
DESIGN WITH LIFERAY
BUILD. AUGMENT. TRANSITION.

Has your portal vendor been acquired?
Liferay's included portal features, web content management system, collaboration
services, and integration tooling allow customers worldwide to build new websites and
applications, augment existing websites and portals, and transition from existing portals
nearing their serviceable end of life.

Learn more at: Liferay.com/DESIGN.

Like us: www.facebook.com/liferay Follow us: www.twitter.com/liferay

This DZone Refcard is brought to you by...

DZone

DZone, Inc. | www.dzone.com

By James Falkner

INTRODUCTION

Li
fe

ra
y

E
ss

e
n

ti
al

s

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#126

CONTENTS INCLUDE:
n	 Introduction
n	 Web Content Management
n	 Workflow
n	 Liferay Administration
n	 Develop for Liferay
n	 Hot Tips and more...

Liferay Portal is a free and open-source enterprise portal written
in Java and distributed under the GNU LGPL. Now in its eleventh
year of development, the award-winning product is one of the
most widely deployed portal technologies on the market, with an
estimated 250,000 deployments worldwide. More than a portal,
Liferay is a platform for creating effective business applications
and solutions. It offers a robust feature set, impressive scalability,
time-saving development tools, support for over 30 languages,
and a flexible, scalable architecture that is open-source
developed and enterprise refined.

About this Refcard
This Refcard will help both novices and professionals quickly
navigate some of Liferay’s most popular features and hidden
gems. It will cover topics such as installation, configuration,
administration, and development features.

Getting Set up

Liferay Portal Community Edition is freely downloadable from
http://liferay.com. Click the Downloads link at the top of the page
and you will be presented with multiple download options:

Bundles are archives that combine Liferay Portal with popular
application servers such as Tomcat, GlassFish, and others.

Standalone (WAR) distributables contain Liferay Portal alone
and are suitable for installation into an existing application server
environment.

All bundles and WAR distributables are cross-platform and should
run on any modern flavor of Windows, Linux, Mac OS X, or other
Unix-based operating systems.

Bundle Directory Structure
liferay-portal-<version> This top-level folder is known as the
Liferay Home directory.

Data: This folder is used
to store the embedded
HSQL database that the
bundles use, as well as the
configuration and data for
the Jackrabbit JSR-170
content repository and the
Lucene search index.

Deploy: Plugins that you
wish to deploy to Liferay can be copied into this folder. It is also
used by Liferay’s graphical plugin installer utility, which is available
from the Control Panel.

License: This folder contains both Liferay’s license and a file that
describes the licenses for many of the other open-source projects
that are used internally by Liferay.

brought to you by...

Liferay Essentials
A Definitive Guide for Enterprise Portal Development

[Application Server]: There will also be an application server
folder that is different depending on which bundle you have
downloaded. This folder contains the application server in which
Liferay has been installed.

Starting Liferay
In most cases, installing a bundle is as easy as uncompressing the
archive and then starting the application server.

For example, Tomcat is started with:

$ ${LIFERAY_HOME}/tomcat-6.0.26/bin/startup.sh
$ tail –f ${LIFERAY_HOME}/tomcat-6.0.26/logs/catalina.out

Other bundles are
started in a similar
fashion.

Once started,
your Web
browser should
automatically be
launched and
directed to http://
localhost:8080,
which should
display the default
Liferay website, as shown here.

Liferay Basics
Liferay is a portal server. This means that it is designed to be
a single environment where all of the required applications
(represented by individual portlets) can run, and these
applications are integrated together in a consistent and
systematic way.

Portal Architecture
In the illustration below, each arrow may be read using the
words “can be a member of.” It is important to note that the

	

	

The Offcial Guide to Liferay Portal Development

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2 Liferay Essentials: A Definitive Guide for Enterprise Portal Development

diagram illustrates only users and their collections. Permissions
do not flow through all of these collections; permissions can be
assigned to roles only.

The following concepts are used throughout Liferay:

 • Portals are accessed by Users.

 • Users can be collected into User Groups.

 • Users can belong to Organizations and join/leave
Communities.

 • Roles are collections of permissions on portal objects that
can be assigned to Users.

 • Organizations can be grouped into hierarchies, such as Home
Office  Regional Office  Satellite Office. Communities are
not hierarchical.

 • Users, Groups, and Organizations can belong to
Communities that have a common interest.

 • Within Organizations and Communities, users can belong
to Teams, which are groupings of users for specific functions
within a community or organization.

 • Users, Organizations and Communities have two separate
collections of Pages called Public and Private Pages. Each
page can have as many applications (portlets) as desired. The
page administrator can lay out these applications into zones
defined by a default or customized layout template.

	

WEB CONTENT MANAGEMENT

Liferay’s Web Content Management (WCM) is a system which
allows non-technical users to publish content to the Web without
having advanced knowledge of Web technology or programming
of any sort. Liferay Content Management System (CMS)
empowers you to publish your content with a simple point-and-
click interface, and it helps you to keep your site fresh.

You can use WCM to author both structured and unstructured
content. Unstructured content is authored using an HTML-based
WYSIWYG editor. Structured content is authored and displayed by
combining Web Content Structures, Web Content Templates, and
Web Contents. Structures and Templates are defined individually
using a text editor or through the Liferay WCM UI.

Accessing Structure Elements
The following table shows how to access structure data from your
Web Content Template code (when using Velocity templates;
other template languages such as FreeMarker, XSL, or CSS have
similar constructs). The variable name defined in the structure are
denoted in bold and will be different depending on the name
assigned in the structure.

Element Type Velocity Template Accessors

Text Field $tf.name, $tf.data, $tf.type

Text Box $textbox.data

Text Area (HTML) $textarea.data

Checkbox $checkbox.data

Selectbox $selectbox.data

Multi-Selection List #foreach($selection in $mylist.options)

 $selection

#end

Image Gallery

Link to Page $linkToPage.url

Repeatable $el.siblings

Hierarchy #foreach($child in $el.children)

 $child.data

#end

Reserved Variables $reserved-article-[id,version,title,create-date,modified-

date, display-date,author-id,author-name,author-email-

address,author-comments,author-organization,author-

location,author-job-title].data

Template and Theme Variables
The following table lists the most common built-in variables
accessible from Velocity Template code (when using Velocity
templates; other template languages such as FreeMarker, CSS, or
XSL have similar constructs). For example, $layout.getChildren().
Items marked with an asterisk (*) are only available from Liferay
Theme files.

Variable Name Description

request HTTPServletRequest object

company The current company object. This represents the portal instance on
which the user is currently navigating.

companyId The current company ID.

groupId ID of the group in which this web content is published.

locale The current user's locale, as defined by Java.

randomNamespace A randomized string. It is very useful for creating IDs that are
guaranteed to be unique.

browserSniffer Dynamic browser capabilities. e.g.$browserSniffer.isMobile()

portal Current portal instance

portletURLFactory Creates portlet URLs (action URLs, etc)

stringUtil Useful string utilities

portletConfig* Standard PortletConfig object describing information from the
portal.xml file.

renderRequest* Standard Portlet RenderRequest object

renderResponse* Standard Portlet RenderResponse object

themeDisplay* Contains many useful items, such as the logged in user, the layout,
logo information, paths, and much more.

user* The User object representing the current user.

layoutSet* The set of pages to which the user has currently navigated. Generally,
communities and organizations have two: a public set and a private set.

scopeGroupId* groupId that is used to identify the scope where the data of the
current portlet is stored and retrieved. The scope can represent a
community, organization, user, the global scope, or a scope tied to a
specific page.

timeZone* The current user's time zone, as defined by Java.

viewMode e.g. “print” when clicked print icon

fullTemplatesPath* Path to all templates used.

pageTitle* Title of the page

serviceLocator Access to other Liferay services. Note by default this variable is
disabled, must be enabled via portal-ext.properties

prefsPropsUtil Access to portal settings that were set from the Control Panel or
through the portal.properties configuration file.

permissionChecker An object which can determine given a particular resource whether or
not the current user has a particular permission for that resource.

[css|images|javascrip

t|templates]_folder*

Full path to various theme files

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3 Liferay Essentials: A Definitive Guide for Enterprise Portal Development

Hot
Tip

A web Content Template that is set as Cacheable will return
a cached result when accessing the variables (potentially
returning stale or sensitive data). To ensure you get
an uncached result, make sure that you uncheck the
Cacheable option for your Web Content Template.

WORKFLOW

A Liferay Workflow is a predetermined sequence of connected
steps. In Liferay, workflow is designed to manage the creation,
modification, and publication of all supported web content
types (including Web Content, Blogs, Wikis, Message Boards,
Documents, and other user-generated content). Liferay ships
with a default workflow engine called Kaleo. It can generate and
reference roles scoped for Organizations, Communities, and for
the entire Portal. This engine is deeply integrated with Liferay,
but can be replaced with an external engine, such as jBPM.

Kaleo Workflow Definitions
Liferay comes with a default Kaleo workflow definition called
“Single Approver” that means that a single approval is needed
before content is published. You can create custom workflow
definitions by using the APIs and workflow definition format
provided. An example skeleton of a simple workflow is shown
below:

<workflow-definition>
 <name>MyName</name>
 <version>1</version>
 <state>
 </state>
 <state>
 </state>
 <task>
 </task>
 <task>
 </task>
</workflow-definition>

Assets, States, Transitions, and Tasks
The key parts of the workflow definition are the asset, states,
transitions, and tasks. The asset is whatever piece of content is
being reviewed and approved in the workflow. States represent
stages of the workflow, such as “created”, “rejected”, or
“approved”. Transitions occur between states, and indicate what
the next state should be. Tasks are steps in the workflow that
require user action.

Example State
 <state>
 <name>MyState</name>
 <initial>true</initial>
 <actions>
 <action>
 <name>SomeAction</name>
 <execution-type>onEntry</execution-type>
 <script>
 <![CDATA[
 // some javascript code here
]]>
 </script>
 <script-language>javascript</script-language>
 <priority>7</priority>
 </action>
 </actions>
 <transitions>
 <transition>
 <name>Task1</name>
 <target>task1</target>
 <default>true</default>
 </transition>
 </transitions>
 </state>

Notable Elements Options

<actions> Defines actions to be taken upon entering state

<transitions> Defines possible transitions out of this state

<script-language> groovy, javascript, python, ruby

<priority> Integer, controls execution order of actions

<execution-type> onEntry, onAssignment, onExit

<template-language> text, velocity, freemarker

<notification-type> email, im, private-message

Example Task
<task>
 <name>MyTask</name>
 <due-date-duration>12</due-date-duration>
 <due-date-scale>day</due-date-scale>
 <actions>
 <notification>
 <name>A Notification</name>
 <execution-type>onAssignment</execution-type>
 <template>You have a new task</template>
 <template-language>text</template-language>
 <notification-type>email</notification-type>
 </notification>
 </actions>
 <assignments>
 <roles>
 <role>
 <role-type>community</role-type>
 <name>Community Administrator</name>
 </role>
 </roles>
 </assignments>
 <transitions>
 <transition>
 <name>Transition1</name>
 <target>state1</target>
 <default>true</default>
 </transition>
 <transition>
 <name>Transition2</name>
 <target>state2</target>
 <default>false</default>
 </transition>
 </transitions>
</task>

Notable Elements Options

<due-date-duration> Defines when the task is due

<due-date-scale> second, minute, hour, day, week, month, year

<roles> Users who have this role can be assigned this task

<role-type> regular, community, organization

LIFERAY ADMINISTRATION

Portal Properties
Liferay uses the concept of overriding the defaults in a
separate file, rather than going in and customizing the default
configuration file. The default configuration file is called portal.
properties, and it resides inside of the portal-impl.jar file.
This .jar file is located in Liferay Portal’s WEB-INF/lib folder. If
you have a copy of the Liferay source code, this file can be
found in portal-impl/src. The file which is used to override the
configuration is portal-ext.properties. This file can be created in
your Liferay Home folder or anywhere in the application server’s
classpath.

Database Setup
Out of the box, Liferay bundles are configured to use HSQLDB,
which should only be used for development or demo purposes.
You cannot use this database in production.

For production use, Liferay supports the following databases:
MySQL, Microsoft SQL Server, Oracle Database, IBM DB2,
PostgresSQL, and Sybase. Liferay can also connect to Apache
Derby, Firebird, Informix, Ingres, or SAP DB. To use these
databases, the database and user with appropriate access
must be created, and the appropriate JDBC driver must
be available in your app server. Consult your database
documentation for details on syntax and how to create
databases and users.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4 Liferay Essentials: A Definitive Guide for Enterprise Portal Development

To use a particular database, you must set the following four
properties in your portal-ext.properties.

MySQL Example:
1. jdbc.default.driverClassName=com.mysql.jdbc.Driver
2. jdbc.default.url=jdbc:mysql://localhost/lportal?
 useUnicode=true&characterEncoding=UTF-
 8&useFastDateParsing=false
3. jdbc.default.username=
4. jdbc.default.password=

Oracle Example:
jdbc.default.driverClassName=oracle.jdbc.driver.OracleDriver
jdbc.default.url=jdbc:oracle:thin:@localhost:1521:xe
jdbc.default.username=lportal
jdbc.default.password=lportal

It’s also possible to delegate this configuration to the application
server through a DataSource by using the following property:

jdbc.default.jndi.name=NameOfDataSource

App Server Configuration
Liferay is supported on the following app servers or servlet
containers: Geronimo, GlassFish, JBoss, Jetty, JOnAS,
Oracle, Resin, Tomcat, WebLogic, and WebSphere. Consult
your app server documentation for details on configuration.
The following table lists common files that are involved in
configuring your app server.

Tomcat 6.x Location

Global Libraries ${TOMCAT_DIR}/lib/ext

Portal Libraries ${TOMCAT_DIR}/webapps/ROOT/WEB-INF/lib

Primary Configuration ${TOMCAT_DIR}/conf/server.xml

Primary Log Files ${TOMCAT_DIR}/logs/catalina.out

GlassFish 3.x Location

Default Domain Directory ${GLASSFISH_DIR}/domains/domain1

Global Libraries ${GLASSFISH_DOMAIN_DIR}/lib

Portal Libraries ${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/

Liferay-portal/WEB-INF/lib

Primary Configuration ${GLASSFISH_DOMAIN_DIR}/config/domain.xml

Primary Log Files ${GLASSFISH_DOMAIN_DIR}/logs/server.log

JBoss 5.x Location

Default Instance Directory ${JBOSS_DIR}/server/default

Global Libraries ${JBOSS_INSTANCE_DIR}/lib

Portal Libraries ${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/lib

Primary Configuration ${JBOSS_INSTANCE_DIR}/conf/jboss-service.xml

Primary Log Files ${JBOSS_INSTANCE_DIR}/log/server.log ${JBOSS_INSTANCE_

DIR}/log/boot.log

Troubleshooting and Debugging
The following items should be checked when troubleshooting
a problem.

Item Notes

Log Files Log files for several app servers are listed above. These should be checked for
warnings, errors, Java stack traces, etc.

Log Settings Liferay uses the Apache Log4j library to perform all of its logging operations.
See below on how to configure log settings.

JMX Liferay provides out-of-the-box JMX MBeans, which allow introspection into
the runtime, for example to identify and isolate problematic behavior such as
poor cache performance or slow portlet rendering.

Debug To attach a Java debugger to Liferay, you must start the JVM with special
properties. Some servers have done this for you. For example, to start Tomcat
under a debugger, run “bin/catalina.sh jpda start”

Other servers may need the JVM properties added manually. A typical set of
properties is:
-Xdebug

-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Logging Configuration
Liferay uses Log4j for its logging operations. When debugging an
issue, it is useful to be able to increase verbosity of certain areas
of Liferay to diagnose an issue. There are two ways to do this:

Interactively
Interactively changing the log levels will only persist until the
next system restart, when the log level settings will revert to
their previous values. This is done through the Control Panel->
Server Administration -> Log Levels user interface.

Config File
To make a more permanent change, copy Liferay’s default META-
INF/portal-log4j.xml file from the portal-impl.jar, rename to
portal-log4j-ext.xml, make any edits, and place the file
somewhere along the servers classpath. For example, if you
were using Tomcat, one could create
${TOMCAT_DIR}/lib/META-INF/portal-log4j-ext.xml.

For example, to enable debug logging for Hibernate, add this
to your portal-log4j-ext.xml file:

 <category name=”org.hibernate”>
 <priority value=”DEBUG” />
 </category>

Hot
Tip

JBoss includes its own Log4j configuration that may
override Liferay’s configuration. The JBoss Log4j
configuration file can be found in $JBOSS/server/default/
conf/log4j.xml. Read the JBoss documentation for details.

Portal Properties
Listed below are several properties and descriptions that can
be used to configure Liferay. These settings belong in your
portal-ext.properties file.

Property Name Description and Examples

liferay.home
Default: Depends on App Server

Specifies the root of Liferay’s working directory /
configuration. Example: /var/lr-home

portal.ctx
Default: /

Specifies the path of the portal servlet context. If you
change this, you must also change the setting in web.xml
Example: /mysite

jdbc.default.jndi.name
Default: Not Set

Set the JNDI name to lookup the JDBC data source. If
none is set, then Liferay will attempt to create the JDBC
data source based on the properties prefixed with jdbc.
default. Example: jdbc/LiferayPool

jdbc.default.driverClassName
jdbc.default.url
jdbc.default.username
jdbc.default.password
Defaults: settings for HSQL

Database configuration options for creating the Liferay
Database connection pool

company.default.web.id
Default: liferay.com

Default Web ID. Omni administrators must belong to this
company. Example: mycompany.com

DEVELOPING FOR LIFERAY

You can develop many things both for and in Liferay: portlets,
hooks, themes, layout templates, services, and more.

Plugins SDK
The Plugins SDK is both a project generator and a location
where your projects are stored. Download the Plugins SDK
from liferay.com/downloads/liferay-portal/additional-files.

Do not forget to create a build.username.properties file (where
username is your OS username). Set the app.server.dir
property to point at an extracted Liferay/App Server bundle.
For example, app.server.dir=${user.home}/lr-6.0.5.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5 Liferay Essentials: A Definitive Guide for Enterprise Portal Development

Building projects in the Plugins SDK requires that you have Ant
1.7.0 or higher installed on your machine. Download the latest
version of Ant from http://ant.apache.org/.

Creating and Deploying New “Hello World” Plugins
Use the “create” script for creating new portlet, theme, hook,
layout, or Web plugins:

$ cd portlets; ./create.sh hello-world “Hello World Portlet”
$ ant deploy

Other ANT targets include:
 Clean: removes build artifacts.
 War: creates distributable .war file.
 Compile: compiles source code.
 build-service: invokes Liferay’s Service Builder to create and

build service source code.

Anatomy of a Portlet Project
Several directories and files are created when you use the
create.sh tool.

Folder Description

docroot This folder is the “root” of your application.

WEB-INF Standard WEB-INF folder for Web applications. Also contains Liferay-
specific descriptors.

WEB-INF/src Portlet source code.

build.xml ANT build script controlling building and deploying your plugin.

liferay-display.xml Describes what category the portlet should appear under in the Liferay UI.

liferay-plugin-
package.properties

Describes properties used by Liferay’s hot-deploy mechanism.

liferay-portlet.xml Describes Liferay-specific portlet enhancements (akin to portlet.xml for
generic portlets). There are many settings here to customize your portlet.

portlet.xml Standard JSR-168 or JSR-286 portlet descriptor

web.xml Standard Web Application descriptor

Liferay Hooks
Hooks are the best way to extend or modify Liferay’s behavior.
They allow you to override parts of core Liferay with custom
implementations. You specify what you wish to hook into in
your liferay-hook.xml file. Within this file, you can customize:

Portal Properties
<hook>
 <portal-properties>my.custom.portal.properties</portal-properties>
</hook>

Within custom properties files, add startup action:
application.startup.events=org.mypkg.MyStartupEventClass

Add Model Listener for Blogs:
value.object.listener.com.liferay.portlet.blogs.model.BlogsEntry=org.mypkg.
BlogEntryAction

Language Properties
<hook>
 <language-properties>content/Language_fr.properties</language-properties>
</hook>

JSP File Override
Allows overriding of any JSP from the core of Liferay by using
the same paths as Liferay uses within the specified directory.
Use with care:
<hook>
 <custom-jsp-dir>/META-INF/custom_jsps</custom-jsp-dir>
</hook>

Then create custom JSPs:
/META-INF/custom_jsps/html/portlet/blogs/view.jsp
/META-INF/custom_jsps/html/portlet/calendar/week.jsp

Services
By wrapping services it’s possible to extend any core Liferay
service method to perform additional operations or even to
replace the default operations.
<hook>
 <service>
 <service-type>
 com.liferay.portal.service.UserLocalService
 </service-type>
 <service-impl>
 com.liferay.test.hook.service.impl.MyUserLocalServiceImpl
 </service-impl>
 </service>
</hook>

Liferay Themes
Themes are plugins, and are therefore hot-deployable just like
portlet plugins. You can use the Plugins to build your themes
automatically so that they can be deployed to any Liferay
instance. The Plugins SDK packages a theme into a .war file
just like a portlet, and this .war file can then be hot-deployed
to Liferay.

Anatomy of a Theme

Path within Theme Description

/css/base.css, custom.css, … Defines many aspects of Liferay’s UI. To override, create your
own _diffs/css/custom.css within your theme source code

/images/ Static image resources references from CSS, JS, VM, etc.

/javascript/main.js Defines stub functions that fire at certain points of page
loading when using theme. Override using custom main.js

/templates/ Various Velocity Macro Templates that are executed during
page rendering

init-custom.vm Allows you to add your own custom Velocity variables

init.vm Sets many Velocity variables that correspond to Liferay
Java objects. See the section on Web Content for common
variables available from your custom theme code.

navigation.vm Implements the page navigation within the theme

portal_normal.vm The overall template for all pages the theme implements. This
file includes the other files.

portal_pop_up.vm The overall template for any portlets which implement pop-
up windows.

portlet.vm The template for portlet windows within the theme.

Service Builder
Service Builder is a source code
generation tool built by Liferay to
automate the creation of interfaces
and classes for database persistence,
local and remote services. This is useful
when developing data-driven applications
that make frequent calls to the underlying
database. 	

Hot
Tip

A “service” in Liferay is simply a class or set of classes
designed to handle retrieving and storing data classes. A
local service is used by code running in the local instance
of Liferay, while a remote service can be accessed from
anywhere over the internet or your local network. Remote
services support SOAP, JSON, and Java RMI.

Sample Service
Services are defined by creating a service.xml file. Once
defined, source code can be generated for the persistence and
data access/transfer layers of your Data-driven app. An example:

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of more than 100 Free Cheat Sheets
Upcoming Refcardz
Windows Phone 7
CSS3
REST
JPA 2.0

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-05-9
ISBN-10: 1-936502-05-4

9 781936 502059

50795

6 Liferay Essentials: A Definitive Guide for Enterprise Portal Development

<service-builder package-path=”com.sample.portlet.library”>
 <namespace>Library</namespace>
 <entity name=”Book” local-service=”true” remote-service=”true”>
 <!-- PK fields -->
 <column name=”bookId” type=”long” primary=”true” />
 <!-- Group instance -->
 <column name=”groupId” type=”long” />
 <!-- Audit fields -->
 <column name=”companyId” type=”long” />
 <column name=”userId” type=”long” />
 <column name=”userName” type=”String” />
 <column name=”createDate” type=”Date” />
 <column name=”modifiedDate” type=”Date” />
 <!-- Other fields -->
 <column name=”title” type=”String” />
 </entity>
</service-builder>

Generating the Code
$ ant build-service

JSP Variable Reference
To get access to Liferay contextual objects when writing a JSP:
<liferay-theme:defineObjects />

Then, the following variables are available to your JSP:

Variable Name Description

themeDisplay A runtime object which contains many useful items, such as the logged-
in user, the layout, logo information, paths, and much more.

company The current company object. This represents the portal instance on
which the user is currently navigating.

account The user's account object. This object maps to the Account table in the
Liferay database.

user The User object representing the current user.

realUser When an administrator is impersonating a user, this variable tracks the
administrator's user object.

contact The user's Contact object. This object maps to the Contacts table in the
Liferay database.

layout The set of pages to which the user has currently navigated. Generally,
communities and organizations have two: a public set and a private set.

plid A Portal Layout ID. This is a unique identifier for any page that exists in
the portal, across all portal instances.

layoutTypePortlet This object can be used to programmatically add or remove portlets
from a page.

scopeGroupId A unique scope identifier for custom scopes, such as the page scope
that was introduced in Liferay Portal 5.2.

permissionChecker An object that can determine, given a particular resource, whether or
not the current user has a particular permission for that resource.

locale The current user's locale, as defined by Java.

timeZone The current user's time zone, as defined by Java.

theme An object representing the current theme that is being rendered by
the portal.

colorScheme An object representing the current color scheme in the theme that is
being rendered by the portal.

portletDisplay An object that gives the programmer access to many attributes of the
current portlet, including the portlet name, the portlet mode, the ID of
the column on the layout in which it resides, and more

Social Tools and Activity Streams
Liferay’s portal, content, and collaboration frameworks are tied
together using a rich suite of social features. For developers,
plugging social software into Liferay can be achieved in many
ways. For example, using the native Social Relationship API for
managing relationships between users (via the com.liferay.portlet.
social package), interacting with the Activity Stream (via the
SocialActivity model), calculating and visualizing Social Equity
participation and contribution values, or dropping OpenSocial
gadgets onto a page and managing via Liferay’s Control Panel.

More Information
For up-to-date and in-depth information, please refer to the
official documentation for Liferay at http://www.liferay.com/
documentation.

James Falkner is an open source evangelist, community manager, and
software developer working at Liferay, producers of the world’s leading
open source enterprise portal. In addition to Liferay, James has been
active in a number of other open source products and projects, including
the GlassFish Enterprise portfolio, Community/Social Equity, OpenSolaris,
OASIS standards, and more. James is a regular contributor and speaker at
industry events such as JavaOne, JAX, and others.

Websites: http://www.liferay.com/web/james.falkner

Email: james.falkner@liferay.com

Blog: http://www.liferay.com/web/james.falkner/blog

Liferay in Action is a comprehensive and authoritative guide to building
portals on the Liferay 6 platform. Fully supported and authorized by Liferay,
this book guides you smoothly from your first exposure to Liferay through
the crucial day-to-day tasks of building and maintaining an enterprise portal
that works well within your existing IT infrastructure. The book starts with the
basics: setting up a development environment and creating a working portal.
Then, you’ll learn to build on that foundation with social features, tagging,
ratings, and more. As the book progresses, you’ll explore the Portlet 2.0 API,
and learn how to create your own portlet applications.

BUY NOW
http://www.manning.com/sezov/

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.liferay.com/documentation
http://www.liferay.com/documentation

