

DZone, Inc. | www.dzone.com

4 Selenium 2.0: Using the WebDriver API to Create Robust User Acceptance Tests

top hit (“I’m Feeling Lucky). We could model this with the
following Page Object (Java):

public class GoogleHomePage {
 private final WebDriver driver;

 public GoogleHomePage(WebDriver driver) {
 this.driver = driver;

 //Check that we’re actually on the Google Home Page.
 if (!”Google”.equals(driver.getTitle())) {
 throw new IllegalStateException(“This isn’t Google’s Home Page!”);
 }
 }

 public GoogleResultsPage search(String searchTerms) {
 driver.findElement(By.name(“q”)).sendKeys(searchTerms);
 driver.findElement(By.name(“btnG”)).submit();

 return new GoogleResultsPage(driver);
 }

 public UnknownTopHitPage imFeelingLucky(String searchTerms) {
 driver.findElement(By.name(“q”)).sendKeys(searchTerms);
 driver.findElement(By.name(“btnI”)).submit();

 return new UnknownTopHitPage(driver);
 }
}

To learn more about the Page Object pattern, visit:
http://code.google.com/p/selenium/wiki/PageObjects

WebDriver provides excellent support for implementing Page
Object’s via its PageFactory. The PageFactory supports a
“convention over configuration” approach to the Page Object
pattern. By utilizing its initElements method, the driver element
location code can be removed from the previous Page Object:

public class GoogleHomePage {
 private final WebDriver driver;

 private WebElement q;
 private WebElement btnG;
 private WebElement btnI;

 public GoogleHomePage(WebDriver driver) {
 this.driver = driver;

 //Check that we’re actually on the Google Home Page.
 if (!”Google”.equals(driver.getTitle())) {
 throw new IllegalStateException(“This isn’t Google’s Home Page!”);
 }
 }

 public GoogleResultsPage search(String searchTerms) {
 q.sendKeys(searchTerms);
 btnG.submit();

 return new GoogleResultsPage(driver);
 }

 public UnknownTopHitPage imFeelingLucky(String searchTerms) {
 q.sendKeys(searchTerms);
 btnI.submit();

 return new UnknownTopHitPage(driver);
 }
}

A fully initialized version of this object can then be created and
used as in the following code snippet:
WebDriver driver = new HtmlUnitDriver(); //or your choice of driver
driver.get(“http://www.google.com”);
GoogleHomePage page = PageFactory.initElements(driver, GoogleHomePage.
class);
page.search(“WebDriver”);

This version of initElements will instantiate the class. It works
only when there is a one-argument constructor that accepts

a WebDriver instance or when the default no-argument
constructor is present.

AnotherPageObject page = AnotherPageObject(“testing”, 1, 2, 3, driver);
PageFactory.initElements(driver, page);

We can further clean up the code by providing meaningful
names for the form elements and then using annotations to
declaratively specify the location strategy:

public class GoogleHomePage {
 private final WebDriver driver;

 @FindBy(name = “q”)
 private WebElement searchBox;

 @FindBy(name = “btnG”)
 private WebElement searchButton;

 @FindBy(name = “btnI”)
 private WebElement imFeelingLuckyButton;

 public GoogleHomePage(WebDriver driver) {
 this.driver = driver;

 //Check that we’re actually on the Google Home Page.
 if (!”Google”.equals(driver.getTitle())) {
 throw new IllegalStateException(“This isn’t Google’s Home Page!”);
 }
 }

 public GoogleResultsPage search(String searchTerms) {
 searchBox.sendKeys(searchTerms);
 searchButton.submit();

 return new GoogleResultsPage(driver);
 }

 public UnknownTopHitPage imFeelingLucky(String searchTerms) {
 searchBox.sendKeys(searchTerms);
 imFeelingLuckyButton.submit();

 return new UnknownTopHitPage(driver);
 }
}

The @FindBy annotation supports the same location methods
supported by the programmatic API (except for CSS selectors):

@FindBy Annotation Location Methods
Locator Examples

id attribute @FindBy(how = How.ID, using = “myElementId”)
@FindBy(id = “myElementId)

name attribute @FindBy(how = How.NAME, using = “myElementName”)
@FindBy(name = “myElementName”)

id or name
attribute

@FindBy(how = How.ID_OR_NAME, using = “myElement”)

XPATH @FindBy(how = How.XPATH, using = “//input[@id=’myElementId’]”)
@FindBy(xpath = “//input[@id=’myElementId’]”)

Class name @FindBy(how = How.CLASS_NAME, using=”even-table-row”)
@FindBy(className = “even-table-row”)

Link Text @FindBy(how = How.LINK_TEXT, using=”Click Me!”)
@FindBy(linkText = “Click Me!”)

Partial Link Text @FindBy(how = How.PARTIAL_LINK_TEXT, using=”ck M”)
@FindBy(partialLinkText = “ck M”)

Tag Name @FindBy(how = How.TAG_NAME, using=”td”)
@FindBy(tagName = “td”)

Hot
Tip

These examples assume the behavior of the Google
home page prior to the introduction of Google
Instant. For them to work properly, create a custom
FireFox profile turn instant off in that profile, and
then run your tests using that profile by setting
the system property “firefox.browser.profile” to the
name of your custom profile.

XPATH SUPPORT

WebDriver makes every effort to use a browser’s native XPath
capabilities wherever possible. For those browsers that do
not have native XPath support, WebDriver provides its own
implementation. If you’re not familiar with the behavior of the
various engines, this can lead to surprising results.

Driver Tag/Attribute
Names

Attribute Values Native XPath
Support

HtmlUnitDriver Lower-cased As they appear in HTML Yes

InternetExplorerDriver Lower-cased As they appear in HTML No

FirefoxDriver Case insensitive As they appear in HTML Yes

http://www.dzone.com
http://www.refcardz.com
http://www.pushtotest.com

DZone, Inc. | www.dzone.com

5 Selenium 2.0: Using the WebDriver API to Create Robust User Acceptance Tests

The constructor for RemoteWebDriver accepts two arguments:

 1) The URL for the remote server instance.
 2) A Capabilities object, which specifies the target

platform and/or browser. DesiredCapabilities provides
static factory methods for the commonly used choices
(e.g., DesiredCapabilities.firefox()).

MOBILE DEVICE SUPPORT

WebDriver provides excellent support for testing Web
applications on modern mobile device platforms. Support for
the following platforms are provided:

 • iOS (iPhone/iPad)
 • Android
 • Blackberry (5.0+)
 • Headless WebKit

WebDriver is capable of running tests both in the platform
emulators and the devices themselves. The driver
implementations employ the same JSON-based wire protocol
utilized by the RemoteWebDriver.

Driving the iOS Platform
The iPhone driver works via an iPhone application that
implements the JSON-based wire protocol and then drives
a UIWebView, which is a WebKit browser embeddable in
iPhone applications.

 1) Install the iOS SDK from http://developer.apple.com/ios.

 2) Download the WebDriver source from
http://code.google.com/p/webdriver/source/checkout.

 3) Open iphone/iWebDriver.xcodeproj in XCode.

 4) Set the build configuration’s active executable
to iWebDriver.

 5) Click Build and Go.

The iOS simulator will launch with the iWebDriver app
installed. You can then connect to the iWebDriver app from
your language of choice:
package com.deepsouthsoftware.seworkshop;

import java.net.URL;
import org.openqa.selenium.*;
import org.junit.*;
import org.openqa.selenium.remote.*;

import static org.junit.Assert.*;

public class IphoneWebDriverTest {
 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 driver = new RemoteWebDriver(new URL(“http://localhost:3001/hub”),
 DesiredCapabilities.iphone());
 }

 @Test
 public void testCheese() throws Exception {
 driver.get(“http://www.google.com”);
 WebElement element = driver.findElement(By.name(“q”));
 element.sendKeys(“Cheese!”);
 element.submit();
 assertEquals(“Cheese! - Google Search”, driver.getTitle());
 }

 @After
 public void tearDown() throws Exception {
 driver.quit();
 }
}

REMOTE WEBDRIVER

WebDriver provides excellent
capabilities around driving
browers located on remote
machines. This allows the tests
to run in one environment
while simultaneously driving a
browser in a completely different
environment. In turn, running
your tests in a continuous
integration environment deployed
on a Linux system while driving
Internet Explorer on various
flavors of Microsoft Windows is a
straightforward proposition.

The RemoteWebDriver consists of
a client and server. The server is
simply a Java Servlet running within the Jetty Servlet Container
(but you can deploy it to your container of choice). This servlet
interacts with the various browsers. The client is an instance of
RemoteWebDriver, which communicates with the Server via a
JSON-based wire protocol.

Using RemoteWebDriver
First, download selenium-server-standalone-2.0a7.jar and run it
on the machine you want to drive:
java -jar selenium-server-standalone-2.0a7.jar

Next, implement a client in your language of choice:

package com.deepsouthsoftware.seworkshop;

import java.net.URL;
import org.openqa.selenium.*;
import org.junit.*;
import org.openqa.selenium.remote.*;

import static org.junit.Assert.*;

public class RemoteWebDriverTest {
 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 driver = new RemoteWebDriver(new URL(“http://127.0.0.1:4444/wd/hub”),
 DesiredCapabilities.firefox());
 }

 @Test
 public void testCheese() throws Exception {
 driver.get(“http://www.google.com”);
 WebElement element = driver.findElement(By.name(“q”));
 element.sendKeys(“Cheese!”);
 Thread.sleep(1000); //Deal with Google Instant
 element = driver.findElement(By.name(“btnG”));
 element.click();
 Thread.sleep(1000); //Deal with Google Instant
 assertEquals(“cheese! - Google Search”, driver.getTitle());
 }

 @After
 public void tearDown() throws Exception {
 driver.quit();
 }
}

Consider the following example:
<input type=”text” name=”pizza”/>
<INPUT type=”text” name=”pie”/>

The following behavior will result:

XPath
Expression

Number of Matches

HtmlUnitDriver InternetExplorerDriver FirefoxDriver

//input 1 2 1

//INPUT 0 2 0

	

http://www.dzone.com
http://www.refcardz.com
http://www.pushtotest.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Windows Phone 7
CSS3
WebDriver
REST

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

6 Selenium 2.0: Using the WebDriver API to Create Robust User Acceptance Tests

 4) Start the emulator: ./emulator -avd my_android &

 5) Install the Android WebDriver Application: ./adb -e
install -r android-server.apk. You can download this from:
http://code.google.com/p/selenium/downloads/list.

 6) Set up port forwarding: ./adb forward tcp:8080 tcp:8080

You can then connect to the AndroidDriver app from your
language of choice:
package com.deepsouthsoftware.seworkshop;

import java.net.URL;
import org.openqa.selenium.*;
import org.junit.*;
import org.openqa.selenium.android.AndroidDriver;

import static org.junit.Assert.*;

public class AndroidWebDriverTest {
 private WebDriver driver;

 @Before
 public void setUp() throws Exception {
 driver = new AndroidDriver();
 }

 @Test
 public void testCheese() throws Exception {
 driver.get(“http://www.google.com”);
 WebElement element = driver.findElement(By.name(“q”));
 element.sendKeys(“Cheese!”);
 element.submit();
 assertEquals(“Cheese! - Google Search”, driver.getTitle());
 }

 @After
 public void tearDown() throws Exception {
 driver.quit();
 }
}

Matt Stine is the Group Leader of Research Application
Development at St. Jude Children’s Research Hospital in
Memphis, TN. For the last decade he has been developing
and supporting enterprise Java applications in support of
life sciences research. Matt appears frequently on the No
Fluff Just Stuff symposium series tour, as well as at other
conferences such as JavaOne, SpringOne/2GX, The Rich

Web Experience, and The Project Automation Experience. He is an Agile Zone
Leader for DZone, and his articles also appear in GroovyMag and NFJS the
Magazine. When he’s not on the road, Matt also enjoys his role as President
of the Memphis/Mid-South Java User Group. His current areas of interest
include lean/agile software development, modularity and OSGi, Groovy/Grails,
JavaScript development, and automated testing of modern web applications.
Find him on Twitter at http://www.twitter.com/mstine and read his blog at
http://www.mattstine.com.

Two of the industry’s most experienced agile testing
practitioners and consultants, Lisa Crispin and Janet Gregory,
have teamed up to bring you the definitive answers to these
questions and many others. In Agile Testing, Crispin and
Gregory define agile testing and illustrate the tester’s role with
examples from real agile teams. They teach you how to use the
agile testing quadrants to identify what testing is needed, who

should do it, and what tools might help. The book chronicles an agile software
development iteration from the viewpoint of a tester and explains the seven
key success factors of agile testing.

	
Driving the Android Platform
The Android driver works via an Android application that
implements the JSON-based wire protocol and then drives an
Android WebView, which is a WebKit browser embeddable in
Android applications.

 1) Install the Android SDK from
http://developer.android.com/sdk/index.html.

 2) Run ./android and install a target API (e.g. 2.2).

 3) Execute ./android create avd -n my_android -t 1 -c
100M to create a new Android Virtual Device targeting
Android 2.2 with a 100M SD card. Do not create a custom
hardware profile.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.pushtotest.com

