

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#132
M

as
te

ri
n

g
 P

o
rt

al
s

w
it

h
 a

 P
o

rt
le

t
B

ri
d

g
e

CONTENTS INCLUDE:
n	 About Portlet Bridges
n	 About the JBoss Portlet Bridge
n	 In the Beginning, There were Portlets
n	 Giving Portlets a Second Chance
n	 Configurations
n	 Hot Tips and more...

By Wesley Hales

Mastering Portals with a

Portlet Bridge

ABOUT PORTLET BRIDGES

Portals have long been a thorn in the side of many developers
who want to stay cutting edge—but must focus on the needs of
the enterprise. And 99% of the time, a portal is the only answer
for aggregating many applications into one UI.

A portlet bridge allows you to run application frameworks
like JSF in a portal environment without worrying about the
underlying portlet API or portlet concepts.

The JSR-301/329 portlet bridge boasts ease of transition, ease
of initiation, and seamless mappings from JSF to the portal
environment. Overall, a portlet bridge is a must-have mediator
when working with portals, and it allows developers to learn a
new technology painlessly.

ABOUT THE JBOSS PORTLET BRIDGE

This refcard shows specific configurations for the JBoss
Portlet Bridge. The JBoss Portlet Bridge is a non-final draft
implementation of the JSR-329 specification which supports the
JSF 1.2 and 2.0 runtime within a JSR 168 or 286 portlet and with
added enhancements to support other web frameworks (such as
Seam and RichFaces).

The project follows the spec from JSR-301 to JSR-329 and now
maintains an alpha version (3.0) compatible with JSF 2.0 and
RichFaces 4.0.

Versions
Since this portlet bridge spans four different JSRs and supports
two additional JSF frameworks, understanding versions can be a
little daunting. i.e. Just because the portlet bridge is versioned at
2.0 does not mean it covers the JSF 2.0 specification.

JBoss Portlet Bridge
Latest Versions

Compatible Frameworks

2.1.0.FINAL JSR-286 Portlets, JSF 1.2, RichFaces 3.3.3.FINAL,
Seam 2.2.1.CR2

3.0.0.ALPHA SR-286 Portlets, JSF 2.0, RichFaces 4.0

IN THE BEGINNING, THERE WERE PORTLETS

It would only be fair (and cruel in some states) if I gave you a brief
primer on portal and portlet technologies. There will come a
day when you will need to understand what an ActionRequest is
and what you can pull from your FacesContext.ExternalContext()
while running as a JSF portlet.

Portal Terminology
Portal
Hosts the presentation layer for personalization, single sign on
and content aggregation.

Portlet Container
A portal can host multiple portlet containers, and each portlet
container has its own runtime environment.

Portal Page: Aggregation of portlets, organized and displayed
on a single page.

Portlet: A portlet is a Java technology-based web component,
managed by a portlet container, that processes requests and
generates dynamic content.

Portlet Instance: A portlet instance can be placed on
multiple pages and will show the same state in regards to
the current mode.

Portlets vs. Servlets
Most rookie portlet developers have their roots in the servlet
world. So it’s important to know the key differences in what
you’re about to dive into from what you’ve been dealing with.
Portlets generate a portion or “fragment” of the HTML page
they’re being displayed upon. This is the first big bullet point in
understanding differences between servlets and portlets. UI wise,
they cannot make use of the same html (for instance the standard
<html> <head> <title> and <body> are forbidden in the portlet
markup). The job of writing these tags belongs to the Portal Page
and not you, the developer.

Points To Remember
•	 Portlet URLs, which are used as links to other pages within

your Portlet window, are dynamically pre-generated by
the Portlet code and passed into the markup.

•	 Although servlets and portlets are in some respects
similar, their containers and lifecycles differ.

•	 On the front end, portlets are HTML fragments that
compose a larger page which they are unaware of.
Servlets provide the entire page.

•	 Portlets cannot be accessed by use of a single URL, the

brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

2 Mastering Portals with a Portlet Bridge

DZone, Inc. | www.dzone.com

way in which servlets are accessed. Instead, the URL points
to the page where many portlets may be contained.

•	 The portal request paradigm is completely different.
There are two requests instead of one. This is talked
about in the next section.

•	 You now have mode and state buttons that allow you to
“minimize” or “maximize” the portlet window or enter
“help” mode.

•	 Portlets support two scopes within the session (PORTLET_
SCOPE and APPLICATION_SCOPE). This allows for cases
like sharing data from one portlet to another.

•	 Portlets are not allowed to set character encoding on the
response, set HTTP headers, or manipulate the URL of the
client request to the portal.

Portlet Lifecycle
Once you wrap your head around the fact that there are two
requests and the Portal sends them for you, the rest is a piece
of cake. What I’m about to explain makes total sense, but it’s a
huge change from the way things are done in a Servlet-based
web app. In the Servlet world, a Servlet owns the process of
receiving an entire web request and rendering output at the
same time in one big response. In the Portlet world, the Portal
receives the web request then makes separate calls to individual
portlets. This separation allows for a different lifecycle method
to be introduced in Portlets. The two requests are called Action
and Render, and each have their own request and response. You
must first keep in mind that when you click a link or submit button
in the portlet window, it has been generated by the portal API.
Thus, the portal needs to control/remember things like which
window is sending the request, modes, parameters, window
states, etc. So when an Action link is clicked, the portal will get
this information and run processAction() along with a few other
methods in your portlet. You are guaranteed that this action
will be complete before the rendering phase starts. Once this is
done, the portal now needs to re-render the page along with all
the other portlets on that page. The best thing to keep in mind
is portlets may be asked to render, even when the user is not
interacting with them. Conceptually, this makes sense to have the
two requests. However, developers have been naturally forced to
do both of these things at the same time in the servlet world.

In most cases, when converting an existing servlet based
application to a portlet, you must use a portlet bridge so that
URLs are generated for the portlet world—along with other
framework functionality.

GIVING PORTLETS A SECOND CHANCE

If You Skipped The First Page...
It’s okay because the portlet bridge is created to mask all of those
hairy details from the developer so you only have to worry about
your web application. You can now take your existing JSF-based
application and plug it into a portal painlessly.

Getting Started
Use the following maven archetype command:

mvn archetype:generate
-DarchetypeCatalog=http://bit.ly/jbossportletbridge

	

Choose from the available projects and you will have everything

you need to start developing a new portlet. If you are moving
an existing application to a portlet, this will serve as a reference
point for configuration.

Archetype Options
You will also see other configuration options like “make-
remotable” and “richfaces-javascript-namespace” in the
archetype generate phase.

Option Purpose

make-remotable Boolean property that will create the configuration for
running this portlet remotely over WSRP

richfaces-javascript-
namespace

Boolean property that allows for namespacing
dynamically generated RichFaces javascript.

CONFIGURATION

The portlet bridge is a mediator between your web application
and the portal worlds. It is not a portlet. So here we will review
the changes you must make to convert your current JSF
application into a portlet.

Core JSF Portlet Setup
portlet.xml
The following config is the backbone of your portlet. It shows
where the supplied GenericFacesPortlet is and which JSF
pages to render when clicking on the mode buttons (i.e. help,
edit, etc...).

 <portlet>
 <portlet-name>yourPortletName</portlet-name>
 <portlet-class>
 javax.portlet.faces.GenericFacesPortlet
 </portlet-class>

 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/welcome.xhtml</value>
 </init-param>

 <init-param>
 <name>javax.portlet.faces.defaultViewId.edit</name>
 <value>/jsf/edit.xhtml</value>
 </init-param>

 <init-param>
 <name>javax.portlet.faces.defaultViewId.help</name>
 <value>/jsf/help.xhtml</value>
 </init-param>

When preserveActionParams is set to TRUE, the bridge must
maintain any request parameters assigned during the portlet’s
action request. You should set this as true if your application is
not receiving request parameters that were set when a button or
link was clicked.

<init-param>
 <name>javax.portlet.faces.preserveActionParams</name>
 <value>true</value>
</init-param>

faces-config.xml
The PortletViewHandler ensures that each JSF portlet instance
is properly namespaced. Your application will use a combined
portal and JSF namespace.

<faces-config>
<application>
 <view-handler>
 org.jboss.portletbridge.application.PortletViewHandler
 </view-handler>
 <state-manager>org.jboss.portletbridge.application.
PortletStateManager</state-manager>
</application>

web.xml
The following setting tells your portlet to use the
FaceletPortletViewHandler when using RichFaces.

http://www.refcardz.com
http://www.dzone.com

3 Mastering Portals with a Portlet Bridge

DZone, Inc. | www.dzone.com

<context-param>
 <param-name>org.ajax4jsf.VIEW_HANDLERS</param-name>
 <param-value>org.jboss.portletbridge.application.
FaceletPortletViewHandler</param-value>
</context-param>

ALWAYS_DELEGATE Indicates the bridge should not render
the view itself but rather always delegate the rendering. This is
the default setting for Facelets. If strictly using .jsp, then set the
following to NEVER_DELEGATE.

<context-param>
 <param-name>javax.portlet.faces.RENDER_POLICY</param-name>
 <param-value>
 ALWAYS_DELEGATE
 </param-value>
</context-param>

RichFaces Portlet Configuration
web.xml
RichFaces maintains dynamic scripts and styles that are injected
in the page at render. The recommended settings for a portal
environment are:

<context-param>
 <param-name>org.richfaces.LoadStyleStrategy</param-name>
 <param-value>DEFAULT</param-value>
</context-param>
<context-param>
 <param-name>org.richfaces.LoadScriptStrategy</param-name>
 <param-value>ALL</param-value>
</context-param>

RichFaces does not account for multiple components on the
same portal page by default. This following parameter renders all
RichFaces component javascript to be portal friendly.

<context-param>
 <param-name>org.jboss.portletbridge.WRAP_SCRIPTS</param-name>
 <param-value>true</param-value>
 </context-param>

Seam automatically configures your Ajax4JSF/RichFaces Filter, so
if you are running a Seam portlet, you do not need the following
Filter config.

<filter>
 <display-name>Ajax4jsf Filter</display-name>
 <filter-name>ajax4jsf</filter-name>
 <filter-class>org.ajax4jsf.Filter</filter-class>
</filter>

<filter-mapping>
 <filter-name>ajax4jsf</filter-name>
 <servlet-name>FacesServlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
</filter-mapping>

Seam Portlet Configuration

Hot
Tip

It’s important to remember that your portlet may be
rendered many times. Since Seam page actions are
performed on the RenderRequest, you should only define
your navigation in pages.xml.

The SeamExceptionHandler is used to clean Seam contexts and
transactions after errors.

<context-param>
 <param-name>org.jboss.portletbridge.ExceptionHandler</param-name>
 <param-value>
 org.jboss.portletbridge.SeamExceptionHandlerImpl
 </param-value>
</context-param>

USING PORTLET 2.0 COORDINATION WITH JSF

	

Portlet 2.0 coordination gives us two ways to communicate
between portlets (events and public render parameters). This
means you can deploy a JSF 2 war and another JSF 1.2/Seam 2
ear and they can send events and messages to each other.

One very important thing to note before using either of the
following mechanisms is that you must have the proper 2.0
schema and xsd definition at the top of your portlet.xml.

<portlet-app xmlns=”http://java.sun.com/xml/ns/portlet/portlet-
app_2_0.xsd”
 version=”2.0”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/portlet/
portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd”>

Hot
Tip

Portlet events and public render parameters cannot be
set during Ajax requests.

Sending and Receiving Events
The bridge is designed by default to defer to normal portlet
processing when sending events. You should set the following
parameters allowing portlet events to be sent directly to the
bridge (autoDispatchEvents) and which class should process
received portlet events (bridgeEventHandler).

<init-param>
 <name>javax.portlet.faces.autoDispatchEvents</name>
 <value>true</value>
</init-param>
<init-param>
 <name>javax.portlet.faces.bridgeEventHandler</name>
 <value>org.foo.eventhandler</value>
</init-param>

For now, you must dispatch the event in the JSF or Seam
backing bean. Future versions of the bridge should automate the
dispatching and consuming of events.

if (response instanceof StateAwareResponse) {
 StateAwareResponse stateResponse = (StateAwareResponse)
response;
 stateResponse.setEvent(Foo.QNAME, new Bar());
 }

Then you must also create the event handler class by
implementing the BridgeEventHandler interface to process the
event payload.

public class BookingEventHandler implements BridgeEventHandler
 {
 public EventNavigationResult handleEvent(FacesContext context,
Event event)
 {
 //process event payload here
 }

 }

Public Render Parameters
Public Render Parameters (or PRPs) are one of the most powerful
and simple Portlet 2.0 features. Several portlets (JSF or not) can
share the same render parameters. This feature can be used to

http://www.refcardz.com
http://www.dzone.com

4 Mastering Portals with a Portlet Bridge

DZone, Inc. | www.dzone.com

present a cohesive UI to the user across all portlets on the page
(i.e., using an employee ID to display relative data).

The bridge maps a render parameter to a backing bean using
settings in your faces-config.xml and portlet.xml. A clear and
working example can be found below.

You must define the following init params in your portlet.xml.

<init-param>
<name>javax.portlet.faces.bridgePublicRenderParameterHandler</name>
<value>org.foo.PRPHandler</value>
</init-param>
...
<supported-public-render-parameter>hotelName</supported-public-
render-parameter>

Create a managed bean and public-parameter-mapping in your
faces-config.xml. This should be a simple bean that you can bind
the passed parameter to a string with getter and setter.

<managed-bean>
 <managed-bean-name>bookingPRP</managed-bean-name>
 <managed-bean-class>your.class.Name</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

<application>
 <application-extension>
 <bridge:public-parameter-mappings>
 <bridge:public-parameter-mapping>
 <parameter>portletName:hotelName</parameter>
 <model-el>#{bookingPRP.hotelName}</model-el>
 </bridge:public-parameter-mapping>
 </bridge:public-parameter-mappings>
 </application-extension>
</application>

Hot
Tip

The <parameter> must contain the name of your portlet
followed by the parameter name defined in <supported-
public-render-parameter> from the portlet.xml.

You can set the public render parameter in the JSF or Seam
backing bean as follows:

if (response instanceof StateAwareResponse) {
 StateAwareResponse stateResponse = (StateAwareResponse) response;
 stateResponse.setRenderParameter(“hotelName”,selectedHotel.
getName());
}

And finally, in the receiving portlet, you must also implement the
BridgePublicRenderParameterHandler interface to process any
updates from the received parameter.

public void processUpdates(FacesContext context)
{
ELContext elContext = context.getELContext();
BookingPRPBean bean = (BookingPRPBean) elContext.getELResolver().
getValue(elContext, null, “bookingPRP”);

if(null != bean){
 //Do something with bean.getHotelName());
} else {

}
}

Hot
Tip

You can find a working example using all coordination
features running on JSF 1.2, RichFaces and Seam here:
http://bit.ly/seambooking

SERVING JSF RESOURCES, THE PORTLET WAY

The below example shows how to create a simple bean that uses
the portlet resource serving mechanism within a JSF portlet.

By creating a simple class (and defining it in your faces-config.xml)
that implements the java.util.Map interface, you can create a
“ResourceBean” that will make life much easier on the UI.

public String get(Object key) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 String url = null;
 if(null == key){
 url = null;
 } else if(null != facesContext){
 url = facesContext.getApplication().getViewHandler().
getResourceURL(facesContext, key.toString());
 url = facesContext.getExternalContext().encodeResourceURL(url);
 } else {
 url = key.toString();
 }
 return url;
 }
}

From here, you can serve images and other resources based in
your web application by using:

 #{resource[‘/img/the-path-to-my-image.png’]}

The source for this example can be found here:
http://bit.ly/resourcebean

DEVELOPER TIPS & TRICKS

Excluding Attributes from the Bridge Request Scope
When your application uses request attributes on a per request
basis and you do not want that particular attribute to be
managed in the extended bridge request scope, you must use
the following configuration in your faces-config.xml. Below you
will see that any attribute namespaced as foo.bar or any attribute
beginning with foo.baz(wildcard) will be excluded from the bridge
request scope and only be used per that application’s request.

<application>
<application-extension>
 <bridge:excluded-attributes>
 <bridge:excluded-attribute>foo.bar</bridge:excluded-
attribute>
 <bridge:excluded-attribute>foo.baz.*</bridge:excluded-
attribute>
 </bridge:excluded-attributes>
</application-extension>
</application>

Hot
Tip

“From The Spec...” To support Faces, the bridge is
responsible for encoding portlet (action) responses
in a manner that allows it (and Faces) to reestablish
the request environment that existed at the end of the
corresponding action phase during subsequent render
requests that are identified as pertaining to that action
(or event). The term used to describe the scope of this
managed data is the bridge request scope.

Supporting PortletMode Changes
A PortletMode represents a distinct render path within an
application. There are three standard modes: view, edit and help.
The bridge’s ExternalContext.encodeActionURL recognizes the
query string parameter javax.portlet.faces.PortletMode and uses
this parameter’s value to set the portlet mode on the underlying
portlet actionURL or response. Once processed, it then removes
this parameter from the query string. This means the following
navigation rule causes one to render the \edit.jspx viewId in the
portlet edit mode:

<navigation-rule>
 <from-view-id>/register.jspx</from-view-id>
 <navigation-case>
 <from-outcome>edit</from-outcome>
 <to-view-id>/edit.jspx?javax.portlet.faces.PortletMode=edit</
to-view-id>
 </navigation-case>
</navigation-rule>

http://www.refcardz.com
http://www.dzone.com

5 Mastering Portals with a Portlet Bridge

DZone, Inc. | www.dzone.com

Hot
Tip

PortletMode changes require an ActionRequest, so they
cannot change modes during an Ajax or ResourceRequest.

Navigating to a mode’s last viewId
By default a mode change will start in the mode’s default view
without any (prior) existing state. One common portlet pattern
when returning to the mode one left after entering another
mode (e.g.. view -> edit -> view) is to return to the last view (and
state) of this origin mode. The bridge will explicitly encode the
necessary information so that when returning to a prior mode it
can target the appropriate view and restore the appropriate state.
The session attributes maintained by the bridge are intended
to be used by developers to navigate back from a mode to the
last location and state of a prior mode. As such, a developer
needs to describe a dynamic navigation: “from view X return to
the last view of mode y”. This is most easily expressed via an EL
expression. E.g.

<navigation-rule>
 <from-view-id>/edit.jspx*</from-view-id>
 <navigation-case>
 <from-outcome>view</from-outcome>
 <to-view-id>#{sessionScope[‘javax.portlet.faces.viewIdHistory.
view’]}</to-view-id>
 </navigation-case>
</navigation-rule>

Hot
Tip

You should always wildcard your viewId’s as shown in the
above from-view-id. Developers are encouraged to use
such wildcarding to ensure they execute properly in the
broadest set of bridge implementations.

Clearing The View History When Changing
Portlet Modes
By default, the bridge remembers the view history when you
switch to a different portlet mode (like “Help” or “Edit”). You can
use the following parameter in your portlet.xml to use the default
viewId each time you switch modes.

<init-param>
 <name>javax.portlet.faces.extension.resetModeViewId</name>
 <value>true</value>
</init-param>

General Error Handling

Hot
Tip

If you’re developing a Seam portlet, you can continue to
use pages.xml for all error handling.

The following configuration may be used to handle
exceptions. This is also useful for handling session timeout and
ViewExpiredExceptions. Pay attention to the location element.
It must contain the /faces/ mapping to work properly.

<error-page>
 <exception-type>javax.servlet.ServletException</exception-type>
 <location>/faces/error.xhtml</location>
</error-page>
<error-page>
 <exception-type>javax.faces.application.ViewExpiredException</
exception-type>
 <location>/faces/error.xhtml</location>
</error-page>

Custom Ajax Error Handling
By default, error handling is sent to a standard servlet page for
Ajax requests. To handle the error inside the portlet, use the
following javascript:

<script type=”text/javascript”>
 A4J.AJAX.onError = function(req,status,message){
 window.alert(“Custom onError handler “+message);
 }

 A4J.AJAX.onExpired = function(loc,expiredMsg){
 if(window.confirm(“Custom onExpired handler “+expiredMsg+” for a
location: “+loc)){
 return loc;
 } else {
 return false;
 }
 }
</script>

Also, add the following to web.xml.

<context-param>
 <param-name>org.ajax4jsf.handleViewExpiredOnClient</param-name>
 <param-value>true</param-value>
</context-param>

Hot
Tip

Remember to provide a link to the normal flow of your JSF
application from your error page. Otherwise, the same error
page will be displayed forever.

Communication Between Your Portlets
There are roughly 4 different ways to send messages, events, and
parameters between portlets which are contained in different
ears/wars or contained in the same war. The Portlet Container
does not care if you have 2 portlets in the same war or if they are
separated, because each portlet has a different HttpSession.

Of course, with the Portlet 2.0 spec, the recommended way to
share a parameter or event payload between 2 or more portlets
are the Section 3.4.2, “Public Render Parameters” and Section
3.4.1, “Sending and Receiving Events” mechanisms. This allows
you to decouple your application from surgically managing
objects in the PortletSession.APPLICATION_SCOPE.

But, if these do not meet your use case or you have a different
strategy, you can use one of the following methods.

Storing Components in PortletSession.APPLICATION_SCOPE
Sometimes, it makes sense to store your Seam components in
the portlet APPLICATION_SCOPE. By default, these objects are
stored in the PORTLET_SCOPE; but with the annotation below,
you can fish this class out of the PortletSession and use its values
in other portlets across different Seam applications.

@PortletScope(PortletScope.ScopeType.APPLICATION_SCOPE)

Then you would pull the statefull object from the session:

YourSessionClass yourSessionClass = (YourSessionClass)
getRenderRequest().getAttribute(“javax.portlet.p./default/
seamproject/seamprojectPortletWindow?textHolder”);

Using the PortletSession
If you need to access the PortletSession to simply share a
parameter/value across multiple portlets, you can use the
following to do so.

Object objSession = FacesContext.getCurrentInstance().
getExternalContext().
					
getSession(false);
try
{
 if (objSession instanceof PortletSession)
 {
 PortletSession portalSession = (PortletSession)objSession;
 portalSession.setAttribute(“your parameter name”,”parameter
value”,PortletSession.APPLICATION_SCOPE);
 …

Then, in your JSP or Facelets page, you can use:
#{httpSessionScope[‘your parameter name’]}

Linking to Portlet/JSF Pages Using h:outputink
For linking to any JSF/Facelets page within your portlet web
application, you may use the following.

http://www.refcardz.com
http://www.dzone.com

6 Mastering Portals with a Portlet Bridge

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

<h:outputLink value=”#{facesContext.externalContext.
			 requestContextPath}/home.xhtml”>
<f:param name=”javax.portlet.faces.ViewLink” value=”true”/>
navigate to the test page
</h:outputLink>

Redirecting to an External Page or Resource
To link to a non JSF view (i.e. jboss.org), you can use the
following parameter.

<h:commandLink actionListener=”#{yourBean.yourListenr}”>
<f:param name=”javax.portlet.faces.DirectLink” value=”true”/>
navigate to the test page
</h:commandLink>

Then in your backing bean, you must call a redirect().

FacesContext.getCurrentInstance().
	 getExternalContext().redirect(“http://www.jboss.org”);

Using Provided EL Variables
All EL variables found in the JSR-329 (Portlet 2.0) specification are
available in the JBoss Portlet Bridge. For example, you can use
the following to edit the portlet preferences on the UI.

<h:form>
 <h:inputText id=”pref” required=”true” value=”#{mutablePortletPrefe
rencesValues[‘userName’].value}” />
 <h:commandButton actionListener=”#{myBean.savePref}” value=”Save
Preferences” />
</h:form>

Then in your backing bean, you must call the
PortletPreferences.store() method.

Object request = FacesContext.getCurrentInstance().
getExternalContext().getRequest();
PortletRequest portletRequest = (PortletRequest)request;
if (request instanceof PortletRequest) {
 try {
 PortletPreferences portletPreferences = portletRequest.
					 getPreferences();
 portletPreferences.store();

Remote Portlet Navigation Using Portlet Events
When you send events, you can also leverage the
EventNavigationResult and return a JSF navigation rule. For
example, by returning:

new EventNavigationResult(“fromAction”,”Outcome”);

The fromAction can be a wildcard “/*” or a nav rule defined in
your faces-config.xml and outcome can be the from-outcome
node defined in the faces-config.xml navigation rule.

CONCLUSION

With all the bitter sweetness that JSF and portal technologies
offer, the portlet bridge does a good job of keeping everything
in check. It also gives you possibilities that may not have been
thought of when your JSF app was first created. Some examples
are integration of legacy applications to leverage existing
investments and the ability to develop newer frameworks and
technologies without regression.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Windows Azure Platform
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Wesley Hales is a software developer on several projects at JBoss, by
Red Hat. He is the co-founder of the JBoss Portlet Bridge project, a
senior developer on GateIn, and serves as the JBoss representative on
the JSR 301 & 329 specifications.

Before working for Red Hat, Wesley focused mainly on web framework
and UI-related technologies, thus leading to committer roles for
Apache, Mozilla, and JBoss. Wesley produces a series of screencasts
on vimeo for each bimonthly release of the bridge. He has written a
host of articles on infoq.com and posts occasional tutorials to his blog
on jroller.com.

For his sins, he evangelizes portlet and portlet bridge technologies
at most major conferences including Jazoon, AjaxWorld, JUDCon,
DevNexus and whichever ones a daring enough to have a portal talk
in their schedule.

Portlets in Action is a comprehensive guide for Java developers with
minimal or no experience working with portlets. Fully exploring the
Portlet 2.0 API and using widely adopted frameworks like Spring 3.0
Portlet MVC, Hibernate, and DWR, it teaches you portal and portlet
development by walking you through a Book Catalog portlet and
Book Portal examples. The example Book Catalog Portlet, developed
incrementally in each chapter of the book, incorporates most key
portlet features, and the accompanying source code can be easily
adapted and reused by readers. The example Book Portal application
introduces you to the challenges faced in developing web portals.Twitter.com/wesleyhales

www.wesleyhales.com

BUY NOW
http://www.manning.com/sarin/

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

