
The open mind
thinks in
Windows Azure.
Windows Azure is the cloud-based development
platform that lets you build and run applications
in the cloud. Code in multiple languages and
technologies, including .NET, PHP and Java.
Update or upgrade without downtime. And
launch apps in minutes, not hours. Expansive
thinking. Infinite capabilities: that's Cloud Power.

Start thinking in Windows Azure.

Try Windows Azure for free* at
www.windowsazurepass.com
Promo Code: REFCARDPASS
* We’re offering a Windows Azure platform 30-day pass, so you can put Windows
Azure and SQL Azure through their paces. No credit card required. Usage in excess of
750 extra small compute hours per month is charged at normal rates. Free compute
hours are available for the trial only until June 30, 2011 (11:59PM UTC).

This DZone Refcard is brought to you by...

http://www.windowsazurepass.com

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#134
C

lo
u

d
 C

o
m

p
u

ti
n

g
 w

it
h

 W
in

d
o

w
s

A
zu

re
 P

la
tf

o
rm

CONTENTS INCLUDE:
n	 About Windows Azure
n	 Three “Roles”
n	 Configuring Your Cloud Service
n	 �When To Allocate Storage “Local” to your

Compute Instances
n	 Windows Azure AppFabric and more... By Brian H. Prince

Cloud Computing with
Windows Azure Platform

ABOUT WINDOWS AZURE

The Windows Azure Platform is the Microsoft cloud computing
platform. It is comprised of several components:

•	Compute service: servers to run your code

•	Storage service: to store unstructured data

•	SQL Azure: to store structured data

•	Windows Azure AppFabric: for security and connectivity

Some examples of where to use it include:
•	Social: Backend Facebook / social apps

•	Mobile: One storage and services solution for iPhone / Android / Win
Phone apps

•	Web sites that will get spikes in traffic

•	HPC: Simulations, modeling, etc.

•	A “managed home” for Access databases

THREE “ROLES” BRING YOUR SERVICES TO LIFE

The Fabric Controller controls all of the servers running in
Windows Azure. To deploy code, you have to tell the Fabric
Controller how you want the code to be hosted. Roles are
server templates for your code to run in. There are three server
templates, or roles, that you can use to host and run your code.

All roles are stateless in nature. While changes can be made to
your server at runtime (under some circumstances), all changes
will be lost during a reboot or a server move.

•	Web Role: The web role is just like a normal web server. It runs IIS7
and allows you to host up to five HTTP/S ports. You can host several
web applications with the same role using host headers. This role runs
Windows Server 2008.

•	Worker Role: The worker role is a lot like the web role. It runs Windows
Server 2008, but it does not run IIS. You can host any number of services
using any protocol that uses TCP. Worker roles are commonly used for
back-end processes and for hosting many web services.

•	VM Role: The VM Role is a little different from the web role and worker
role. The VM role is any server image that you create and upload. It must
run Windows Server 2008 R2. You can customize the server image to
your needs. Windows licensing is included in the Windows Azure pricing,
so you don’t have to use your licenses on servers you are running in
Windows Azure. This role type is used most often to host software that
otherwise wouldn’t work in Windows Azure.

Instances: How to scale out
When you deploy a role, you determine how many servers should
run that role template. These are called instances. You control
how many instances are running and what size they are.

You select the size of the instance for your role in the
ServiceDefinition.csdef file. While you can dynamically change
how MANY instances you have, you cannot dynamically change
the SIZE of your instances.

The sizes available follow a similar pattern, with one exception.
All dedicated cores start with Small instances. This is one
dedicated CPU core with about 2GB of RAM. The next three
sizes just double the number of cores and RAM available.

They are Medium (2core/4GB), Large (4 core/7GB), and Extra
Large (8 core/14GB).

The one exception is the new Extra Small instance. This is a
shared core, running at 1GHz with 768MB for RAM. It is much
cheaper than the other sizes.

CONFIGURING YOUR CLOUD SERVICE

Configuration of your cloud application is handled with two
separate files:

•	ServiceDefinition.csdef: Tells the Fabric Controller the shape of your
service (“service” is a generic term for web app, application, web service,
etc.), including what ports to allow, how the instances are allowed to
communicate, what code they should each run, etc. If you change this
file, you must redeploy your application to the cloud.

•	ServiceConfiguration.cscfg: Includes settings that are needed by the
Fabric Controller at runtime to set up and run your instances. You can
also store configuration data in this file. You can update this file at
any time by providing a new file that includes the changes you want.
Depending on what settings you change, you may cause an app restart
of your servers.

Dialing up (and down) the number of instances
A deployed application can include several roles. Instances
of each role are created by the Fabric Controller according to
your ServiceConfiguration.cscfg file. You can change how
many instances you want by changing the config file. Each role
in your application can have a different amount of instances
assigned to it.

When you increase the number of instances (perhaps during
a busy period for your application), the Fabric Controller will
bring it online. This will not impact any of the other already
running instances. Bringing an instance online takes about
10 - 20 minutes.

When you decrease the number of instances (perhaps the busy
time has passed), the Fabric Controller will select some instances

brought to you by...

Try Windows Azure for free now.
Visit windowsazurepass.com
Promo Code: REFCARDPASS

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://windowsazurepass.com/

3 Cloud Computing with Windows Azure Platform

DZone, Inc. | www.dzone.com

to be stopped. The OnStop() method of your RoleEntryPoint
class (typically found in webrole.cs) will be called once the server
has been taken offline, but before it is shut down. This will give
you an opportunity to clean up any last-minute issues before the
instance is fully terminated.

When to allocate storage “local” to your
compute Instances
You can configure each role to allocate a certain amount of local
storage. This will be storage space located on the server instance
itself. You can define how much space you want to allocate, and
you can configure more than one allocation per role.

Local storage is most often used to allow for legacy code that
needs to use the local file system to work. The limitation is that
it is considered volatile; any data put there is likely to be lost in
the event of a server move or restart. You should only put data in
local storage that you can lose. Most applications will rely on the
Windows Azure Storage system (blobs, queues, and tables, which
are explained later in this Refcard).

You must declare local storage in your ServiceDefinition.csdef
file. This sample defines a 20MB storage area named
“TempFiles”. This local storage area will be cleaned out if the
server is rebooted.

<LocalResources>
 <LocalStorage name=”TempFiles” cleanOnRoleRecycle=”true”
 sizeInMB=”20” />
</LocalResources>

When your instance is started up, a folder will be created for
you with a storage limit set to what you defined in your
configuration. You will need to get a reference to the path this
folder was created in.

LocalResource myStorage = RoleEnvironment.GetLocalResource(“TempFiles”);
String localPath = myStorage.RootPath;

From here, you can use the localPath variable as a path in your
normal file-handling code.

Declare Endpoints
Roles can declare endpoints so that they can receive network
traffic. Web roles have a single endpoint configured with HTTP
over port 80 as a default. You can also enable an endpoint for
HTTPS over port 443.

A worker role doesn’t have any endpoints defined by default.
There are two types of endpoints.

•	Input endpoint: When the instance is started, an input endpoint will be
published to the load balancer and configured on the firewall. This will
allow traffic from the Internet with the right protocol on the right port to
be routed to your instances.

To declare an input endpoint, you need to define it in your
ServiceDefinition.csdef.

<Endpoints>
 <InputEndpoint name=”Endpoint1” protocol=”tcp” port=”10000” />
</Endpoints>

•	Internal endpoint: The internal endpoint will not be published to the load
balancer and is used for direct communication to your role instances. This
endpoint can only be used by other instances in your application.

You declare an internal endpoint in much the same way as an input
endpoint, but you do not declare a port number. The port number will be
defined at runtime.

<Endpoints>
 <InternalEndpoint name=”Endpoint2” protocol=”tcp” />
</Endpoints>

You reference both endpoints in a worker role the same way. You
have to create a serviceHost and then configure it at runtime
by reading the RoleEnvironment configuration to get the
endpoint details.

RoleInstanceEndpoint myInputEndPoint = RoleEnvironment.CurrentRoleInstance.
InstanceEndpoints[“Endpoint1”];

serviceHost.AddServiceEndpoint(
 typeof(IContract),
 binding,
 String.Format(“net.tcp://{0}
 /MyService”, myInputEndpoint.IPEndpoint));

The IPEndpoint property of the RoleInstanceEndpoint class
represents both the IP address and port number of the endpoint.

NON-RELATIONAL STORAGE FOR MASSIVE DATA

Windows Azure Storage provides three ways to store your
unstructured data: BLOBs, queues, and tables.

All three forms use the same backend infrastructure. They are all
accessible through the .NET Storage Client Library (provided with
the SDK) or directly with REST. Because you can access all storage
with REST, the code using the storage doesn’t have to be running
in Windows Azure. It could be running on a phone, in a browser,
or on a server in your data center.

Windows Azure stores all data in triplicate. When data is written,
a response is not returned until two replicas write the data
successfully. The third replica is written asynchronously.

All data lives in a storage account, which can contain any
combination of storage types. A single storage account can
hold up to 100TB of data and has an account name and two
account keys. The account name is like your user name, and the
account key is like your password. You should never share these
with anyone.

If you are using the .NET Storage Client Library, then you can
store your credentials in your ServiceConfiguration.csdef and it
will be automatically picked up.

<Setting name=”DataConnectionString” value=”DefaultEndpointsProtocol=https;
AccountName=[YOUR_ACCOUNT_NAME];AccountKey=[YOUR_ACCOUNT_KEY]” />

Whenever you add something to your ServiceConfiguration.cscfg
file, you need to declare it in your ServiceDefinition.csdef file.

<ConfigurationSettings>
 <Setting name=”DataConnectionString”/>
</ConfigurationSettings>

The first object you will work with is CloudStorageAccount.
This represents the storage account you created in the portal and
contains the credentials needed to use storage. From the storage
account, you create a client object. There is one type of client
object for each storage type.

Use BLOBs for video, image and other digital files
BLOB stands for Binary Large Object. You can think of BLOB
storage as a file system in the cloud. A storage account can
contain any number of BLOB containers. Each container is like
a root folder. Containers do not contain child containers.
A container will have one of several different access levels set:

•	Private: This is the default setting. All reads and writes must use the
account name and account key.

•	Full public read: This provides full anonymous read permissions.
The reader can read BLOBs and list the container’s contents.

•	Public read only: This is similar to Full Public Read, but the user does not
have permissions to list the contents of the container.

To connect to and work with BLOBs, you need to create a
CloudStorageAccount object and then a CloudBlobClient object.
This will let you get a reference to a BLOB container, which is
like a root folder. All of the storage client objects have you get
references to objects before they are created in the cloud. For
example, you will make a reference to a container and then call
container.CreateIfNotExists() to create the container. To upload
a file, you would create a CloudBlockBlob object from your

http://www.refcardz.com
http://www.dzone.com

4 Cloud Computing with Windows Azure Platform

DZone, Inc. | www.dzone.com

container reference and then call one of the upload methods.
As an example, use the following code to create a container and
upload a local file.

using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.StorageClient;
using Microsoft.WindowsAzure.ServiceRuntime;

CloudStorageAccount storageAccount = CloudStorageAccount.FromConfigurationSe
tting(“DataConnectionString”);

CloudBlobClient blobStorage = storageAccount.CreateCloudBlobClient();

CloudBlobContainer container = blobStorage.GetContainerReference(“mydocs”);

container.CreateIfNotExist();

CloudBlockBlob blob = container.GetBlockBlobReference(“birthday.mpg”);

blob.UploadFile(@”c:\tempfiles\birthday.mpg”);

Queues will decouple front end from back end
Windows Azure Storage queues are very similar to queues you
have probably used before. They are most commonly used
to communicate from a front-end server to a back-end server.
Queues are very handy in decoupling the front end from the back
end of your system.

Queues allow you to send small 8KB messages from producers
(commonly the front end) to consumers (commonly the back end).
Queues are First In, First Out (FIFO). The first message in is the
first message out.

Queues can store an essentially unlimited number of messages at
one time. A queue can have any number of producers submitting
messages and any number of consumers taking messages.

Because of the size limitation of a queue message, you will
usually use a work ticket pattern. You will store the real data to be
worked on in a BLOB container, or a table, and put a pointer to
the data in the message.

Messages go through a specific lifecycle in the queue. A
consumer will read a message and provide a timeout (defaults to
30 seconds and can be as long as 2 hours). The queue will mark
the message as invisible and lock it for this period of time. Before
the timeout expires, the reader of the message must call back
with a delete message command. If it doesn’t, then the queue
assumes the consumer has failed, cancels the lock, and marks the
message as visible on the queue again.

To work with a queue, you need to create a CloudStorageAccount
and a CloudQueueClient object to manage queues and
messages. To connect to and create a queue:

CloudStorageAccount storageAccount = CloudStorageAccount.FromConfigurationSe
tting(“DataConnectionString”);
CloudQueueClient queueClient = storageAccount.CreateCloudQueueClient();

CloudQueue q = queueClient.GetQueueReference(“newordersqueue”);
q.CreateIfNotExist();

To add a message to the queue, you simple call the AddMessage
method of the queue object and pass in the string value of the
message you want to send.

CloudQueueMessage theNewMessage = new CloudQueueMessage(“shoppingca
rt:1337”);
q.AddMessage(theNewMessage);

To get the next message off of the queue, you simply call
GetMessage. You can get more than one message at a time. If
the queue is empty, GetMessage will return a null.

CloudQueueMessage currentMsg;
currentMsg = q.GetMessage();

Finally, to delete a message you have finished working with, call
DeleteMessage.

q.DeleteMessage(currentMsg);

Tables: up to 100TB of non-SQL data
You can have several tables per storage account. Each table

can hold up to 100TB of data and is meant for highly scalable
non-relational data. Each table is comprised of entities (like rows
in a normal database), and each entity is comprised of many
properties. Entities in the same table can have a different schema,
giving Windows Azure tables a great deal of flexibility. Tables do
not have any relationships with other tables; there are no joins or
foreign keys.

Each entity in a table must have a RowKey and a PartitionKey
property. These two properties together act as a sort of
composite primary key for the entity. A property named
TimeStamp is also required.

The entities in tables are grouped into partitions using the
PartitionKey. Partitions are how the table service scales. As a
particular partition becomes busy, it is spun out to a new
storage server so that it has more resources to handle the
requests. This could happen to all of your partitions at once,
fanning out to different machines to make sure that the system
is scaling to the demands put on it. Choosing a PartitionKey
strategy is important when designing any tables that might
require high performance and scale.

The RowKey is a unique row identifier for that row in its partition.
Both the RowKey and the PartitionKey can be anything you want
them to be, but it is best to keep them simple INTs or strings.

Tables can be accessed directly with REST or through the .NET
Storage Client Library. Tables present an OData endpoint, which
makes it easy to work with them as a data source.

To work with tables, you need a few working pieces. You need a
class that represents your data; and in most modern architectures,
this is the data transfer object (DTO) or plain old .NET object
(PONO) that has just properties (i.e., no methods). This class
needs to inherit from Microsoft.WindowsAzure.StorageClient.
TableServiceEntity and must provide for the RowKey and
PartitionKey values.

public class ShoppingCartEntry :
 Microsoft.WindowsAzure.StorageClient.TableServiceEntity
 {
 public ShoppingCartEntry(int _shoppingCartID)
 {
 PartitionKey = “carts”;
 RowKey = _shoppingCartID;
 }

 public int CustomerID { get; set; }
 public string Sku { get; set; }
 public int quantity { get; set; }
 }

The Client Storage Library uses WCF Data Services to work
with Windows Azure Tables, which means you will need a
context class. This is a class that sits between the entity class
(shown above) and the table itself. This is like any other WCF
Data Services context class. This class must inherit from
TableServiceContext. This base class provides all the plumbing
you need.

public class ShoppingCartDataContext : TableServiceContext
 {
 public ShoppingCartDataContext (string baseAddress,
StorageCredentials credentials)
 : base(baseAddress, credentials)
 { }

 public IQueryable<ShoppingCartEntry> ShoppingCartEntry
 {
 get
 {
 return this.CreateQuery<ShoppingCartEntry>(“ShoppingCartEntry”);
 }
 }
 }

Once you have these two classes, you can start working with the
data you have in your table. For example, we will add a shopping
cart called aNewShoppingCart. To start, you need to provide a
storage account and a data context object. You should keep the
data context class around as much as you can instead of creating
a new object on each call.

http://www.refcardz.com
http://www.dzone.com

5 Cloud Computing with Windows Azure Platform

DZone, Inc. | www.dzone.com

CloudStorageAccount storageAccount = CloudStorageAccount.FromConfigurationSe
tting(“DataConnectionString”);
ShoppingCarDataContext context = new ShoppingCarDataContext
(storageAccount.TableEndpoint.AbsoluteUri, storageAccount.Credentials);
context.AddObject(“ShoppingCartEntry”, aNewShoppingCart);
context.SaveChanges();

You must always remember to call SaveChanges on the context
object once you have made changes. If you don’t, the changes
are never sent to the cloud.

A similar approach is used for updating data.

aNewShoppingCart.Sku = “31415”;
context.UpdateObject(aNewShoppingCart);
context.SaveChanges();

You can batch many operations against the context object before
calling SaveChanges.

Querying against the table is easy using the context object
and LINQ.

var results = from g in this.context.ShoppingCartEntry
 where g.Sku == “31415”
 select g;

This will return a list of objects that have their SKU numbers set
to 31415.

ACCESS CONTROL AND SERVICE BUS

Windows Azure AppFabric is a set of services that help you
connect and consume other services. It has its own SDK, separate
from the Windows Azure SDK.

ACS
The Access Control Service (ACS) provides an easy-to-use
authorization service for use in your application. You can use
ACS instead of embedding code to authenticate users in
your application.

ACS makes it easy to not only use your own authentication (by
federating with your old on-premises identities) but also to
authenticate against Google, Live, Yahoo, and Facebook.

Authentication tends to happen at the edge of an application,
and authorization tends to happen in depth. Because of this
model, it is usually easy to add ACS to your current authentication
mechanism or to replace it outright.

The new code would authenticate to ACS and then produce
the same output (a token, cookie, etc.) that your downstream
authorization code already expects.

Service Bus
Another challenge with moving applications to the cloud is
connecting them together with services or applications that
are still on premises. A central key point to the Windows
Azure platform is that you don’t have to move everything to
the cloud. It is easy to move only the parts to the cloud that
make sense and provide ways to securely connect them to your
on-premises components. This can be challenging at times
because of network topologies. There are always a series of
firewalls, proxies, and other networking gear that get in the way
of this communication.

The Service Bus provides a way for any service consumer to
connect with any service, regardless of network topology. A
matching WCF relay binding is provided for almost every
out-of-the-box WCF binding. By adding a new endpoint to your
service with a relay binding, you will be publishing your service
endpoint to the Service Bus in Windows Azure. Any service
consumers that are configured to use this same relay binding will
then be able to connect and use a Service Bus-based endpoint.

In the cloud, the Service Bus provides a relay. Think of this like

bouncing a signal off a satellite. Both ends don’t have to know
how to reach each other; they just have to know how to reach the
relay (or the satellite).

When services or consumers try to connect to the Service Bus,
they have to authenticate with ACS to make sure that only
people you want to connect are connecting with their services.
Your service would still provide for whatever security concerns it
might have.

RELATIONAL STORAGE FOR BUSINESS INSIGHTS

SQL Azure is essential SQL Server in the cloud. While this is not a
perfect statement, it is the shortest explanation.

A SQL Server usually equates to a physical server, and that
physical server is hosting several SQL databases. With Windows
Azure, your subscription can have one SQL Azure server, which
can hold as many databases as you want. But this SQL Azure
server doesn’t really exist; it is a simulated SQL Server that
manages your service and the databases you want hosted.

To all normal SQL Server clients, the SQL Azure server appears to
be a normal SQL Server. The SQL Azure service runs thousands of
servers and manages your databases across this swarm of servers,
moving and maintaining them as needed.

Each database can be up to 50GB in size. Many see this as a
limitation, but it doesn’t need to be. Many on-premises databases
soon exceed the amount of resources available to them (perhaps
they grew too big for their environment) and soon have to turn
to partitioning or sharding to manage this growth. You would use
these strategies to overcome this apparent limitation. Microsoft
has also raised this limit on database size several times and could
do so again.

As with the data in Windows Azure storage, your data in SQL
Azure is stored in triplicate. This ensures that there is always a
safe copy of your data.

You can create the following editions of an SQL Azure database:
•	Web Edition: the smallest. You are limited to a 1GB or 5GB database.

•	Business Edition: the bigger brother to the Web Edition. You can have
databases that range from 1GB to 50GB in max size.

The only difference between the editions at this time is the
maximum size of each database. In the future, Microsoft expects
to add additional features to the business edition to provide
more value.

Backup
Windows Azure does not provide any backup mechanisms for
you. It does provide a highly available datacenter, but there
isn’t any cross-data center mechanisms for your data. There is
currently no way to easily back up and restore your data. You
have to rely on some other mechanisms to accomplish this. For
example you could utilize the Bulk Copy Program (BCP) to copy
your data once a night.

You could also use the Data Sync Service to synchronize your SQL
Azure database with an on-premises SQL Server database over a
secure connection.

Database Copy
Database Copy makes a transactionally consistent copy of your
database. A copy (with a new name that you provide) will be
made of your database on the same SQL Azure server. The copy
can take a few moments to complete. This is a good approach
to backing up a database before an upgrade, making it easy to
restore in case of a failure or rollback. To start the copy, use the
following command (or you can start it in the portal).
CREATE DATABASE ShoppingCartBackup AS COPY OF ShoppingCart

http://www.refcardz.com
http://www.dzone.com

6 Cloud Computing with Windows Azure Platform

DZone, Inc. | www.dzone.com

To monitor how the copy is going, which can take a while with a
very large database, use the following command.

select name, state, state_desc from sys.databases
where name = ‘ShoppingCartBackup’
select * from sys.dm_database_copies
where database_id = DB_ID(‘ShoppingCartBackup’)

You can then download the databasecopy or move it to another
SQL Azure server in a different Windows Azure datacenter.

SQL Azure Migration Wizard
The SQL Azure Migration Wizard is an open-source tool that
can help you migrate your SQL Server database to SQL Azure.
It will inspect your schema for data types and other features not
supported in SQL Azure and help you migrate your data. You can
find it at http://sqlazuremw.codeplex.com/. It is based on a highly
configured system that makes it easy to tune it to your needs.

Harness one of the Planet’s Largest CDNs
Windows Azure has 20 Content Delivery Network (CDN) cache
servers around the world, and they leverage the Microsoft highly
connected and fast global network to deliver that data to local
users. CDN is the way that high-scale websites and providers
cache their data around the globe. When a user tries to download
some cached data, it is downloaded from the most local cache
server instead of from a main server. This gives the user a faster
download experience.

The Windows Azure CDN can cache the contents of your public
BLOB container around the world. When you store a file in your
public BLOB container, it will have a URL like the following:
http://mydocs.blob.core.windows.net/videos/birthday.mpg

If your container is public, you can turn on CDN caching on the
Windows Azure portal. Once you do this, you will receive a new
URL for your BLOB container, such as:
http://<guid>.vo.msecnd.net/videos/birthday.mpg

You will then use this new cached URL in your application. When
the user tries to download the file, the CDN service will determine
which cache server is closest and download it from there.

Files are not pushed to the cache servers until they are needed at
that particular cache server. This reduces your costs. If the file is
not in the cache when it is needed, it is retrieved over the network
from your BLOB container.

The CDN servers have algorithms on when a file should be
refreshed from your BLOB container. By default, a check is made
on the first access after 72 hours. If the file has changed, a new
file is downloaded. If a file hasn’t changed, it will respond with
the current file. You can control the frequency of these cache
refreshes by setting a cache-control header on your BLOB.

SEEMLESS DEPLOYMENT FROM VISUAL STUDIO 2010

At some point, you will want to deploy your cloud application
to Windows Azure. There are three ways to do this, and all three
approaches take about the same amount of time.

•	Visual Studio: You can use the Visual Studio tools to deploy from
right within Visual Studio. This is the best choice when you want to
easily deploy to a developer’s subscription or to a test environment
subscription. You will need to open the Server Explorer and configure the
Windows Azure section with a management certificate and your Windows
Azure subscription ID. Once this is configured, you can right click on
the Windows Azure project in your Visual Studio solution and choose
”publish.” Visual Studio will then start the application. You can watch this
process in the Visual Studio window titled “Windows Azure Activity Log”.

•	Windows Azure Portal: To deploy with the portal log in at
http://windows.azure.com. You will need to navigate to your service
account for your application and click the “deployment” button. You will
be asked to provide a name and upload both the package and the service
configuration. Once the upload is complete, you will need to click the
”Start” button.

•	Management API: You can deploy with the management API, which is the
underlying API that both Visual Studio and the portal use. This approach
works well when you want to script or automate your deployments. You
will need to have registered a management certificate. You can call the
REST service management endpoint directly or use one of the published
PowerShell cmdlet packages. You can download them at
http://code.msdn.microsoft.com/azurecmdlets.

TWO STYLES OF UPGRADE

There are two key styles of performing an upgrade to your
deployed application.

•	VIP Swap: To use this method, you must have version 1 deployed to the
production slot and version 2 (the new version) in the staging slot. Once
you have tested the staging environment and are ready to deploy it,
you simply click the “Swap VIP” button. This will immediately swap the
Virtual IP addresses in the load balancers. Your production slot becomes
staging, and staging becomes production. This method leads to a very
little amount of possible downtime, but it presents you with a great Plan B
option. If the new version isn’t working out well, you can click the button
again to swap the slots, placing the old production back in the production
slot again.

•	Rolling upgrade: In this process, you click the “Upgrade” button on
the slot you want to upgrade, and then you upload a new package.
The Fabric Controller will take down one third of your servers, deploy
the new code, and bring them back online. Once the servers are back
online, the Fabric Controller will proceed to upgrade the second third
and then the last third.
This process results in no downtown. Unfortunately, there is no simple
way to roll back to a prior version. To do that, you would have to deploy
a second rolling upgrade with the old code. Another drawback is that
a rolling upgrade cannot change the shape of the service you are
upgrading. For example, you can’t add a role.

USE INTELLITRACE TO DEBUG YOUR CLOUD APP

At some point, you might need to debug your application.
The easiest way to do this is locally in the emulator. This lets
you debug a cloud application like any other application, with
support for multiple instances.

Debugging an application that runs in the cloud will rely on using
tracing or IntelliTrace. You can use the normal tracing APIs and
then pick those up through the diagnostic API. The diagnostic
API will pick up your traces and move them to your storage
account so you can analyze them offline.

If you have Visual Studio 2010 Ultimate Edition, you can use
IntelliTrace. To use this with Windows Azure your project has to
use .NET 4 and deploy with Visual Studio 2010 Ultimate Edition.
There will be a check box in the deployment wizard to add the
IntelliTrace components.

SERVICE MANAGEMENT API

The Service Management API allows you to do almost everything
the Windows Azure portal can. You can access the REST API
directly or use a set of PowerShell cmdlets.

To access the Service Management API, you will have to
register a certificate. Each command to the API must be
signed with a registered certificate. You can have up to five
certificates registered at one time, and you can revoke a
certificate at any time.

The following actions must be done by hand in the Windows
Azure portal:

•	Access billing data
•	Creating a Windows Azure subscription
•	Creating a storage or compute service
•	Deploying management certificates

http://www.refcardz.com
http://www.dzone.com

7

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Lucene
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Cloud Computing with Windows Azure Platform

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

RECOMMENDED BOOKABOUT THE AUTHOR
Brian H. Prince is an Architect Evangelist with Microsoft focused on
building and educating the architect community in his district. Prior to
joining Microsoft in March 2008, he was a Senior Director, Technology
Strategy for a major midwest partner.

Further, he is a co-founder of the non-profit organization CodeMash
(www.codemash.org). He speaks at various regional and national
technology events including TechEd.

Brian is the co-author of Azure in Action, published by Manning Press.

Brian holds a Bachelor of Arts degree in Computer Science and
Physics from Capital University, Columbus, Ohio. He is also an
avid gamer.

Azure in Action is a fast-paced tutorial that introduces cloud
development and the Azure platform. The book starts with the logical
and physical architecture of an Azure app, and quickly moves to the
core storage services—BLOB storage, tables, and queues. Then, it
explores designing and scaling frontend and backend services that run
in the cloud. Through clear, crisp examples, you’ll discover all facets
of Azure, including the development fabric, web roles, worker roles,
BLOBs, table storage, queues, and more.

BUY NOW
www.manning.com/hay/

AZURE SUBSCRIPTIONS AND ACCOUNTS

You will need a Windows Azure subscription to use Windows
Azure. This subscription includes your service contract and
payment terms. You will be assigned a subscription ID, which is
the equivalent to your account number.

Many people choose to have a different subscription for each
deployment region they might want to manage (for example, a
subscription for production and a second for testing).

A subscription contains one or more projects. Don’t confuse
subscription projects with Visual Studio projects; they don’t have
anything to do with one another. A subscription project is a way
to group your Windows Azure resources together. Projects can
also help in tracking costs for different projects without having to
have separate subscriptions.

How you setup your subscription can affect how you are
charged. You can read about all of the pricing for each service
on www.azure.com.

GREYBOX—TO KNOW WHEN RESOURCES ARE USED

One way to make sure that you haven’t left a demo up and
running, which would accidentally burn your allocated hours of
compute, is to install GreyBox on your computer. This open-
source software will monitor your environment in Windows Azure
and remind you if you have left any servers up and running. You
can download this free tool at http://greybox.codeplex.com/.

DEVELOPMENT SDKs

The right SDK depends on the technologies you use now:

•	Install Windows Azure Tools 1.3 (November 2010) for Microsoft 	
Visual Studio: covers Windows Azure Compute and Storage and the
Visual Studio tools

•	Install the Windows Azure SDK for PHP and the Windows Azure Companion

When you install the Windows Azure SDK, it will install the
compute and storage emulators, which are local simulations
of the real cloud.

•	Compute Emulator: A local and development-only way to host your role
instances. The compute emulator is limited to hosting five instances when
running your projects.

•	Storage Emulator: A simulation of the Windows Azure storage services
(BLOB, queue, and tables). The simulation is backed by a local instance
of SQL Server.

Developers working with other platforms can download an
SDK only package (PHP, Ruby, Python, Java, etc.) from the
Interoperability Bridges site.

LEARN ABOUT AZURE SECURITY

Pretty early into your 1st “real project” someone will ask about
security capabilities. Here are some resources you will love:

•	Security for the Windows Azure Platform forum, with experts who respond
in less than 72 hours: http://social.msdn.microsoft.com/Forums/en-US/
windowsazuresecurity/threads

•	Visit the Security Talk Series—all you need to know about security
capabilities of the Windows Azure Platform: http://www.microsoft.com/
events/series/securitytalk.aspx?tab=videos

http://www.refcardz.com
http://refcardz.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

