
	

	

offers	
 the	
 most	
 complete	
 curriculum	
 of	
 Solr/Lucene	
 training,	

with	
 virtual	
 and	
 classroom	
 sessions	
 taught	
 by	
 the	
 world’s	

leading	
 experts	
 in	
 Solr/Lucene	
 open	
 source	
 search.	
 	

	
 	

We	
 also	
 provide	
 group	
 on-­‐site	
 Solr/Lucene	
 training	
 classes.	
 	

UPCOMING	
 CLASSES	

Developing	
 Search	
 ApplicaCons	
 with	
 Solr,	
 3	
 day	
 class:	

•  Boston:	
 30	
 Mar-­‐1	
 Apr	

•  San	
 Mateo:	
 	
 13-­‐15	
 April	
 	

•  Tokyo,	
 Japan:	
 18-­‐20	
 April	
 	

•  Los	
 Angeles:	
 19-­‐21	
 April	

•  Berlin,	
 Germany:	
 19-­‐21	
 April	
 	

•  London,	
 UK:	
 27-­‐29	
 April	
 	

•  London,	
 UK:	
 11-­‐13	
 May	
 	

•  Raleigh,	
 NC:	
 17-­‐19	
 May	
 	

•  Zürich,	
 Switzerland:	
 24-­‐26	
 May	
 	

training.lucidimagina:on.com	

Interested	
 in	
 learning	
 how	
 you	
 can	
 	

make	
 open	
 source	
 Apache	
 Solr/Lucene	
 work	
 	

for	
 your	
 search	
 applicaCons?	

Lucid	
 Imagina:on	

This DZone Refcard is brought to you by...

http://training.lucidimagination.com

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#137
U

n
d

e
rs

ta
n

d
in

g
 L

u
ce

n
e

:
P

o
w

e
ri

n
g

 B
e

tt
e

r
S

e
ar

ch
 R

e
su

lt
s

CONTENTS INCLUDE:
n	 What is Lucene?
n	 Which Lucene Distribution?
n	 Documents
n	 Indexing
n	 Analysis
n	 Language Issues and more... By Erik Hatcher

Understanding Lucene
Powering Better Search Results

WHAT IS LUCENE?

The Lucene Ecosystem
“Lucene” is a broadly used term. It’s the original Java indexing
and search library created by Doug Cutting. Lucene was then
chosen as a top-level Apache Software Foundation project
name — http://lucene.apache.org. The name is also used for
various ports of the Java library to other languages (Lucene.Net,
PyLucene, etc). The following table shows the key projects at
http://lucene.apache.org.

Project Description

Lucene - Java Java-based indexing and search library. Also comes with extras
such as highlighting, spellchecking, etc.

Solr High-performance enterprise search server. HTTP interface. Built
upon Lucene Java. Adds faceting, replication, sharding, and more.

Droids Intelligent robot crawling framework.

Open
Relevance

Aims to collect and distribute free materials for relevance
testing and performance.

PyLucene Python port of the Lucene Java project.

There are many projects and products that use, expose, port, or in
some way wrap various pieces of the Apache Lucene ecosystem.

WHICH LUCENE DISTRIBUTION?

There are many ways to obtain and leverage Lucene technology.
How you choose to go about it will depend on your specific
needs and integration points, your technical expertise and
resources, and budget/time constraints.

When Lucene in Action was published in 2004, before the advent
of many of the projects mentioned above, we just had Lucene
Java and some other open-source building blocks. It served
its purpose and did so extremely well. Lucene has only gotten
better since then: faster, more efficient, newer features, and
more. If you’ve got Java skills you can easily grab lucene.jar and
go for it.

However, some better and easier ways to build Lucene-based
search applications are now available. Apache Solr, specifically,
is a top notch server architecture, built from the ground up with
Lucene. Solr factors in Lucene best practices and simplifies many
aspects of indexing content and integrating search into your
application as well as addressing scalability needs that exceed
the capacity of single machines.

This Refcard is about the concepts of Lucene more than the
specifics of the Lucene API. We’ll be shining the light on Lucene
internals and concepts with Solr. Solr provides some very direct
ways to interact with Lucene.

We recommend you start with one of the following distributions:

•	 LucidWorks for Solr – certified distributions of the official Apache
Solr distributions, including any critical bug fixes and key
performance enhancements.

•	 Apache Solr – a great starting point for developers; grab a distro,
write a script, integrate into UI.

•	 LucidWorks Enterprise – a graphically installed and configured
Lucene/Solr-based system including repository and web crawling, click
boosting, alerts, and much more.

Hot
Tip

If you’re getting started on building a search application,
your quickest, easiest bet is to use LucidWorks Enterprise.
LucidWorks Enterprise is Lucene and Solr, plus more. Easy to
install, easy to configure and monitor. LucidWorks Enterprise is
free for development, with support subscriptions available for
production deployments.

Lucid Imagination offers professional services, training,
and the new LucidWorks Enterprise platform. Visit
http://www.lucidimagination.com.

Definitions/Glossary
There are many common terms used when elaborating on
Lucene’s design and usage.

Term Definition/context/usage

Document Returnable search result item. A document typically represents a
crawled web page, a file system file, or a row from a database query.

Field Property, metadata item, or attribute of a document. Documents
typically have a unique key field, often called “id”. Other common
fields are “title”, “body”, “last_modified_date”, and “categories”.

Term Searchable text, extracted from each indexed field by analysis (a
process of tokenization and filtering).

tf/idf Term frequency / inverse document frequency. This is a commonly
used factor, computing the relationship between term frequency
(how many uses of the query term exists in the entire index) to the
inverse document frequency (how many documents in the entire
collection that contain that query term, inverted).

Lucene Java and Core Lucene Concepts Explained
The design of Lucene is, at a high level, quite straightforward.
Documents are “indexed”.

brought to you by...

BETTER. FASTER. SOLR.

Powerful Search.
Simplified Administration.
Advanced User Experience.

Download it today: http://bit.ly/lucidworks

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://lucene.apache.org
http://lucene.apache.org
http://bit.ly/lucidworks
http://bit.ly/lucidworks

2 Understanding Lucene: Powering Better Search Results

DZone, Inc. | www.dzone.com

Hot
Tip

Documents are a representation of whatever types of “objects”
and granularities your application needs to work with on the
search/discovery side of the equation. In other words, when
thinking Lucene, it is important to consider the use cases /
demands of the encompassing application in order to effectively
tune the indexing process with the end goal in mind.

Lucene provides APIs to open, read, write, and search an index.
Documents contain “fields”. Fields are the useful individually
named attributes of a document used by your search application.
For example, when indexing traditional files such as Word, HTML,
and PDF documents, commonly used fields are “title”, “body”,
“keywords”, “author”, and “last_modified_date”.

DOCUMENTS

Documents, to Lucene, are the
findable items. Here’s where
domain-specific abstractions
really matter. A Lucene Document
can represent a file on a file
system, a row in a database, a
news article, a book, a poem, an
historical artifact (see collections.
si.edu), and so on. Documents
contain “fields”. Fields represent
attributes of the containing
document, such as title, author,
keywords, filename, file_type,
lastModified, and fileSize.

Fields have a name and one or
more values. A field name, to Lucene, is arbitrary, whatever
you want.

When indexing documents, the developer has the choice of what
fields to add to the Document instance, their names, and how they
are each handled. Field values can be stored and/or indexed. A
large part of the magic of Lucene is in how field values are analyzed
and how a field’s terms are represented and structured.

Hot
Tip

There are additional bits of metadata that can be indexed along
with the terms text. Terms can optionally carry along their
positions (relative position of term to previous term within the
field), offsets (character offsets of the term in the original field),
and payloads (arbitrary bytes associated with a term which can
influence matching and scoring). Additionally, fields can store
term vectors (an intra-field term/frequency data structure).

The heart of Lucene’s search capabilities is in the elegance of
the index structure, a form of an “inverted index”. An inverted
index is a data structure mapping “terms” to the documents.
Indexed fields can be “analyzed”, a process of tokenizing and
filtering text into individual searchable terms. Often these terms
from the analysis process are simply the individual words from
the text. The analysis process of general text typically also
includes normalization processes (lowercasing, stemming, other
cleansing). There are many interesting and sophisticated ways
indexing analysis tuning techniques can facilitate typical search
application needs for sorting, faceting, spell checking,
autosuggest, highlighting, and more.

DocumentsVocabulary

aardvark

...
hockey

...
life

...
red

riding

...
zoo

0: aardvark hockey

1: hockey life

2: red life

3: life zoo riding

0

0 1

2 3

2

3

3

1

Again we need to look back at the search application needs.
Almost every search application ends up with a human user
interface with the infamous and ubiquitous “search box”.

The trick is going from a human entered “query” to returning
matching documents blazingly fast. This is where the inverted
index structure comes into play. For example, a user searching
for “mountain” can be readily accommodated by looking up the
term in the inverted index and matching associated documents.

Not only are documents matched to a query, but they are also
scored. For a given search request, a subset of the matching
documents are returned to the user. We can easily provide sorting
options for the results, though presenting results in “relevancy”
order is more often the desired sort criteria. Relevancy refers to
a numeric “score” based on the relationship between the query
and the matching document. (“Show me the documents best
matching my query first, please”).

The following formula (straight from Lucene’s Similarity class
javadoc) illustrates the basic factors used to score a document.

Lucene practical scoring formula

Each of the factors in this equation are explained further in the
following table:

Factor Explanation

score(q,d) The final computed value of numerous factors and weights,
numerically representing the relationship between the query
and a given document.

coord(q,d) A search-time score factor based on how many of the query
terms are found in the specified document. Typically, a
document that contains more of the query’s terms will receive a
higher score than another document with fewer query terms.

queryNorm(q) A normalizing factor used to make scores between queries
comparable. This factor does not affect document ranking (since
all ranked documents are multiplied by the same factor), but
rather just attempts to make scores from different queries (or
even different indexes) comparable.

tf(t in d) Correlates to the term’s frequency, defined as the number
of times term t appears in the currently scored document d.
Documents that have more occurrences of a given term receive
a higher score. Note that tf(t in q) is assumed to be 1 and,
therefore, does not appear in this equation. However, if a query
contains twice the same term, there will be two term-queries
with that same term. Hence, the computation would still be
correct (although not very efficient).

“document” example

Inverted Index

http://www.refcardz.com
http://www.dzone.com
http://bit.ly/lucidworks

3 Understanding Lucene: Powering Better Search Results

DZone, Inc. | www.dzone.com

idf(t) Stands for Inverse Document Frequency. This value correlates to
the inverse of docFreq (the number of documents in which the
term t appears). This means rarer terms give higher contribution
to the total score. idf(t) appears for t in both the query and the
document, hence it is squared in the equation.

t.getBoost() A search-time boost of term t in the query q as specified in the
query text (see query syntax), or as set by application calls to
setBoost().

norm(t,d) Encapsulates a few (indexing time) boost and length factors.

Understanding how these factors work can help you control
exactly how to get the most effective search results from your
search application. It’s worth noting that in many applications
these days, there are numerous other factors involved in scoring
a document. Consider boosting documents by recency (latest
news articles bubble up), popularity/ratings (or even like/dislike
factors), inbound link count, user search/click activity feedback,
profit margin, geographic distance, editorial decisions, or many
other factors. But let’s not get carried away just yet, and focus on
Lucene’s basic tf/idf.

So now we’ve briefly covered the gory details of how Lucene works
for matching and scoring documents during a search. There’s
one missing bit of magic, going from the human input of a search
box and translating that into a representative data structure, the
Lucene Query object. This string  Query process is called “query
parsing”. Lucene itself includes a basic QueryParser that can parse
sophisticated expressions including AND, OR, +/-, parenthetical
grouped expressions, range, fuzzy, wildcarded, and phrase
query clauses. For example, the following expression will match
documents with a title field with the terms “Understanding” and
Lucene collocated successively (provided positional information
was enabled!) where the mimeType (MIME type is the document
type) value is “application/pdf”:

title:”Understanding Lucene” AND mimeType:application/PDF

For more information on Lucene QueryParser syntax, see
http://lucene.apache.org/java/3_0_3/queryparsersyntax.html
(or the docs for the version of Lucene you are using).

It is important to note that query parsing and allowable user
syntax is often an area of customization consideration. Lucene’s
API richly exposes many Query subclasses, making it very
straightforward to construct sophisticated Query objects using
building blocks such as TermQuery, BooleanQuery, PhraseQuery,
WildcardQuery, and so on.

Shining the Light on Lucene: Solr
Apache Solr embeds Java Lucene, exposing its capabilities through
an easy-to-use HTTP interface. Solr has Lucene best practices built in,
and provides distributed and replicated search for large scale power.

For the examples that follow, we’ll be using Solr as the front-end
to Lucene. This allows us to demonstrate the capabilities with
simple HTTP commands and scripts, rather than coding in Java
directly. Additionally, Solr adds easy-to-use faceting, clustering, spell
checking, autosuggest, rich document indexing, and much more.
We’ll introduce some of Solr’s value-added pieces along the way.

Lucene has a lot of flexibility, likely much more than you will need
or use. Solr layers some general common-sense best practices on
top of Lucene with a schema. A Solr schema is conceptually the
same as a relational database schema. It is a way to map fields/
columns to data types, constraints, and representations. Let’s take
a preview look at fields defined in the Solr schema (conf/schema.
xml) for our running example:

<fields>
 <field name=”id”
 type=”string” indexed=”true” stored=”true”/>
 <field name=”title”
 type=”text_en” indexed=”true” stored=”true” />
 <field name=”mimeType”
 type=”string” indexed=”true” stored=”true” />
 <field name=”lastModified”
 type=”date” indexed=”true” stored=”true” />
</fields>

The schema constrains all fields of a particular name (there is
dynamic wildcard matching capability too) to a “field type”.
A field type controls how the Lucene Field instances are
constructed during indexing, in a consistent manner. We saw
above that Lucene fields have a number of additional attributes
and controls, including whether the field value is stored, indexed,
if indexed, how so, which analysis chain, and whether positions,
offsets, and/or term vectors are stored.

Our Running Example, Quick Proof-of-Concepts
The (Solr) documents we index will have a unique “id” field, a
“title” field, a “mimeType” field to represent the file type for
filtering/faceting purposes, and a “lastModified” date field to
represent a file’s last modified timestamp. Here’s an example
document (in Solr XML format, suitable for direct POSTing):

<add>
 <doc>
 <field name=”id”>doc01</field>
 <field name=”title”>Our first document</field>
 <field name=”mimeType”>application/pdf</field>
 <field name=”lastModified”>NOW</field>
 </doc>
</add>

That example shows indexing the metadata regarding an
actual file. Ultimately, we also want the contents of the file to be
searchable. Solr natively supports extracting and indexing content
from rich documents. And LucidWorks Enterprise has built-in file
and web crawling and scheduling along with content extraction.

Launching Solr, using its example configuration, is as
straightforward as this, from a Solr installation directory:

cd example
java –jar start.jar

And from another command-shell, documents can be easily
indexed. Our example document shown previously (saved as
docs.xml for us) can be indexed like this:

cd example/exampledocs
java –jar post.jar docs.xml

First of all, this isn’t going to work out of the box, as we have a
custom schema and applications needs not supported by Solr’s
example configuration. Get used to it, it’s the real world! The
example schema is there as an example, and likely inappropriate
for your application as-is. Borrow what makes sense for your own
applications needs, but don’t leave cruft behind.

At this point, we have a fully functional search engine, with a
single document, and will use this for all further examples. Solr
will be running at http://localhost:8983/solr.

INDEXING

The process of adding documents to Lucene or Solr is called
indexing. With Lucene Java, you create a new Document instance
and call the addDocument method of an IndexWriter. This is
straightforward and simple enough, leaving the burden on you to
come up with the textual strings that’ll comprise the document.

Contrast with Solr, which provides numerous ways out of the box
to index. We’ve seen an example of Solr XML, one basic way to
bring in documents. Here are detailed examples of various ways
to index content into Solr. Solr’s schema centralizes the decisions

http://www.refcardz.com
http://www.dzone.com
http://lucene.apache.org/java/3_0_3/queryparsersyntax.html
http://localhost:8983/solr
http://bit.ly/lucidworks

4 Understanding Lucene: Powering Better Search Results

DZone, Inc. | www.dzone.com

made about how fields are
indexed, freeing the indexer from
any internal knowledge about how
fields should be handled.

Solr XML/JSON
Solr’s basic XML format can be
a convenient way to map your
applications “documents” into
Solr. A simple HTTP post to
/update is all it takes.

Posting XML to Solr can be done
using the post.jar tool that comes
with Solr’s example data, curl (see
Solr’s post.sh), or any other HTTP
library or tool capable of POST. In fact, most of the popular Solr
client API libraries out there simply wrap an HTTP library with some
convenience methods for indexing documents, packaging up
documents and field values into this XML structure and POSTing it
to Solr’s /update handler. Documents indexed in this fashion will be
updated if they share the same unique key field value (configured
in schema.xml) as existing documents.

Recently, JSON support has been added so it can be even
cleaner to post documents into Solr and easier to adapt to a
wider variety of clients. It looks like this:

{“add”: {
 “doc”: {
 “id”: “doc02”,
 “title”: “Solr JSON”,
 “mimeType”: “application/pdf”}
 }
}

Simply post this type of JSON to /update/json. All other Solr
commands can be posted as JSON as well (delete, commit, optimize).

Comma, or Tab, Separated Values
Another extremely convenient and handy way to bring documents
into Solr is through CSV (comma-separated variables; or, more
generally, column-separated variables as the separator character is
configurable). An example CSV file is shown here:

id,title,mimeType,lastModified
doc03,CSV ftw,application/pdf,2011-02-28T23:59:59Z

This CSV can be POSTed to the /update/csv handler, mapping rows
to documents and columns to fields in a flexible, mappable manner.
Using curl, this file (we named docs.csv) can be posted like this:

curl “http://localhost:8983/solr /update/csv?commit=true” --data-
binary @docs.csv -H ‘Content-type:text/plain; charset=utf-8’

Note that this Content-type header is a necessary HTTP header
to use for the CSV update handler.

Indexing Rich Document Types
Thus far, our indexing examples have omitted extracting and
indexing file content. Numerous rich document types, such as
Word, PDF, and HTML, can be processed using Solr’s built-in
Apache Tika integration. To index the contents and metadata of
a Word document, using the HTTP command-line tool curl, this is
basically all that is needed:

curl “http://localhost:8983/solr/update/extract?literal.id=doc04” -F
“myfile=@technical_manual.doc”

To index rich documents with Lucene’s API, you would need
to interface with one or more extractor libraries, such as Tika,
extract the text, and map full text and document metadata as
appropriate to Lucene fields. It’s much more straightforward, with
no coding, to accomplish this task with Solr.

Hot
Tip

Apache Tika http://tika.apache.org/ is a toolkit for detecting and
extracting metadata from various types of documents. Existing
open-source extractors and parsers are bundled with Tika to handle
the majority of file types folks desire to search. Tika is baked into Solr,
under the covers of the /update/extract capability.

DataImportHandler
And finally, Solr includes a general-purpose “data import
handler” framework that has built-in capabilities for indexing
relational databases (anything with a JDBC driver), arbitrary XML,
and e-mail folders. The neat thing about the DataImportHandler
is that it allows aggregating data from various sources into whole
Solr documents.

For more information on Solr’s DataImportHandler, see
http://wiki.apache.org/solr/DataImportHandler.

Deleting Documents
Documents can be deleted from a Lucene index, either by
precise term matching (a unique identifier field, generally) or in
bulk for all documents matching a Query.

When using Solr, deletes are accomplished by POSTing
<delete><id>refcard01</id></delete> or <delete><query>mi
meType:application/PDF</query></delete> XML messages to
the /update handler. Or “delete”: { “id”:”ID”} or “delete”: {
“query”:”mimeType:application/pdf” } messages to /update/json.

Hot
Tip

Deleting by query “*:*” and committing is a handy trick for deleting all
documents and starting with a fresh index; very helpful during rapid
iterative development.

Committing
Lucene is designed such that documents can continuously
be indexed, though the view of what is searchable is fixed
to a certain snapshot of an index (for performance, caching,
and versioning reasons). This architecture allows batches of
documents to be indexed and only made searchable after the
entire batch has been ingested. Pending changes to an index,
including added and deleted documents, are made visible
using a commit command. With Solr, a <commit/> message can
be posted to the /update handler, “commit”: {} to /update/
json, or even simpler as a bodyless /update GET (or POST) with
commit=true set: http://localhost:8983/solr/update?commit=true

FIELDS

As mentioned, fields have a lot of configuration flexibility. The
following table details the various decisions you must make
regarding each fields configuration.

Field Attribute Effect and Uses

stored Stores the original incoming field value in the index. Stored
field values are available when documents are retrieved for
search results.

term positions Location information of terms within a field. Positional
information is necessary for proximity-related queries, such
as phrase queries.

term offsets Character begin and end offset values of a term within a
fields textual value. Offsets can be handy for increasing
performance of generating query term highlighted field
fragments. This one typically is a trade-off between
highlighting performance and index size. If offsets aren’t
stored, they can be computed at highlighting time.

term vectors An “inverted index” structure within a document, containing
term/frequency pairs. Term vectors can be useful for more
advanced search techniques, such as “more like this” where
terms and their frequencies within a single document can be
leveraged for finding similar documents.

http://www.refcardz.com
http://www.dzone.com
http://wiki.apache.org/solr/DataImportHandler
http://localhost:8983/solr/update?commit=true
http://bit.ly/lucidworks

5 Understanding Lucene: Powering Better Search Results

DZone, Inc. | www.dzone.com

In Solr’s schema.xml, a field can be configured to have all of these
bells and whistles enabled like this:

<field name=”kitchen_sink” type=”text” indexed=”true” stored=”true”
termVectors=”true” termPositions=”true” termOffsets=”true” />

Only indexed fields have “terms”. These additional term-based
structures are only available on indexed fields and really only
make sense when used with analyzed full-text fields.

When indexing non-textual information, such as dates or
numbers, the representation and ordering of the terms in the
index drastically impact the types of operations available.
Especially for numeric and date types, which typically are used for
range queries and sorting, Lucene (and Solr) offer special ways
to handle them. When indexing dates and numerics, use the
Trie*Field types in Solr, and the NumericField/NumericTokenStream
API’s with Lucene. This is a crucial reminder that what you want
your end application to do with the search server greatly impacts
how you index your documents. Sorting and range queries,
specifically, require up-front planning to index properly to support
those operations.

ANALYSIS

The Lucene analysis process
consists of several stages. The
text is sent initially through
an optional CharFilter, then
through a Tokenizer, and
finally through any number of
TokenFilters. CharFilters
are useful for mapping
diacritical characters to their
ASCII equivalent, or mapping
Traditional to Simplified
Chinese. A Tokenizer is the first
step in breaking a string into
“tokens” (what they are called
before being written to the
index as “terms”). TokenFilters
can subsequently add, remove, or modify/augment tokens in a
sequential pipeline fashion.

Hot
Tip

Solr includes a very handy analysis introspection tool. You can access
it at http://localhost:8983/sorl/admin/analysis.jsp. Specify a field
name or field type, enter some text, and see how it gets analyzed
through each of the processing stages.

Using the Solr admin analysis introspection tool, using the field
type “text_en” with the value “Understanding Lucene Refcard”,
the following terms result:

The analysis tool shows the term text that would be indexed
([understanding], [lucene]…), and the position and offset
attributes we previously discussed. The analysis tool will handily
show you the term output of each of the analysis stages, from
tokenization through each of the filters.

SEARCHING

Now that we’ve got content indexed, searching it is easy!
Ultimately, a Lucene Query object is handed to a Lucene

IndexSearcher.search() method and results are processed. How
to construct a query is the next step.

With Lucene Java, TermQuery is the most primitive Query. Then
there’s BooleanQuery, PhraseQuery, and many other Query
subclasses to choose from. Programmatically, the sky’s the limit in
terms of query complexity. Lucene also includes a QueryParser,
which parses a string into a Query object, supporting fielded,
grouped, fuzzy, phrase, range, AND/OR/NOT/+/- and other
sophisticated syntax.

Solr makes this all possible without coding and accepts a simple
string query (q) parameter (and other parameters that can affect
query parsing/generation). Solr includes a couple of general
purpose query parsers, most notably a schema-aware subclass of
Lucene’s QueryParser. This Lucene query parser is the default.

Hot
Tip

Solr also includes a number of other specialized query parsers
and the capability to mix-and-match them in rich combinations.
Most notably is the “dismax” (disjunction maximum) and a new
experimental “edismax” (extended dismax) query parsers that allow
typical users queries to query across a number of configurable fields
with individual field boosting. Dismax is the parser most often used
with Solr these days.

Searching Solr is a straightforward HTTP request to /
select?q=<your query>. Displaying search results in JSON
(adding &wt=json) format, we get something like this:

{“responseHeader”:{
 “status”:0,
 “QTime”:2,
 “params”:{
 “indent”:”true”, “wt”:”json”, “q”:”*:*”}},
 “response”:{“numFound”:3,”start”:0,
 “docs”:[
 {“id”:”refcard01”,
 “timestamp”:”2011-02-17T20:44:49.064Z”,
 “title”:[“Understanding Lucene”]}, {
“id”:”refcard02”, “timestamp”:”2011-02-17T20:48:16.862Z”,
“title”:[“Refcard 2”]}, { “id”:”doc03”,
“mimeType”:”application/pdf”, “lastModified”:”2011-02-
28T23:59:59Z”, “timestamp”:”2011-02-17T21:42:31.423Z”,
“title”:[“CSV ftw”]}] }}

Note that Solr can return search results in a number of formats
(XML, JSON, Ruby, PHP, Python, CSV, etc), choose the one that is
most convenient for your environment.

Debugging Query Parsing
Query parsing is complex business. It can be very helpful
in seeing a representation of the underlying Query object
generated. By adding a debug=query parameter to the request,
you can see how a query is parsed. For example, using the query
“title:lucene AND timestamp:[NOW-1YEAR TO NOW]“, the
debug output returns a parsedquery value of:

parsedquery:+title:lucene +timestamp:[1266446158657 TO
1297982158657]”

Note that AND translated to both clauses as mandatory (leading
+) and the date range values were parsed by Solr’s useful date
math feature and then converted to the Lucene “date” type
index representation.

Explaining Result Scoring
Now that we have real documents indexed, we can take a look
at Lucene’s scoring first-hand. Solr provides an easy way to look
at Lucene’s “explain” output, which details how/why a document
scored the way it did. In our Refcard lab, doing a title:lucene
search matches a document and scores it like this:

0.8784157 = (MATCH) fieldWeight(title:lucene in 0), product of:
 1.0 = tf(termFreq(title:lucene)=1)
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.625 = fieldNorm(field=title, doc=0)

http://www.refcardz.com
http://www.dzone.com
http://bit.ly/lucidworks

6 Understanding Lucene: Powering Better Search Results

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
NoSQL
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Add the debug=results parameter to the Solr search request to
have explanation output added to the response.

BELLS AND WHISTLES

Solr includes a number of other features; some of them wrap
Lucene Java add-on libraries and some of them (like faceting
and rich function query/sort capability) are currently only at the
Solr layer. We aren’t going into any detail of these particular
features here, but now that you understand Lucene, you have
the foundation to understand basically how they work from the
inverted index structure on up. These features include:

•	 Faceting: providing counts for various document attributes across the
entire result set.

•	 Highlighting: generating relevant snippets of document text,
highlighting query terms. Useful in result display to show users the
context in which their queries matched.

•	 Spell checking: “Did you mean…?”. Looks up terms textually close to
the query terms and suggests possible intended queries.

•	 More-like-this: Given a particular document, or some arbitrary text,
what other documents are similar?

Version Information
These Refcard demos use the current development branch of
Lucene/Solr. This is likely to be what is eventually released from
Apache as Lucene and Solr 4.0. LucidWorks Enterprise is also
based on this same version. The concepts apply to all versions of
Lucene and Solr, and the bulk of these examples should also work
with earlier versions of Solr.

For Further Information
For all things Apache Lucene, start here: http://lucene.apache.org

Solr sports relatively decent developer-centric documentation:
http://wiki.apache.org/solr

Lucene in Action (Manning): http://www.manning.com/lucene

To answer your Lucene questions, try LucidFind —
http://search.lucidimagination.com — where the Lucene
ecosystems e-mail lists, wikis, issue tracker, etc are made
searchable for the entire Lucene community’s benefit.

See Apache Solr: Getting Optimal Search Results,
http://refcardz.dzone.com/refcardz/solr-essentials, for more
information on Apache Solr.

When Lucene first appeared, this superfast search
engine was nothing short of amazing. Today, Lucene
still delivers. Its high-performance, easy-to-use API
features like numeric fields, payloads, near-real-
time search, and huge increases in indexing and
searching speed make it the leading search tool.

And with clear writing, reusable examples, and
unmatched advice, Lucene in Action, Second
Edition is still the definitive guide to effectively
integrating search into your applications. This
totally revised book shows you how to index
your documents, including formats such as MS
Word, PDF, HTML, and XML. It introduces you to
searching, sorting, and filtering and covers the
numerous improvements to Lucene since the first
edition. Source code is for Lucene 3.0.1.

Erik Hatcher evangelizes and engineers at Lucid
Imagination. He co-authored both Lucene in
Action and Java Development with Ant. At Lucid,
he has worked with many companies deploying
Lucene/Solr search systems. Erik has spoken
at numerous industry events including Lucene
EuroCon, ApacheCon, JavaOne, OSCON, and
user groups and meetups around the world.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://lucene.apache.org
http://wiki.apache.org/solr
http://www.manning.com/lucene
http://search.lucidimagination.com
http://refcardz.dzone.com/refcardz/solr-essentials
http://bit.ly/lucidworks

