
This DZone Refcard is brought to you by...

The experience is elegant.
The platform is powerful.

One free download gives you the
tools to build new, or tweak existing,
Silverlight and XNA applications and

games for Windows® Phone 7.
Discover the possibilities.

http://create.msdn.com

Love being
connected,
all over again

http://library.dzone.com/assets/request/sponsored_link/32645

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#135
T

h
e

 M
V

V
M

 D
e

si
g

n
 P

at
te

rn

CONTENTS INCLUDE:
n	 Overview
n	 MVVM Explained
n	 MVVM on Windows Phone
n	 MVVM Project Templates
n	 VVM Commands
n	 Hot Tips and more...

By Colin Melia

The MVVM Design Pattern
A Formula for Elegant, Maintainable Mobile Apps

OVERVIEW

If you are developing a Silverlight application for the Windows
Phone, then this Refcard is probably for you. For all but the
most trivial of applications, the Model-View-ViewModel (MVVM)
pattern provides a solid pattern to follow for building a well-
structured and maintainable application. Microsoft has taken that
message seriously with Windows Phone by basing three of the
four Visual Studio application project templates on the MVVM
pattern. This card provides an explanation of the MVVM pattern,
how it’s supported and how to follow it on Windows Phone.
As a side benefit, the content is almost entirely applicable
to Silverlight desktop, web, slate and Windows Presentation
Foundation (WPF) applications as well.

Why MVVM on Windows Phone?
MVVM is an architecture pattern introduced by John Gossman
in 2005 specifically for use with WPF as a concrete application
of Martin Fowler’s broader Presentation Model pattern.
Implementation of an application, based on the MVVM patterns,
uses various platform capabilities that are available in some
form for WPF, Silverlight desktop/web, and on Windows
Phone with a little help from other libraries. Many commercial
applications, including Microsoft Expression products, were
built following MVVM.

The benefits of MVVM are listed as follows and can be largely
summed up in the phrase “Separation of Concerns”.

•	 Modular architecture: given good inter-layer interface definitions,
components can be built and well tested independently.

•	 Loose coupling: with one-way dependencies, changes to one layer
don’t require the other to be changed, rebuilt or retested.

•	 Role separation: responsibilities and expertise can be focused (e.g.,
designers can build UI without needing to write code).

•	 Tool friendly: the design of the pattern and the capabilities of the
platform mean that different tools best suited to the skills of the user
can be used. These tools include Visual Studio for developers and
Blend for UI designers.

•	 Maintainability: as with other patterns, a well-structured design makes
it easier to make modifications when updates or upgrades are done.

•	 Less coding: the separation also leads to areas of development
with less code, which means less room for error; it also means less
regression testing when changes are made.

•	 Testability: the pattern enables automated unit testing of code and
minimizes the need for UI-based testing.

Hot
Tip

The MVVM pattern is not a set of all-or-nothing rules that
one must strictly adhere to. It may not be appropriate for
all applications, especially small ones where implementing
MVVM may require too much overhead.

MVVM EXPLAINED

Introduction
The MVVM pattern encourages developers to build their
application as three layers with the dependencies shown.

	

Model
The Model is the object model for the application. It can also
be the ‘layer’ for data and/or business logic that are completely
devoid of UI features and any dependency on the platform UI
libraries or runtime. It can hold state and/or perform processing
on the state relevant to the business/problem domain. The data
or the operations performed on the data may be dealt with
entirely in process memory (e.g., the current value of rolled dice),
or they may be retrieved, stored and processed remotely using
a data repository/service (e.g., a database or web service) with
the model in memory representing a subset of the available data
(e.g., specific customer records).

Hot
Tip

By creating a Model that is not bound to a single platform,
it is easier to share the data model across Silverlight, WPF
and WP7 platforms with the potential for reuse of model
documentation, direct code or even binary libraries.
Recommend basing MVVM development on Silverlight 3 to
ease code sharing with WP7, Silverlight 3/4 and WPF 4.

View
The View is a ‘layer’ that represents and handles all the UI
elements, including both displayed UI (e.g., classic ‘buttons’ and
more sophisticated displays) and UI-user interactions (e.g., screen
touch, button press, etc.).

There can be several Views over the same data with varying
detail, depth or representation (e.g., summary + details, order +.
order + order line items, charting).

brought to you by...

Get the free tools

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://clk.atdmt.com/MRT/go/249592526/direct/01/
http://create.msdn.com
http://library.dzone.com/assets/request/sponsored_link/32645

2 The MVVM Design Pattern: A Formula for Elegant, Maintainable Mobile Apps

DZone, Inc. | www.dzone.com

One of the capabilities a platform needs to enable the MVVM
pattern well is the ability to create UI declaratively with text instead
of code. Those declarations can include parts that ‘bind’ visual
elements to data available in the Model, such that value or list
changes stay in sync between the View and Model data. This
minimizes or replaces imperative code for settings values between
the View elements and data in the Model. Also, since code in
the UI can be difficult to test (with automation), this reduces or
eliminates the amount of UI-updating-related code to be tested.
The concept of binding can also be used to bind a user-driven
event to an action to be performed against the data in the Model.

Creation of a View declaratively also opens up the possibility that
someone with good design/interactivity sensibilities can design
the View (perhaps with a more designer-focused tool) without
coding/library expertise and somewhat independently from the
software developer.

ViewModel
While a View can be bound to the data in the Model or actions
against that data, in practice this is not done directly but via
another ‘layer’ called the ViewModel or VM. It is a “Model of
the View” since it is like an abstraction of the View (with UI code)
but also a specialization of the Model that the View can bind to.
Creation of the ViewModel may be appropriate because:

•	 It may be that the Model code is not controlled by a developer and
also does not expose data in a way that allows a View to be bound to
it. In this case, the ViewModel wraps the Model data to expose in a
way that allows for declarative binding with update notifications.

•	 The Model may have data types that may not directly match the types
used by the UI components/libraries (e.g., a boolean value on the
Model may need to become a visibility enumeration specific to the UI
libraries). In this case, the ViewModel wraps the Model and performs
the conversion between the View and Model via the IValueConverter
interface when data binding.

•	 There are other complex operations beyond conversion to be
performed that are not UI related but don’t necessarily belong in
the Model for the business/problem domain (e.g., some kind of
Aggregation or Visualization computation). Having this code in the
ViewModel means it’s easier to test.

•	 The state of UI selection needs to be stored and tracked, but this does
not belong in the Model.

The ViewModel is also usually responsible for initiating operations
to retrieve and store Model data, which allows it to track operation
state and, therefore, expose visual feedback or state information
to which the View can bind. The actual operation (and obtaining
progress) may be delegated to Model-specific classes.

Inter-Layer Dependency
By deliberately having the ViewModel in the middle, the
following becomes possible:

•	 The View only knows about the ViewModel. It does not know about,
nor does it have any reference to or dependency on, the Model. The
reverse is also true; therefore, the Model and View can be maintained
separately using the ViewModel as the ‘buffer’.

•	 The ViewModel only knows about the Model. It does not know about
the View. Therefore, new views can be added without affecting the
ViewModel. Given the use of binding, it may even be possible to
update the ViewModel without breaking the View.

•	 The Model only knows about itself. It does not know what ViewModels
are wrapping it or what Views are created on top of the ViewModels.

•	 In any case, all layers share a common knowledge of and are tightly
coupled to the basic types/objects of the underlying platform.

MVVM ON WINDOWS PHONE

Hot
Tip

For the latest release of the free Windows Phone developer
tools, go to http://create.msdn.com/. A complete guide to
building and deploying a simple MVVM-based WP7 application
for the marketplace is available - http://bit.ly/WP7Die.

To start creating a Windows Phone application based on the

MVVM pattern, select File->New Project in Visual Studio, select
“Silverlight for Windows Phone” from the Installed Templates
and then select one of the template types. To build from scratch,
select “Windows Phone Application” or see the section below
about MVVM support in other templates.

Model
The Model is based on a CLR type from a simple value type as
a property…

public int Value { get; set; }

…to a more complex set of nested classes, e.g., Contact…

public enum PhoneType
{
 Work,
 Home,
 Mobile
}
public class PhoneNumber
{
 public String Number { get; set; }
 public PhoneType PhoneType { get; set; }
}
public class Contact
{
 public String Name { get; set; }
 public List<PhoneNumber> PhoneNumbers { get; set; }
}

A Model may be placed in a separate class file or project/
assembly, or (as is often the case for simple cases) it may be
incorporated into the ViewModel.

ViewModel
The ViewModel is a CLR class (typically in a separate class file and
sometimes in a separate assembly) that encapsulates the Model or
incorporates it. If the Model includes nested objects or collections
of objects, then a corresponding ViewModel class hierarchy may
be created. The primary goal is to expose the Model data and
actions on the model data to the View for binding.

If the View only takes values from the ViewModel once at
initialization, there would be nothing more to do. But typically, the
UI updates to reflect value and collection changes in the ViewModel
data (and possibly vice versa, e.g., for TextBox changes).

The built-in UI controls for single values on Windows Phone
(e.g. TextBlock, TextBox, etc.) used in the View are amongst the
controls that look for the INotifyPropertyChanged interface on
classes to which they are bound; therefore, the interface should be
implemented on the ViewModel. It consists of just one event, and
it is standard practice to create a helper method to fire the event,
which is then called by the setter method of the properties as they
are changed.

Using INotifyPropertyChanged in a class requires this statement.

using System.ComponentModel;

A ViewModel incorporating a simple Model with non-nested/
collection properties may look like this:

public class MyValueVM : INotifyPropertyChanged
{
 private int Value;

 public int MyProperty
 {
 get { return Value;}
 set
 {
 if(Value == value)
 return;
 Value = value;
 OnPropertyChanged(“Value”);
 }
 }
	
 private void OnPropertyChanged(String PropName)
 {
 if(PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(PropNa
me));
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

http://www.refcardz.com
http://www.dzone.com

3 The MVVM Design Pattern: A Formula for Elegant, Maintainable Mobile Apps

DZone, Inc. | www.dzone.com

Remember that the integer named Value is the Model data in
this class. When the property setter method for Value is called, it
checks to see if there is a change. If so, calls the helper method
that will inform the View (if bound to that object and property)
that something has changed.

If a Model contains a collection of items that can change and
the UI must update to reflect those changes, the collection must
implement the INotifyCollectionChanged interface. Alternatively,
use the Generic ObservableCollection<T> class to do the work,
which requires this include statement:

using System.Collections.ObjectModel;

A ViewModel called MyValuesVM (note the ‘s’) containing Model
data that is a Collection of objects of type MyValueVM would
then look like this:

public class MyValuesVM : INotifyPropertyChanged
{
 private ObservableCollection<MyValueVM> Values;

 public ObservableCollection<MyValueVM> MyProperty
 {
 get { return Values;}
 set
 {
 if(Values == value)
 return;
 Values = value;
 OnPropertyChanged(“Values”);
 }
 }
	
 private void OnPropertyChanged(String PropName)
 {
 if(PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(Prop
Name));
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

In this case, the following changes would be notified to the View:

•	 The whole collection is set

•	 Membership of the collection changes

•	 The Value property on individual MyValueVM items change

Hot
Tip

If a Model has nested/collection objects and the UI needs
to bind to changes in the properties of those objects
and there is access to the Model code, then it be may
easier to incorporate the model/classes into a hierarchy
of ViewModel classes. Otherwise (if the Model is not
editable), then access to data change events from the
Model is needed to fire the PropertyChanged event.
To help catch otherwise silent runtime binding notification
errors, the helper function could be augmented with a
reflection-based check to ensure the PropName passed in
matches an actual property.

View - DataContext
The View layer in Silverlight applications can be implemented
in code or declaratively using XAML (where, simply put, at
initialization, elements become objects and attributes becomes
properties). For Windows Phone, the View is a typically a
PhoneApplicationPage or a UserControl.

Any object used in the View that inherits from FrameworkElement
(i.e., the visual controls) has a DataContext property which can be
set to a .NET object. Any descendent FrameworkElement in the
visual tree of the XAML page will also have the same value for its
DataContext unless explicitly overridden (in which case its nested
XAML descendants have that new value, and so on).

The DataContext is typically created and set in one of 4 ways:

 1. �Per View/page creation in the page/UserControl constructor (the xaml.cs
file), for example:

public partial class MainPage : PhoneApplicationPage
{
 public MainPage()
 {
 this.DataContext = new CustomerVM();
 InitializeComponent();
 }
}

 2. ��Per View/page creation in the page/UserControl XAML, for example with
this XML namespace at the top of the View page…

xmlns:myapp=”clr-namespace:MyAppNamespace”

 … and this resource XAML inside the page root element…

<phone:PhoneApplicationPage.Resources>
 <myapp:CustomerVM x:Key=”MyCustomerVM”/>
</phone:PhoneApplicationPage.Resources>

 … and the DataContext set on a FrameworkElement item.

<Grid x:Name=”TopGrid” DataContext=”{StaticResource MyCustomerVM}”>

</Grid>

 3. �Per Application instance – in this case, the ViewModel (and possibly a
hierarchy of nested ViewModels) is created in the App.xaml XAML as a
resource (as above), and then parts of it are bound as the DataContext at
the root of different Views. This makes sense when the Model data must
be available throughout the application’s lifetime.

 4. �Using a ViewModel locator in the XAML. The DataContext of each view
is bound to properties of an application-instance-bound object using
the Path syntax. When the property of the root ViewModel is retrieved
(following the View-specific Path) for binding, the getter method can
dynamically hand out an instance of the appropriate ViewModel.
Combine this with dependency injection and mock encapsulated Models
(when the application-instance-bound object is created) for a powerful
way to dynamically assign real or mock ViewModels and Models, thus
providing support for ViewModel testing, web-service-based Model
integration testing and design-time visual designer editing.

Hot
Tip

Keep Models encapsulated rather than incorporated into
ViewModels to enable clean dependency injection testing
using mock Models.

View - Binding
With the DataContext property correctly set on the
FrameworkElement-derived visual element, various properties
can be ‘bound’ to properties (or descendent properties) of the
DataContext object. This can be done programmatically or
declaratively.

Given a set of ViewModels like this (with notification helpers and
calls omitted for brevity)…

public class CustomerVM
{	
 public String ID { get; set; }
 public String Name { get; set }
 public ContactPreferencesVM Preferences { get; set; }
}
public class ContactPreferencesVM
{
 public Boolean CanCall { get; set; }
 public Boolean CanEmail { get; set; }
}

The declarative XAML excerpt may look like this…

<StackPanel Orientation=”Horizontal” Name=”TopPanel”>
 <TextBlock Text=”{Binding ID}”/>
 <StackPanel>
 <TextBox Text=”{Binding Name, Mode=TwoWay}”/>
 <StackPanel Orientation=”Horizontal” DataContext=”{Binding
Preferences}”>
 <CheckBox IsEnabled=”{Binding CanEmail}”/>
 <CheckBox IsEnabled=”{Binding CanPhone}”/>
 </StackPanel>
 </StackPanel>
</StackPanel>

… which shows how to use inherited and explicit descendent
DataContext and the basic binding syntax.

http://www.refcardz.com
http://www.dzone.com

4 The MVVM Design Pattern: A Formula for Elegant, Maintainable Mobile Apps

DZone, Inc. | www.dzone.com

The example also shows different data binding options (below) with
TwoWay being applicable to a TextBox where the updated should
be transferred back to the ViewModel to set the Model data.

Mode Effect in MVVM

OneTime ViewModel property value copied to View element upon
initialization. Seldom used, but could help performance.

OneWay
(default)

ViewModel property value copied to View element upon
initialization and when ProperyChanged event called.

TwoWay Same as one way, plus value copied back from View element to
ViewModel property – triggering event various by visual element
type.

View – Collection Binding
When the ViewModel exposes model data as a collection, use a
control in the View that derives from ItemsControl (e.g., ListBox)
and set the ItemsSource to the collection. The control creates a
sub-visual tree for each object in the collection and automatically
sets its DataContext to the item object. ItemsControls have an
ItemTemplate property, which can be set in XAML to a collection
of XAML visual elements (including the bindings) to represent
visually each object in the collection, for example:

<ItemsControl DataContext=”{Binding MyContact}” ItemsSource=”{Binding
PhoneNumbers}”>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Number}”/>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

Hot
Tip

Overall, using data binding and other View model coupling
(shown later) reduces or eliminates UI code that can
otherwise be hard to test when driven by user actions.

View - Converters
When Model types don’t match View types (e.g., Enumeration type
to String), the ViewModel can do the conversation or a converter
can be used. To create a converter, create a class derived from
System.Windows.Data.IValueConverter and implement Convert()
and ConvertBack(), declare an instance of the class in the page (or
application) resource (as with ViewModel creation case 2 above)
and then add the converter to the binding syntax, for example.

<StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Number}”/>
 <TextBlock Text=”{Binding PhoneType, Converter={StaticResource
MyPhoneTypeToStringConverter}}”/>
</StackPanel>

Hot
Tip

Use Converts (vs. conversion in ViewModel) if they are
reusable and relate to UI on one end, not for transforming
business data.

MVVM PROJECT TEMPLATES

Project templates based on MVVM
Three of the project templates included with the free Windows
Phone developer tools, as indicated, are based on MVVM.

Hot
Tip

Build on these templates and create custom Visual Studio
templates for increased team productivity -
http://msdn.microsoft.com/en-us/library/6db0hwky.aspx.

Quick Guide to the MVVM Project Templates
The information in the previous sections together with
the following guide to MVVM pattern use in the provided
templates should help bring clarity to basic use of MVVM on
Windows Phone.

•	 A single instance of the ViewModel called MainViewModel
(incorporating Model data) is created using the singleton pattern and
exposed as the ViewModel property on the App object in the App.
xaml.cs file.

•	 The ViewModel class is defined under the ViewModels folder. It
has a collection of ItemViewModel objects implemented using
ObservableCollection.

•	 MainPage is the primary View and its DataContext is set in code to
App.ViewModel in the page’s constructor in MainPage.xaml.cs.

•	 For the Databound Application, the DataContext for the DetailsPage
View is set in code to an item in the App.ViewModel.Items collection
in the page’s constructor in DetailsPage.xaml.cs.

Hot
Tip

Consider separating Models, Views and ViewModels into
separate folders in Visual Studio Solution Explorer.

VVM COMMANDS

Introduction
In order to take actions (e.g., load/save data), perform
operations (e.g., compute some results) or perform some
navigation, a method is needed to convert a user interaction
event within the View (button press, touch, etc.) into a
method call on the ViewModel class. This is done by exposing
‘Commands’ on the ViewModel that, when executed, either
perform the action in the ViewModel or delegate it to the Model
or some other library.

ICommand
A command is implemented as an object property on the
ViewModel (which can be bound to by the View) that supports
the ICommand interface that is defined on Windows Phone under
System.Windows.Input.

public interface ICommand
{
 bool CanExecute(Object parameter);
 void Execute(Object parameter);

 event EventHandler CanExecuteChanged;
}

The Execute() method is self explanatory. The CanExecute()
method is provided so that a visual element bound to the object
can query whether execution is currently possible and potentially
update itself visually to indicate the state.

The CanExecuteChanged event should be raised by the
ViewModel whenever the ability execute or not has changed.

On the interaction side, there needs to be a way to connect user
interactions with exposed commands.

Silveright controls have events to which code-based event handlers
can be attached, but this is UI code that is hard to test. In the
Silverlight platform for the desktop/web, the controls derived
from ButtonBase (e.g., Button) have a Command property which
can be bound to the ICommand-based object properties on the
ViewModel, and the Button works with the ICommand interface
as one would expect. However, these are not implemented in
Silverlight 3 and Silverlight for Windows Phone.

http://www.refcardz.com
http://www.dzone.com

5 The MVVM Design Pattern: A Formula for Elegant, Maintainable Mobile Apps

DZone, Inc. | www.dzone.com

MVVM Light
In addition to no direct ICommand support in Windows Phone
for controls to bind to commands, exposing potentially many
command objects, with each one as a private class nested inside
the ViewModel class can be quite time-consuming and verbose.

While it’s technically possible to improve these two issues by
creating helper classes (to make exposing commands easier)
and creating Behaviours (to bind UI events to commands) that
can be used in code, XAML and XAML-based tools like Blend, it
makes sense to use available third-party libraries to accelerate
this process.

One such library is part of the MVVM Light toolkit available from
GalaSoft - http://www.galasoft.ch/mvvm/installing/manually/ or
use NuGet.

To use MVVM Light libraries to easily expose commands in a
concise way:

 1. �Add a reference to Galasoft.MvvmLight.WP7.dll, Galasoft.MvvmLight.
Extras.WP7.dll & System.Windows.Interactivity.dll that come in the toolkit

 2. In the ViewModel class file, add:

using GalaSoft.MvvmLight.Command;

 3. �Expose a property of type RelayCommand on the ViewModel:

public RelayCommand MyCommand { get; private set; }

 4. Create a private method that performs the command

private void DoMyCommand()
{
 // Do command
}

 5. �In the ViewModel constructor, instantiate the command so that it calls the
private method when Execute() is called on ICommand by the UI.

private void DoMyCommand()
{
 // Do command
}

 6. �Optionally, add a second lambda expression to the RelayCommand
constructor that will be checked when CanExecute() is called on
ICommand by the UI.

 7. �If necessary, call RaiseCanExecuteChanged() on the command object
when the ability to execute the command changes, so that bound UI
knows to call CanExecute() to update any visual cues.

 8. Repeat steps 3 to 7 for each command to be exposed.

To use the libraries to bind control events (e.g., a single touch
that is equivalent to a left mouse button down) to exposed
commands in XAML (while writing no code):

 1. �Add the MVVM Light namespace at the others at the top of the XAML

xmlns:i=”clr-namespace:System.Windows.Interactivity;assembly=System.
Windows.Interactivity”
xmlns:mvvmextra=”clr-namespace:GalaSoft.MvvmLight.
Command;assembly=GalaSoft.MvvmLight.Extras.WP7”

 2. Add this XAML like this inside the control’s element

<i:Interaction.Triggers>
<i:EventTrigger EventName=”MouseLeftButtonDown”>
<mvvmextra:EventToCommand Command=”{Binding MyCommand}”/>
</i:EventTrigger>
</i:Interaction.Triggers>

 3. �Optionally, if the control has an IsEnabled property to be set according
to the CanExecute property and CanExecuteChanged event on the
ICommand-enabled object, set the MustToggleIsEnabledValue to True, e.g.

<mvvmextra:EventToCommand Command=”{Binding MyCommand}” MustToggleIs
EnabledValue=”True”/>

 4. �Repeat 2 to 3 for all controls to be bound to exposed commands.

OTHER MVVM LIBRARIES

Using MVVM Libraries
As shown, the MVVM Light toolkit (for WP7, Silverlight and WPF
on CodePlex) is easy to start with and also includes other features:

•	 A ViewModelBase class

•	 Messenger system for inter-ViewModel communication

•	 Visual Studio project and item templates

•	 Visual Studio code snippets

Hot
Tip

To ease implementation, consider inheriting ViewModels
from a library base class (or create one), including
support for the INotifyPropertyChanged interface
inheritance/implementation and helper functions.

Caliburn Micro
Calibrun Micro is a small but powerful micro-framework for
WP7, Silverlight and WPF on CodePlex that supports MVVM
development including these features:

•	 ActionMessages – for flexible binding of UI actions to ViewModel
methods (achieving what Commands do)

•	 Bootstrapper & ViewLocator – for pattern configuration and handing
out ViewModels to Views

•	 Screens and Conductors – for tracking active screens and selections

Prism
Prism 4 is a free library from Microsoft Patterns & Practices group
for WP7, Silverlight and WPF, originally concerned with building
composite application. It includes a WP7 library with helpful
features (including MVVM support):

•	 Commands with DelegateCommand – similar to RelayCommand in
MVVM Light.

•	 Pub/sub eventing

•	 Run-time data template selection

•	 Application Bar helpers

•	 UI Interaction Helpers

Hot
Tip

Read the in-depth Windows Phone 7 Developer Guide from
Microsoft Patterns & Practices to see Prism is a use in
sample MVVM-based application -
http://msdn.microsoft.com/en-us/library/gg490765.aspx

BLENDABILITY

Making WP7 MVVM applications ‘blendable’
The free tools for Windows Phone include a version of Blend that
can be used for design. Blend has a UI optimized for UI design,
over coding.

If a developer produces ViewModel and Model classes, a UI
designer can then produce interactive UI in Blend and bind to
the ViewModel, producing XAML in the project that can then be
loaded back into Visual Studio.

Blend (and the Visual Studio XAML designer) actually instantiates
the XAML and calls the constructor of the page class (i.e., the
View). This may cause the ViewModel to also be instantiated.
For Blend (and Visual Studio) to work well with MVVM-based
applications for designing there are a few guidelines to follow:

•	 Don’t call web services or database in the View or ViewModel
constructor – the designer may not load.

•	 To see the design of the UI, try to use XAML over code, since controls
added programmatically will not show up.

•	 Instantiate empty collections in constructors so they can be bound to.

http://www.refcardz.com
http://www.dzone.com

6 The MVVM Design Pattern: A Formula for Elegant, Maintainable Mobile Apps

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKSABOUT THE AUTHOR

•	 If possible, use the full ViewModelLocator pattern to allow switching
at design-time to mock ViewModels with design data or mock Models
injected into the ViewModel. If that route doesn’t suit, then at least
consider using design data (see below).

Hot
Tip

To detect if the application is in a designer tool, use
System.ComponentModel.DesignerProperties.IsInDesignTool

Design Data
The project templates in the tools that support MVVM also show
examples of design-time data under the SampleData folder.
Since XAML can fundamentally be used to declare objects and
properties, it can be used to declare sample ViewModels (including
nested object/collection properties). By using the d:DataContext
(with the design-time namespace prefix) in XAML (see MainPage.
xaml in the Data Bound application), the DataContext can be set
on the page or sub-element to use the static sample data.

Hot
Tip

A designer using Blend to build UI on top of ViewModel
classes provided by a developer can use a feature in Blend
that automatically generates XAML sample data based on
the class properties of the ViewModel or Model as well as
generate XAML sample data based on XML files.

PERSISTENCE

Data persistence
A ViewModel should wrap the action of saving/loading data
it represents (which may be delegated to a Model class).
This may use a web service (using the WebClient class, the

HttpWebRequest/Response class, or service proxy class inc.
OData proxies) or if data is stored locally, this would involve
classes under System.IO and System.IO.IsolatedStorage or third-
party databases (e.g., Sterling DB or Perst). If properties are
serializable, it may be convenient to just serialize the ViewModel
and Model state using classes under System.Xml.Serialization.

Having an application-instance-based object with one or more
ViewModel properties may provide a convenient ViewModel
‘hub’ for all the pages in your application.

Tombstoning
An application may have volatile session-specific Model data (e.g.,
data entry in progress and not yet saved) and/or View Model UI
state that can be lost if the application is ‘tombstoned’ (de-activated
by the OS to preserve foreground application performance or to
perform another task and possibly never re-activated).

ViewModels should subscribe under PhoneApplicationService to
the Deactived event and use its Current.State dictionary to save
this transient state on Deactivated and load back (if necessary/
available) in both the ViewModel constructor and the Activated
event, the transient data along with any non-session-specific data.
See more on tombstoning on MSDN:

http://msdn.microsoft.com/en-us/library/ff817008(v=VS.92).aspx

Hot
Tip

When using MVVM with TextBox controls
bound to data, use something like the Prism
UpdateTextBindingOnPropertyChanged class in XAML
to ensure all Text changes are transferred through the
binding prior to a tombstone or Application bar event.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
NoSQL
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

READ NOW
http://www.charlespetzold.com/phone/

Programming Windows Phone 7 is a free e-book from
Charles Petzold and the Windows Phone 7 team. This
book is divided into 3 parts: basic concepts of Windows
Phone 7, Silverlight, and XNA 2D.

Colin Melia is the Principal Architect for Ace of Clouds
as well as a speaker, trainer, author, user group leader,
academic advisor, CTO, and company director. He has
expertise creating rich UI with WPF/Silverlight, cloud
development with Azure, mobile development on Windows
Phone, and business intelligence with SQL Server. He has
in-depth knowledge of core technologies such as .NET,
OData, WCF, WF, LINQ, and WIF.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

