

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#131
A

D
O

.N
E

T
 E

n
ti

ty
 F

ra
m

e
w

o
rk

CONTENTS INCLUDE:
n	 About the ADO.NET Entity Framework
n	 The ObjectContext
n	 The Data Model
n	 Inserting Entities
n	 Querying Entities
n	 POCO Support and more...

By Dane Morgridge

 ADO.NET Entity Framework
Object-Relational Mapping and Data Access

ABOUT THE ADO.NET ENTITY FRAMEWORK

The ADO.NET Entity Framework (EF) is a powerful object-
relational mapping (ORM) tool that exists inside Microsoft Visual
Studio 2010. Many new features were introduced with the current
release of ADO.NET EF 4.0, which provides superior functionality
when compared with EF 1.0. The EF version number was
changed to match the version of the .NET framework, and EF 1.0
is frequently referred to as version 3.5 because of this.

THE OBJECTCONTEXT

There are several classes that you will work with when using
the EF. The most important of these objects is the all-central
ObjectContext, which is the gate keeper for the classes responsible
for all the change tracking as well as all database access. EF
keeps track of each entity that is attached to it. ObjectContext
can become quite large in terms of memory and resource
as more entities are attached to it, which may present some
problems when it comes time to persist changes to the database.

For example, when a SaveChanges call is made, each object
currently being tracked is examined to determine necessary
actions. Logically, this process will take more time and will require
more resources as the objects that are being tracked increase.
The SaveChanges call is also wrapped in an atomic transaction
and will roll back if there are any errors from the database.

A general rule of thumb is to use a new ObjectContext (such as
a single web form, MVC controller, or any client-side view) with
each logical set of operations. Keeping a single ObjectContext
limited to a smaller set of operations will decrease the number of
objects tracked and, as a result, maintain performance.

THE DATA MODEL

Before you begin working with data, you must create a new
model either by working with an existing database or by creating
an empty model.

Working with an
existing database
First, add a new
“ADO.NET Entity
Data Model”. In
this example, the
model is called
“ContactModel.
edmx” since the data
is contact type data.
The Choose Model
Contents dialog
box opens.

To work with an existing database, select Generate from
database. Click Next. The Choose Your Data Connection dialog
box opens.

The drop-down list contains all databases that you currently
have configured inside the Visual Studio Server Explorer. If the
database you want is not an option in the list, click the New
Connection button to add a new database.

You will see more information in the Entity connection string
field than what you would see in a normal ADO.NET connection
string. The entity connection string is made up of three parts:

(1) Metadata: points to the actual model. The model file in your
solution is ContactModel.edmx, which you don’t see listed.
There are three files:

•	ContactModel.csdl: the conceptual model (or what you see in the entity
design surface). This represents the classes you work with.

•	ContactModel.ssdl: the storage model (or the physical database model).

•	ContactModel.msl: the mapping between the csdl and ssdl files.

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

3 ADO.NET Entity Framework: Object-Relational Mapping and Data Access

DZone, Inc. | www.dzone.com

The .emdx file is an XML file that contains all of the data for the
three files. When your project is compiled, these three files are
generated and embedded.

(2) Provider: points to the actual ADO.NET provider.

(3) Provider Connection String: the normal ADO.NET connection
string that is specific to the provider.

The last option in the Choose your Data Connection dialog
box is the “Save entity connection settings in App.Config as”
field, which saves the connection string. Make sure to check this
checkbox so that you do not have to build the connection string
by hand. The name you give to the connection string is also what
your ObjectContext class name will ultimately be named.

After you have saved your connection string, click Next. The
Choose your Database Objects dialog box opens.

Select the tables, views, and stored procedures that you want
to use. In this example, we will select the Addresses and People
tables.

The two checkboxes at the bottom of the dialog box allow you
to pluralize or singularize your object names or to include foreign
keys in the model. Pluralizing and singularizing will help the
model make more sense from a code standpoint when working
with entities. In this example, the database table is named
“People”. You would want the entity name to be “Person” in
the singular form. If you were dealing with multiple people, you
would want this to be “People”.

The information in the Model Namespace field at the bottom of
the dialog box is hidden inside generated code. Since you don’t
work with it directly, it is not recommended that you change this.

Click Finish. You will be taken to the model design surface that
will show you the model you have created.

The Person and Address entities are pulled from the database.
Notice that they are singular versions of the table names. The
lines connecting the entities denote a one-to-many relationship
between Person and Address. In other words, one Person can
have multiple Addresses and one Address can only have one
Person. Navigation Properties is also pluralized and singularized
based on the relationship. Navigation properties are how you
navigate between entities. You can use the Addresses property
of a person to access that person’s address data and, in the same
way, you can use the Person property off of an address to access
the associated person.

Anything that you want to modify on the model can be done
through the properties window in Visual Studio.

Updating the model
When you make changes to your database, you can refresh
the model by right clicking on the model design surface and
selecting Update Model from Database. A dialog box similar
to the Choose Your Database Objects dialog box opens. Any
objects that are currently part of the model will be refreshed, and
you can add any objects that are currently not part of the model.

Using Model First
To get started, add a new ADO.NET Data Model to your project
by selecting Empty model in the Choose Model Contents dialog
box and click Finish.

You will be taken to an empty design surface. To add an entity,
right click on the design surface and select Add -> Entity. The
Add Entity dialog box opens.

http://www.refcardz.com
http://www.dzone.com

4 ADO.NET Entity Framework: Object-Relational Mapping and Data Access

DZone, Inc. | www.dzone.com

In this example, the Entity name is set to “Person”, which was
pluralized to “People” in the Entity Set field. The Entity Name is
the name you will use for the actual entity. The Entity Set will be
the name of the plural collection as well as your database table
name. If you don’t want it to be pluralized, you can change it
here. However, you may encounter problems if you try to make
changes to the database directly and then update it. In general, it
is recommended that you stick with one design method for your
database. Either use Model First consistently throughout or make
your database changes externally and update the model. This will
make maintaining the model consistency easier.

It is up to your design if you want to change the information in
the Property name field to be more descriptive. If you do change
it, make a note that you may need to tweak your association
names down the road.

Click OK to return to the model design surface with your
new entity:

To add more items to the entity, right click on the entity and
select Add -> Scalar Property. You can also use the Insert or Enter
keys on your keyboard to add a new property. In this example, a
FirstName property was added:

Click FirstName to view the Properties window:

The following table includes descriptions of some of the
key properties:

Property Name Description

Fixed Length Set to False by default and will result in a varchar or an
nvarchar. If you want a char or nchar, set this to True.

Max Length Set to MAX by default. As a string type, either a varchar(MAX)
or an nvarchar(MAX) will be created. Set this to a number to set
the max character length.

StoreGeneratedPattern Set to None by default. When using keys, you can set this
to determine if you want this key to be an identity or a
computed value.

Type Set to String by default. Sets the datatype of the property
and supports almost all SQL Server datatypes.

Unicode Set to True by default, giving you the Unicode versions of
the datatypes. Determines whether you will get an nvarchar
or a varchar.

Creating Associations
Once you flesh out your entities, you need a way to associate
them. In SQL Server, you would simply add foreign keys to
the tables. In EF, you need to create associations. To do this,
right click the entity with the primary key and select Add ->
Association. The Add Association dialog box opens.

In the Add Association dialog box, you can set the two endpoints
for both sides of the association as well as the association type.
In this example, a one-to-many association between Person and
Address is being set up. Using the Multiplicity drop-down menus,
select different association types. Checking the Navigation
Property checkboxes allows you to set navigation properties to
be used when navigating the associations. By default, these are
set to pluralized or not based on the type of association. You can
rename these to more descriptive names if you want.

Check the Add foreign key properties to the ‘Address’ Entity
checkbox to add foreign key properties to the non-primary
key endpoint. In this example, checking this box would add a
PersonId to the address table. It is important to note that the
key that gets added will be a concatenation of the primary key
entity name and the primary key itself. If the key was left as
simply Id, the foreign key field would be PersonId. If I set the
primary key field to be PersonId, the foreign key field would be
PersonPersonId.

INSERTING ENTITIES

Now that you have a model, you can start putting some data
in it. To create a new person, you must create a new person
object. Once you have created the new object, simply add it
to the context and then call SaveChanges on the context. In
this example, there is address data to add to the person object
before saving.

http://www.refcardz.com
http://www.dzone.com

5 ADO.NET Entity Framework: Object-Relational Mapping and Data Access

DZone, Inc. | www.dzone.com

using(EFRefCardEntities context = new EFRefCardEntities())
{
 Person person = new Person();
 person.FirstName = “Dane”;
 person.LastName = “Morgridge”;
 person.DateOfBirth = DateTime.Now;

 Address address = new Address();
 address.Street = “123 Somewhere”;
 address.City = “Philadelphia”;
 address.State = “PA”;
 address.Zip = “12345”;

 person.Addresses.Add(address);

 context.People.AddObject(person);
 context.SaveChanges();
}

Adding the address object to the Addresses collection on the
person object will also add the address to the context. When
SaveChanges is called, the context will inspect any objects it is
tracking and decide what steps to take and what order to do
them in. In this example, there are two entities that are new and
they have to be submitted in the proper order. Since Address is
dependent on Person because of a foreign key constraint, the
person must be added first. The EF ensures that they are added
in the proper order.

The SaveChanges call is automatically wrapped in a transaction.
As such, if anything fails on insert, the whole thing will roll back
and an exception will be thrown.

To generate your database, right click on the design surface and
select Generate Database From Model.

A dialog box opens where you can select the database location
just as you did when adding from an existing database. Click
Next to view a preview of the SQL file that will be generated.
Click Finish to generate the file.

It is important to note that the generated SQL file contains
create statements only and does not look at the current state
of your database to determine what updates need to be done.
It is recommended that you run this file against a compare
database and then use a SQL compare tool to sync the schemas.
You can use the same database name, but add ” _Compare” to
the end. Doing this ensures that you don’t inadvertently erase
your test data.

QUERYING ENTITIES

Once you have data in the database, you can get the data back
out. The EF can be queried using either LINQ or Entity SQL.
You will need to have some familiarity with LINQ and the various
available options to take advantage of what the EF has to offer.
Entity SQL is very similar to TSQL, but it is executed against the
model rather than the database. There are resources online and
in print to help you should you need it.

Below is a basic LINQ query that will give you all of the
person data.

using (EFRefCardEntities context = new EFRefCardEntities())
{
 var people = from p in context.People
 select p;

 foreach (var person in people)
 {
 foreach (var address in person.Addresses)
 {

 }
 }
}

After you query the data, do a foreach through the people
collection and then through the addresses for each person to
show the navigation.

The actual query can be written two ways:

var people = from p in context.People
 select p;

or

var people = context.People;

The second option is much cleaner; and unless you need to do
joins or any other special LINQ operations, the second method is
recommended.

Lazy Loading, Eager Loading, and Explicit Loading
EF 4.0 supports lazy loading by default. Be aware that lazy
loading will create more database connections than you may
expect. For example, if there were two people in the database,
the above code would call the database three times—once for
the initial call and once for each person when the Addresses
collection gets checked. If a navigation property hasn’t been filled
when it is accessed, the EF will make a call out to the database to
see if there is any data.

You can turn lazy loading off in the properties window for
global options. You can also turn off lazy loading on a call-by-call
basis by setting the ContextOptions.LazyLoadingEnabled
property to false.

If performance is not an issue, you can leave lazy loading enabled
since it will make development quicker by not having to request
the additional data. If you need to control the database hits, you
have a couple of options. If you plan on serializing the classes,
you will want to turn lazy loading off.

To get at association data without using lazy loading, you can use
eager loading and explicit loading. With eager loading, you can
load the data up front in one trip to the database. With explicit
loading, you can load associated data on demand.

To use eager loading, you can use the Include method:

var people = context.People.Include(“Addresses”);

This will cause one round trip to the database and get all person
and all address data at once. This will use more bandwidth
upfront, but it will be limited to one round trip.

Explicit loading is similar to lazy loading, but you can control
when the navigation properties get loaded:

var people = context.People;

foreach (var person in people)
{
 person.Addresses.Load();
 foreach (var address in person.Addresses)
 {

 }
}

Calling Load on the navigation properties will make additional
trips to the database to fill the properties, but you can control
when it happens.

You can use a mix of all three methods depending on the
requirements of the application.

UPDATING ENTITIES

Updating entities is a very simple process. Once you query an
entity or a collection of entities, you can make any changes you

http://www.refcardz.com
http://www.dzone.com

6 ADO.NET Entity Framework: Object-Relational Mapping and Data Access

DZone, Inc. | www.dzone.com

wish. Calling SaveChanges on the ObjectContext will persist any
updates on any entity that it is tracking.

using(EFRefCardEntities context = new EFRefCardEntities())
{
 var people = context.People.Include(“Addresses”);

 foreach (var person in people)
 {
 person.DateOfBirth = DateTime.Now.AddYears(-30);
 }

 context.SaveChanges();
}

The above code will update the DateOfBirth to the current time
minus 30 years, and the SaveChanges call will persist those
changes down to the database.

Any change to any entity that is being tracked by the
ObjectContext will be evaluated on the SaveChanges call. This
is part of the reason that you should use a single ObjectContext
for a small logical set of operations. The more objects being
evaluated, the longer this process will take and the more
resources it will consume.

DELETING ENTITIES

To delete an entity, call DeleteObject on the ObjectSet:

context.People.DeleteObject(person);
context.SaveChanges();

To delete an object, it must be loaded into the ObjectContext.
The SaveChanges call will issue the delete statement to the
database. Because of the requirement of an object to be tracked
by the ObjectContext, you will likely want to use a stored
procedure if you are going to delete a lot of objects. While
this can be done using the EF, it will be much simpler in a
stored procedure.

Be careful when deleting an entity that is part of an IEnumerable
or Ienumberable<T> collection. This will throw an exception as
you are modifying the collection while it is being enumerated.
Pushing your collection to an array will easily get around this.

POCO SUPPORT

Basic POCO Support with Entity Framework 4.0
The default classes that come with the EF are tied to
the framework itself, and the entities themselves inherit
System.Data.Objects.DataClasses.EntityObject. Luckily, EF 4.0
provides Plain Old Clr Object (POCO) support. This allows you
to build data layers following the persistence ignorance concept.
While this is important for many reasons, one of the most significant
reasons is that it allows greater testability with your code.

In a nutshell, POCO support allows you to use the POCO objects
with the ObjectContext without having to make great changes in
your code. In most cases, you can switch from the normal entity
generation scheme to POCO with no code changes. However,
a few things are missing—specifically, explicit loading. The Load
method doesn’t exist on the POCO collections, but you can use
ObjectContext.LoadProperty to achieve the same result.

Lazy loading works through the use of proxies. By default,
with POCO, there is a proxy object that gets generated for
each POCO object that is used when interacting with the
ObjectContext. The proxy object sits between the POCO object
and the ObjectContext. To the ObjectContext, the POCO object
is a real EF object.

It is important to note that this proxy will get in the way of
serialization. Therefore, it is important to turn the proxy off.
Simply turning off lazy loading will not do the trick. You can turn
it off using the ContextOptions.ProxyCreationEnabled property
and setting it to false.

Using POCO Support
You have a couple of options if you want to use POCO with
EF 4.0. You can hand code the objects, or you can use a Text
Template Transformation Toolkit (T4) to generate them for you
from your model.

Using the T4 templates is the easiest method. You can download
a POCO template from the Visual Studio Gallery, or the Visual
Studio Extension Manager. If you search on
visualstudogallery.com for the “ADO.NET POCO Entity
Generator”, you will find four (at the time of this writing): two for
C# and two for Visual Basic. Each template has a website version
if you use the file system-based website feature of Visual Studio.
Use the other templates if you are using actual project files.

No matter which you use, the process is the same. Open your
.edmx file, right click on the design surface, and select “Add
Code Generation Item”.

Select either the ADO.NET POCO Entity Generator and name
the file. It is recommended that you name it the same as the
.edmx file to keep it with the model in the project.

Click Add. Your model is now converted to use POCO instead of
the standard EF objects.

Another reason to use the T4 templates is that if you make a
change to the model, it will be reflected automatically by the
POCO template. If you build the files by hand, you will have to
update them yourself, which could be a time-consuming process
if you have a large evolving system.

Now that your project is converted to POCO, you shouldn’t
have to make any changes to your project unless you are using
anything that requires the full EF objects.

You can now begin to build your persistence ignorant data layer
and keep good clean separation of concerns in your application.
This will also make it easier for you to implement a repository
pattern for your data access layer.

I maintain an open source project at CodePlex to aid you in
building a data access layer using POCO with Entity Framework
4. It is an additional T4 template to provide the groundwork for
you to build your data layer on. It can be downloaded at
http://efrepository.codeplex.com.

Code First Development
In addition to using T4 templates, you can use the newest
features of Entity Framework: Code First.

http://www.refcardz.com
http://www.dzone.com

7 ADO.NET Entity Framework: Object-Relational Mapping and Data Access

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Microsoft Azure
CSS3
Richfaces 4.0
REST

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Code First development gives you the ability to define everything
in code without having to use a model in an .edmx file. You can
still use the same ObjectContext and POCO class concepts, but
the model is inferred at runtime. Code First is not baked into EF
4.0 and Visual Studio 2010; rather, it is an out-of-band release
targeted for the first quarter of 2011. The final release will be
announced on the ADO.NET team blog:
http://blogs.msdn.com/b/adonet/.

CONCLUSION & RESOURCES

ADO.NET Entity Framework 4.0 is a powerful Object Relational
Mapping tool and is the Microsoft data access strategy moving
forward. If you are working with data in your applications, it is well
worth taking a solid look.

To keep up with everything going on with the EF, watch the ADO.
NET Team Blog at: http://blogs.msdn.com/b/adonet/

The MSDN forums also have valuable information:

http://social.msdn.microsoft.com/forums/en-US/
adodotnetentityframework/threads/

Dane Morgridge has been a developer for 9+ years
and has worked with .Net & C# since the first public
beta. His current passions are Entity Framework, WPF,
WCF, Silverlight and LINQ and is currently a Microsoft
MVP for Data Platform Development. He works mostly
with C#, but is also a big fan of whatever new
technology he happens to come across. In
addition to software development, he is the host
of the Community Megaphone Podcast
(http://communitymegaphonepodcast.com) and also
enjoys dabbling in graphic design, video special effects
and hockey. When not with his family he is usually
learning some new technology or working on some side
projects. He can be reached through is blog
http://geekswithblogs.net/danemorgridge or on
Twitter @danemorgridge.

Programming Entity Framework is a thorough
introduction to Microsoft’s new core framework
for modeling and interacting with data in .NET
applications. This highly-acclaimed book not only
gives experienced developers a hands-on tour of the
Entity Framework and explains its use in a variety of
applications, it also provides a deep understanding
of its architecture and APIs. Although this book is
based on the first version of Entity Framework, it will
continue to be extremely valuable as you shift to the
Entity Framework version in .NET Framework 4.0 and
Visual Studio 2010. From the Entity Data Model (EDM)
and Object Services to EntityClient and the Metadata
Workspace, this book covers it all.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

