
Monitoring & SIEMSecurity Gateway

 • WOA
 • REST to SOAP Mediation
 • XML Threat Protection

 • REST/SOAP Mashups
 • Security Token Services

Portals, AppStore,
Ecommerce

Web 2.0 Services:
REST

A REST Web Services Gateway

A Service Gateway will help you get
there. Intel's SOA Expressway
provides a secure point of entry for
REST based services, a central
policy enforcement point where one
can delegate authentication and
authorization, and also effortless
REST to SOAP mediation — without
having to write custom code.

• Invoke Security Token Service
credential mapping or validation

• Ensure throttling and SLAs by
REST service

• Extend Enterprise audit and
compliance to WOA and REST

• Detailed XML threat prevention
and payload inspection

• Service virtualization, proxy,
and abstraction as a policy
enforcement point

• REST API security and
management

www.DynamicPerimeter.com

RESTful CapabilitiesREST is simple.
Applying Enterprise-class

Security is Not.

Visit our REST Solution page & tech tutorials to get started:

This DZone Refcard is brought to you by...

DZone, Inc. | www.dzone.com

By Brian Sletten

INTRODUCTION

R
E

S
T:

 F
o

u
n

d
at

io
n

s
o

f
R

E
S

T
fu

l A
rc

h
it

e
ct

u
re

 w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#129

CONTENTS INCLUDE:
n	 Introduction
n	 The Basics
n	 What about SOAP?
n	 Richardson Maturity Model
n	 Verbs
n	 Response Codes and more...

The Representational State Transfer (REST) architectural style
is not a technology you can purchase or a library you can
add to your software development project. It is a worldview
that elevates information into a first class element of the
architectures we build.

The ideas and terms we use to describe “RESTful” systems
were introduced and collated in Dr. Roy Fielding’s thesis,
“Architectural Styles and the Design of Network-based
Software Architectures”. This document is academic and uses
formal language, but remains accessible and provides the basis
for the practice.

The summary of the approach is that by making specific
architectural choices, we can elicit desirable properties
from the systems we deploy. The constraints detailed in this
architectural style are not intended to be used everywhere but
they are widely applicable.

The concepts are well demonstrated in a reference
implementation we call The Web. Advocates of the REST
style are basically encouraging organizations to apply the
same principles to coarsely granular information sources
within their firewalls as they do to external facing customers
with web pages.

brought to you by...

THE BASICS

A Uniform Resource Locator (URL) is used to identify and
expose a “RESTful service”. This is a logical name that
separates the identity of an information resource from what is
accepted or returned from the service when it is invoked. The
URL scheme is defined in RFC 1738.

A sample RESTful URL might be something like the following
fake API for a library:

http://fakelibrary.org/library

The URL functions as a handle for the resource, something that
can be requested, updated or deleted.

This starting point would be published somewhere as the way
to begin interacting with the library’s REST services. What
is returned could be XML, JSON or, more appropriately, a
hypermedia format such as Atom or a custom MIME type.
The general guidance is to reuse existing formats where
possible, but there is a growing tolerance for properly
designed media types.

To request the resource, a client would issue a Hypertext
Transfer Protocol (HTTP) GET request to retrieve it. This is what

happens when you type a URL into a browser and hit return,
select a bookmark or click through an anchor reference link.

For programmatic interaction with a RESTful API, any of a
dozen or more client side APIs or tools could be used. To use
the curl command line tool, you could type something like:

HHood> curl http://fakelibrary.org/library

This will return the default representation on the command
line. You may not want the information in this form, however.
Fortunately, HTTP has a mechanism by which you can
ask for information in a different form. By specifying an
“Accept” header in the request, if the server supports that
representation, it will return it. This is known as content
negotiation and is one of more underused aspects of HTTP.
Again, using curl, this could be done with:

HHood> curl –H “Accept:application/json” http://fakelibrary.org/
library

This ability to ask for information in different forms is possible
because of the separation of the name of the thing from
its form. The ‘R’ in REST is ‘representation’, not ‘resource’.
Keep this in mind and build systems that allow clients to ask
for information in the forms they want. We will revisit this
topic later.

Possible URLs for our fake library might include:
http://fakelibrary.org/library: general information about the
library and the basis for discovering links to search for specific
books, DVDs, etc.

http://fakelibrary.org/book: an “information space” for books.
Conceptually, it is a placeholder for all possible books.
Clearly, if it were resolved, we would not want to return all

RESTful web services across the
organization without custom-code.

Please Visit: www.DynamicPerimeter.com

Secure. Govern.
Validate. Mediate.

REST: Foundations of
RESTful Architecture

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2 REST: Foundations of RESTful Architecture

possible books, but it might perhaps return a way to discover
books through categories, keyword search, etc.

http://fakelibrary.org/book/category/1234; within the
information space for books, we might imagine browsing them
based on particular categories (e.g. adult fiction, children’s
books, gardening, etc.) It might make sense to use the Dewey
Decimal system for this, but we can also imagine custom
groupings as well. The point is that this “information space”
is potentially infinite and driven by what kind of information
people will actually care about.

http://fakelibrary.org/book/isbn/978-0596801687; a reference to
a particular book. Resolving it should include information about
the title, author, publisher, number of copies in the system,
number of copies available, etc.

These URLs mentioned above will probably be read-only as far
as the library patrons are concerned, but applications used by
librarians might actually manipulate these resources.

For instance, to add a new book, we might imagine POSTing
an XML representation to the main /book information space. In
curl, this might look like:

HHood> curl –u username:password-d @book.xml -H “Content-type: text/
xml” http://fakelibrary.org/book

At this point, the resource on the server might validate the
results, create the data records associated with the book and
return a 201 response code indicating a new resource has been
created. The URL for the new resource can be discovered in the
Location header of the response.

An important aspect of a RESTful request is that each request
contains enough state to answer the request. This allows for
the conditions of visibility and statelessness on the server,
desirable properties for scaling systems up and identifying
what requests are being made. This helps enable caching of
specific results. The combination of a server’s address and the
state of the request combine to form a computational hash key
into a result set:

http://fakelibrary.org + /book/isbn/978-0596801687

Because of the nature of the GET request (discussed later),
this allows a client to make very specific requests, but only if
necessary. The client can cache a result locally, the server can
cache it remotely or some intermediate architectural element
can cache it in the middle. This is an application-independent
property that can be designed into our systems.

Just because it is possible to manipulate a resource does not
mean everyone will be able to do so. We can absolutely put a
protection model in place that requires users to authenticate
and prove that they are allowed to do something before we
allow them to. We will have some pointers to ways of securing
RESTful services at the end of this card.

WHAT ABOUT SOAP?

What about it? There is a false equivalence asserted about
REST and SOAP that yields more heat than light when they are
compared. They are not the same thing. They are not intended
to do the same thing even though you can solve many
architectural problems with either approach.

The confusion largely stems from the mistaken idea that REST
“is about invoking Web services through URLs”. That has
about as much truth to it as the idea that “agile methodologies
are about avoiding documentation.” Without a deeper
understanding of the larger goals of an approach, it is easy to
lose the intent of the practices.

REST is best used to manage systems by decoupling the
information that is produced and consumed from the
technologies that do so. We can achieve the architectural
properties of:

 • Performance
 • Scalability
 • Generality
 • Simplicity
 • Modifiability
 • Extensibility

This is not to say SOAP-based systems cannot be built
demonstrating some of these properties. SOAP is best
leveraged when the lifecycle of a request cannot be
maintained in the scope of a single transaction because of
technological, organizational or procedural complications.

RICHARDSON MATURITY MODEL

In part to help elucidate the differences between SOAP and
REST and to provide a framework for classifying the different
kinds of systems many people were inappropriately calling
“REST”, Leonard Richardson introduced a Maturity Model.
You can think of the classifications as a measure of how closely
a system embraces the different pieces of Web Technology:
Information resources, HTTP as an application protocol and
hypermedia as the medium of control.

Level Adoption

0 This is basically where SOAP is. There are no information resources,
HTTP is treated like a transport protocol and there is no concept of
hypermedia. Conclusion: REST and SOAP are different approaches.

1 URLs are used, but not always as appropriate information resources
and everything is usually a GET request (including requests that
update server state). Most people new to REST first build systems that
look like this.

2 URLs are used to represent information resources. HTTP is respected as
an application protocol sometimes including content negotiation. Most
Internet-facing “REST” web services are really only at this level because
they only support non-hypermedia formats.

3 URLs are used to represent information resources. HTTP is respected
as an application protocol including content negotiation. Hypermedia
drives the interactions for clients.

Calling it a “maturity model” might seem to suggest that you
should only build systems at the most “mature” level. That
should not be the take-home message. There is value at being
at Level 2 and the shift to Level 3 is often simply the adoption
of a new MIME type. The shift from Level 0 to Level 3 is much
harder, so even incremental adoption adds value.

Start by identifying the information resources you would
like to expose. Adopt HTTP as an application protocol for
manipulating these information resources including support
for content negotiation. Then, when you are ready to, adopt
hypermedia-based MIME types and you should get the full
benefits of REST.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

3 REST: Foundations of RESTful Architecture

VERBS

The limited number of verbs in RESTful systems confuses
and frustrates people new to the approach. What seem like
arbitrary and unnecessary constraints are actually intended to
encourage predictable behavior in non-application-specific
ways. By explicitly and clearly defining the behavior of the
verbs, clients can be self-empowered to make decisions in the
face of network interruptions and failure.

There are four main HTTP verbs (sometimes called methods)
used by well-designed RESTful systems.

GET
The most common verb on the Web, a GET request transfers
representations of named resources from a server to a client.
The client does not necessarily know anything about the
resource it is requesting. What it gets back is a bytestream
tagged with metadata that indicates how the client should
interpret it. On the Web, this is typically “text/html” or
“application/xhtml+xml”. As we indicated above, using
content negotiation, the client can be proactive about what is
requested as long as the server supports it.

One of the key points about the GET request is that it should
not modify anything on the server side. It is fundamentally
a saferequest. This is one of the biggest mistakes made by
people new to REST. With RMM Level 1 systems, you often see
URLs such as: http://someserver/res/action=update?data=1234

Do not do this! Not only will RESTafarians mock you, but
you will not build RESTful ecosystems that yield the desired
properties. The safety of a GET request allows it to be cached.

GET requests are also intended to be idempotent. This
means that issuing a request more than once will have no
consequences. This is an important property in a distributed,
network-based infrastructure. If a client is interrupted while it
is making a GET request, it should be empowered to issue it
again because of this property. This is an enormously important
point. In a well-designed infrastructure, it does not matter
what the client is requesting from which application. There will
always be application-specific behavior, but the more we can
push into non-application-specific behavior, the more resilient
and easier to maintain our systems will be.

POST
The situation gets a little less clear when we consider the intent
of the POST and PUT verbs. Based on their definitions, both
seem to be used to create or update a resource from the client
to the server. They have distinct purposes, however.

POST is used when the client cannot predict the identity of the
resource it is requesting to be created. When we hire people,
place orders, submit forms, etc., we cannot predict how the
server will name these resources we are creating. This is why
we POST a representation of the resource to a handler (e.g.
servlet). The server will accept the input, validate it, verify the
user’s credentials, etc. Upon successful processing, the server
will return a 201 HTTP response code with a “Location” header
indicating the location of the newly created resource.

Note: Some people treat POST like a conversational GET on

creation requests. Instead of returning a 201, they return a
200 with the body of the resource created. This seems like
a shortcut to avoid a second request, but it also conflates
POST and GET and complicates the potential for caching the
resource. Try to avoid the urge to take shortcuts at the expense
of the larger picture. It seems worth it in the short-term, but
over time, these shortcuts will add up and will likely work
against you.

Another major use of the POST verb is to “append” a
resource. This is an incremental edit or a partial update, not
a full resource submission. For that, use the PUT operation.
A POST update to a known resource would be used for
something like adding a new shipping address to an order or
updating the quantity of an item in a cart.

Because of this partial update potential, POST is neither safe
nor idempotent.

A final common use of POST is to submit queries. Either a
representation of a query or URL-encoded form values are
submitted to a service to interpret the query. It is usually fair to
return results directly from this kind of a POST since there is no
identity associated with the query.

Note: Consider turning a query like this into an information
resource itself. If you POST the definition into a query
information space, you can then issue GET requests to it, which
can be cached. You can also share this link with others.

PUT
Many developers largely ignore the PUT verb because HTML
forms do not support it. It serves an important purpose,
however and is part of the full vision for RESTful systems.

When a client has a URL reference to an existing resource and
wishes to update it, PUTing a representation to the URL serves
as an overwrite action. This distinction allows a PUT request to
be idempotent in a way that POST updates are not.

If a client is in the process of issuing a PUT overwrite and it is
interrupted, it can feel empowered to issue it again because
an overwrite action can be reissued with no consequences; the
client is attempting to control the state, so it can simply reissue
the command.

Note: This protocol-level handling does not necessarily
preclude the need for higher (application-level) transactional
handling, but again, it is an architecturally desirable property
to bake in below the application level.

A PUT can also be used to create a resource if the client is able
to predict the resource’s identity. This is usually not the case
as we discussed under the POST section, but if the client is in
control of the server side information spaces, it is a reasonable
thing to allow. Publishing into a user’s weblog space is a typical
example of PUTing to a user-specified name.

DELETE
The DELETE verb does not find wide use on the public Web
(thankfully!), but for information spaces you control, it is a
useful part of a resource’s lifecycle.

DELETE requests are intended to be idempotent, so you

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

4 REST: Foundations of RESTful Architecture

should generally build resources that respond to DELETE
requests by failing silently and returning a 200 even if it
has already been deleted. This may require extra state
management on the server to differentiate between DELETE
requests to things that no longer exist, versus requests to
things that never existed.

Some security policies may require you to return a 404 for non-
existent or deleted resources so DELETE requests do not leak
information about the presence of resources.

There are three other verbs that are not as widely used but
provide value.

HEAD
The HEAD verb is used to issue a request for a resource
without actually retrieving it. It is a way for a client to check for
the existence of a resource and possibly discover metadata
about it.

OPTIONS
The OPTIONS verb is also used to interrogate a server
about a resource by asking what other verbs are applicable to
the resource.

PATCH
The newest of the verbs, PATCH was only officially adopted
as part of HTTP in early 2010. The goal is to provide a
standardized way to express partial updates. The POST method
is basically unconstrained so it tends to defy constraint.

A PATCH request in a standard format could allow an
interaction to be more explicit about the intent. There are
currently no standardized patch formats in wide RESTful use,
but they are likely to be designed for XML, HTML plain text and
other common formats.

RESPONSE CODES

HTTP response codes give us a rich dialogue between clients
and servers about the status of a request. Most people are
only familiar with 200, 403, 404 and maybe 500 in a general
sense, but there are many more useful codes to use. The tables
presented here are not comprehensive, but cover many of
the most important codes you should consider using in a
RESTful environment.

The first collection of response codes indicates that the client
request was well formed and processed. The specific action
taken is indicated by one of the following.

Code Description

200 OK. The request has successfully executed. Response depends upon the
verb invoked.

201 Created. The request has successfully executed and a new resource
has been created in the process. The response body is either empty or
contains a representation revealing URIs for the resource created. The
Location header in the response should point to the new URI as well.

202 Accepted. The request was valid and has been accepted but has not yet
been processed. The response should include a URI to poll for status
updates on the request. This allows asynchronous REST requests.

204 No Content. The request was successfully processed but the server did
not have any response. The client should not update its display.

Table 1: Successful Client Requests

The second collection of response codes indicates that the
client should look elsewhere for the resource or information
about it due to movement or some other situation.

Code Description

301 Moved Permanently. The requested resource is no longer located at the
specified URL. The new Location should be returned in the response
header. Only GET or HEAD requests should redirect to the new location.
The client should update its bookmark if possible.

302 Found. The requested resource has temporarily been found somewhere
else. The temporary Location should be returned in the response
header. Only GET or HEAD requests should redirect to the new location.
The client need not update its bookmark as the resource may return to
this URL.

303 See Other. This response code has been reinterpreted by the W3C
Technical Architecture Group (TAG) as a way of responding to a valid
request for a non-network addressable resource. This is an important
concept in the Semantic Web when we give URIs to people, concepts,
organizations, etc. There is a distinction between resources that can be
found on the Web and those that cannot. Clients can tell this difference
if the get a 303 instead of 200. The redirected Location will be reflected
in the Location header in the response. It will contain a reference to
a document about the resource or perhaps some metadata about it.
This is not a universally popular decision but is currently the provided
guidance.

Table 2: Redirected Client Requests

The third collection of response codes indicates that the
client request was somehow invalid and will not be handled
successfully if reissued in the same condition. These
failures include potentially improperly formatted requests,
unauthorized requests, requests for resources that do not
exist, etc.

Code Description

400 Bad Request. Generally the sign of a malformed or otherwise invalid
request.

401 Unauthorized. Without further authorization credentials, the client is not
allowed to issue the request. The inclusion of an “Authorization” header
with valid credentials might still succeed.

403 Forbidden. The server is disallowing the request. Extra credentials will
not help.

404 Not Found. The server could not match the request to a known
resource.

405 Method Not Allowed. The requested method (verb) is not allowed
for that resource. Response will indicate in an “Allow” header what is
allowed.

406 Not Acceptable. The server cannot generate a representation
compatible with what was asked for in the request “Accept” header.

410 Gone. The resource is explicitly no longer available and will not be in
the future.

411 Length Required. The server requires the client to specify a “Content-
Length” header indicating the size of the request. A resubmit with this
header might succeed.

413 Entity Too Large. The request entity is too large for the server to process.

415 Unsupported Media Type. The client submitted a media type that is
incompatible for the specified resource.

Table 3: Invalid Client Requests

The final collection of response codes indicates that the server
was temporarily unable to handle the client request (which may
still be invalid) and that it should reissue the command at some
point in the future.

http://www.dzone.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

5 REST: Foundations of RESTful Architecture

Thesis
Dr. Fielding’s thesis, “Architectural Styles and the Design
of Network-based Software Architectures” is the main
introduction to the ideas discussed here:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

RFCs
The specifications for the technologies that define the most
common uses of REST are driven by the Internet Engineering
Task Force (IETF) Request for Comments (RFC) process.
Specifications are given numbers and updated occasionally
over time with new versions that obsolete existing ones. At the
moment, here are the latest relevant RFCs.

URI
The generic syntax of URIs as a naming scheme is covered in
RFC 3986. These can include encoding other naming schemes
such as website addresses, namespace-aware sub-schemes, etc.

Site: http://www.ietf.org/rfc/rfc3986.txt

URL
A Uniform Resource Locator (URL) is a form of URI that has
sufficient information embedded within it (access scheme and
address usually) to resolve and locate the resource.

Site:http://www.ietf.org/rfc/rfc1738.txt

IRI
An Internationalized Resource Identifier (IRI) is conceptually
a URI encoded in Unicode to support characters from the
languages of the world. The IETF chose to create a new
standard rather than change the URI scheme itself to avoid
breaking existing systems and to draw explicit distinctions
between the two approaches. Supporting IRIs becomes
a deliberate act. There are mapping schemes defined for
converting between IRIs and URIs as well.
Site: http://www.ietf.org/rfc/rfc3987.txt

HTTP
The Hypertext Transfer Protocol (HTTP) version 1.1 defines an
application protocol for manipulating information resources
generally represented in hypermedia formats. While it is
an application-level protocol, it is generally not application
specific and important architectural benefits emerge as a result.
Most people think of it and the Hypertext Markup Language
(HTML) as “The Web”, but HTTP is useful in the development
of non-document-oriented systems as well.

Site:http://www.ietf.org/rfc/rfc2616.txt

Implementations
There are several libraries and frameworks available for
building systems that produce and consume RESTful systems.
While any Web server can be configured to supply a REST API,

these frameworks, libraries and environments make it easier to
do so.

Here is an overview of some of the main environments:

JSR-311 (Jersey)
This was an attempt to add REST to the J2EE environment.
The original focus was on server side issues, but a client API
has emerged.

The basic idea is that classes (either POJOs or specific resource
classes) are annotated to indicate how they should participate
in a RESTful environment. These classes can be deployed into
any system that knows how to parse the annotated classes.

Site: http://wikis.sun.com/display/Jersey/Main
Samples: http://blogs.sun.com/sandoz/entry/jersey_samples

Restlet
The Restlet API was one of the first attempts at creating a
Java API for producing and consuming RESTful systems.
The attention paid to both the client and server sides of the
equation yields some very clean and powerful APIs.

Additionally, Restlet-based systems can easily be deployed
into various containers including typical servlet-based
containers, Grizzly (https://grizzly.dev.java.net), the Simple
Framework (http://simpleweb.sourceforge.net/), etc.

Restlet supports JSR-311 annotations and provides RESTful
connections to many data types, sources and systems.

Site: http://restlet.org

NetKernel
One of the more interesting RESTful systems, NetKernel
represents a microkernel-based environment supporting
a wide variety of architectural styles. It benefits from the
adoption of the economic properties of the Web in software
architecture. You can think of it as “bringing REST inside”.
Whereas any REST-based system kind of looks the same
externally, NetKernel continues to look like that within its
execution environment as well.

Internally, components are loosely coupled through URI-based
invocations in similar ways to how documents are linked on the
Web. This yields important architectural properties of flexibility
and scalability.

NetKernel makes it very easy to work with a variety of data
types, services and sources in a resource-oriented and
powerful way.

Site: http://netkernel.org

Sinatra
Sinatra is a domain specific language (DSL) for creating RESTful
applications in Ruby.

Site: http://www.sinatrarb.com

Compojure-REST
A thin layer on top of Compojure (a Clojure-based Web
framework) for building RESTful APIs.

Site: https://github.com/ordnungswidrig/compojure-rest
Compojure Site: https://github.com/weavejester/compojure/wiki

OpenRasta
OpenRasta brings the concept of REST to the .NET platform in

Code Description

500 Internal Service Error. A catchall for server processing problems.

503 Service Unavailable. A temporary response in the face of too many
requests. The client may attempt to retry the request again in the future
at a time specified in a “Retry-After” header..

Table 4: Server Failed to Handle the Request

REST RESOURCES

http://www.dzone.com
http://www.refcardz.com

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

he pattern.
tion

f he term Continuous Integration

le this Refcard

s

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

d

Perform an Integration Build periodically, continually, etc.

d utomated feedback from CI server to development team

they occur
d based on

brought to you by...

By Andy Harris

HTML BASICS

o
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares c

common.) All are essenti l
extension HT

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anyb d

expected. Early HTML had very limited layo

Browser manufacturers added

web developers cresult i

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Windows Azure Platform
ADO.NET

By Daniel Rubio

ABOUT CLOUD COMPUTING

w
w

w
.d

zo
n

e.
co

m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-06-6
ISBN-10: 1-936502-06-2

9 781936 502066

50795

6 REST: Foundations of RESTful Architecture

ways that allow it to be deployed alongside ASP.NET and WCF
components.

Site:http://trac.caffeine-it.com/openrasta/wiki/Doc

There are many other implementations to investigate. For more
information, please consult this list of known implementations:
http://code.google.com/p/implementing-rest/wiki/
RESTFrameworks

Books
“RESTful Web Services” by Leonard Richardson and Sam Ruby,
2007. O’Reilly Media.

“RESTful Web Services Cookbook” by SubbuAllamaraju, 2010.
O’Reilly Media.

“REST in Practice” by Jim Webber, SavasParastatidis and Ian
Robinson, 2010. O’Reilly Media.

“Restlet in Action” by Jerome Louvel and Thierry Boileau, 2011.
Manning Publications.

“Resource-Oriented Architectures : Building Webs of Data” by
Brian Sletten, 2011. Addison-Wesley.

Brian Sletten is a liberal arts-educated
software engineer with a focus on forward-
leaning technologies. He has a background
as a system architect, a developer, a mentor
and a trainer. His experience has spanned
the online games, defense, finance and
commercial domains with security consulting,

network matrix switch controls, 3D simulation/visualization,
Grid Computing, P2P and Semantic Web-based systems. He
has a B.S. in Computer Science from the College of William
and Mary. He is President of Bosatsu Consulting, Inc. and lives
in Los Angeles, CA.

Websites
REST Wiki:
Site: http://rest.blueoxen.net

This Week in REST:
Site: http://thisweekinrest.wordpress.com

Mailing Lists
Rest-discuss: One of the most active and opinionated
mailing lists for discussion of REST topics. Many of the most
influential minds in the field congregate here to discuss both
fundamental and esoteric nuances of the architectural style.
This is best used as a read-only learning resource until you
have mastered the basics and need illumination on finer
points. Consider searching the archives before asking
introductory questions.

Site: http://tech.groups.yahoo.com/group/rest-discuss/

This cookbook includes more than 100 recipes
to help you take advantage of REST, HTTP, and
the infrastructure of the Web. You’ll learn ways
to design RESTful web services for client and
server applications that meet performance,
scalability, reliability, and security goals, no
matter what programming language and
development framework you use.

BUY NOW
http://oreilly.com/catalog/9780596801694

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

