Get More Refcardz! Visit refcardz.com

Y4
—
O
2
()
S
©
—

L

L

wn

iy
C
O
=
©
—
()
C
()
O
4
X
()

Z

<<

RichFaces 4.0

.+ ! DZone Refcardz

* Introduction

= Getting Started

= Core JSF 2 Extensions

* Render Options

* Queue

= Client-Side Validation and more...

RichFaces 4.0

A Next Generation JSF Framework
By Nick Belaevski, llya Shailkovsky, Max Katz, and Jay Balunas

INTRODUCTION

RichFaces 4.0 is an advanced JSF 2.0 based framework that
provides a complete range of rich Ajax enabled Ul components,
as well as other features such as a component development kit,
dynamic resource support, and skinning. The 4.0 version brings
complete JSF 2.0 support to the project.

o

RichFaces is made up of two component tag libraries. "a4j:
represents core Ajax functionality, and page wide controls.
While the “rich:” component set represent self contained and
advanced Ul components such as calendars, and trees.

JavaServer Faces 2.0

The second version of JSF added many features such as, core
Ajax functionality, integrated Facelets support, annotations,
view parameters, and more. RichFaces 4.0 has been specifically
redesigned to not only work with these new features, but to
extend them.

JSF 2.0 is covered in detail in the DZone JavaServer
Faces 2.0 Refcard.

GETTING STARTED

RichFaces can be used in any container that JSF 2.0 is
compatible with. This means all servers compliant with the EE6
specification (JBoss AS6/7, Glassfish 3) and all major servlet
containers (Tomcat, Jetty).

Check the RichFaces project page for the latest
information and downloads: http://richfaces.org
Installing RichFaces

Since RichFaces is build on top of JSF 2.0 its installation is as
easy as adding a few jars to your project.

For Maven-based projects configure your repositories following
the Maven Getting Started Guide here:
http://community.jboss.org/wiki/MavenGettingStarted-Users

Then simply add the following to you projects pom.xml.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.richfaces</groupId>
<artifactId>richfaces-bom</artifactId>
<version>${richfaces.version}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

<dependency>
<groupId>org.richfaces.ui</groupId>
<artifactId>richfaces-components-ui</artifactId>
</dependency>
<dependency>
<groupId>org.richfaces.core</groupId>
<artifactId>richfaces-core-impl</artifactId>
</dependency>

For other build systems such as Ant just add the following jars to
your projects WEB-INF/lib directory: richfaces-core-api-<ver> jar,
richfaces-core-impl-<ver> jar, richfaces-components-api-<ver> jar,
richfaces-components-ui-<ver> jar, sac-1.3 jar, cssparser-0.9.5.jar,
and google-guava-r08.jar.

No filters or other updates to your web.xml are
needed to install RichFaces 4.0.
Page Setup

To use RichFaces components in your views add:

xmlns:adj="http://richfaces.org/a4j"
xmlns:rich="http://richfaces.org/rich”

Maven Archetypes

The project also contains several Maven archetypes to
quickly create projects (including one for Google App Engine
targeted project).

Simple project generation:

mvn archetype:generate
-DarchetypeGroupId=org.richfaces.archetypes
-DarchetypeArtifactId=richfaces-archetype-simpleapp
-DarchetypeVersion=<version> -DgroupId=<yourGroupId>
-DartifactId=<yourArtifactId> -Dversion=<yourVersion>

From the generated project directory you can build, and deploy
as with any Maven project.

Easily import in JBoss Tools using m2eclipse

http://jboss.org/tools.

CORE JSF 2 EXTENSIONS

adj:ajax
Upgrades the standard f:ajax tag/behavior with more features.

B Don’t Miss An Issue!

More than 120 DZone Refcardz
FREE from Refcardz.com

2w Visit Refcardz.com
== to get them all free!
R

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

? DZone Refcardz

RichFaces 4.0: A Next Generation JSF Framework

<h:inputText value="#{bean.input}”>

<adj:ajax execute="#{bean.process}” render="#{bean.update}"/>
</h:inputText>
<h:panelGrid id="1istl”>...</h:panelGrid>

Execute & Render EL Resolution

JSF 2.0 determines the values for execute and render attributes
when the current view is rendered. In the example above if
#{bean.update} changes on the server the older value will be
used. RichFaces processes attribute values on the server side so
you will always be using the most current value.

Addition Common Enhancements
All RichFaces components that fire Ajax requests share the
features above, and all of the ones from below:

Attribute Description

limitRender Turns off all auto-rendered panels (see Render Options section).

bypassUpdates When set to true, skips Update Model and Invoke Application phases.
Useful for form validation requests.

onbegin JavaScript code to be invoked before Ajax request is sent.

onbeforedomupdate | JavaScript code to be invoked after response is received but before
Ajax updates happen.

oncomplete JavaScript code to be invoked after Ajax request processing is
complete.

status Name of status component to show during Ajax request.

adj:commandButton, ad4j:commandLink
Similar to standard h:commandButton and h:commandLink tags
but with Ajax behavior built-in.

<adj:commandButton value="Add"”
action="#{bean.add}” render="cities”/>

<h:panelGrid id="cities”>...</h:panelGrid>

Default execute value for both controls is @form.

adj:poll

Periodically fires an Ajax request based on polling interval
defined via interval attribute and can be enabled/disabled via
enabled attribute (truelfalse). For example, in the following code
snippet, an Ajax request will be sent every 2 seconds and render
the time component:

<adj:poll interval="2000" enabled="#{bean.active}”
action="#{bean.count}"” render="time"/>
<h:outputText id="time” value="#{bean.time}"/>

adj:jsFunction
Allows the sending of an Ajax request from any JavaScript function.

<adj:jsFunction name="setdrink” render="drink”>
<adj:param name="paraml” assignTo="#{bean.drink}"”/>
</adj:jsFunction>

<td onmouseover="setdrink(‘Espresso’)”
onmouseout="setdrink(‘’)”>Espresso</td>

<h:outputText id="drink” value="I like #{bean.drink}"” />

When the mouse hovers or leaves a drink, the setdrink()
JavaScript function is called. The function is defined by an
adj:jsFunction tag which sets up standard Ajax call. You can also
invoke an action. The drink parameter is passed to the server via
adj:param tag.

adj:status

Displays Ajax request status. The component can display

content based on Ajax start, stop, and error conditions. Status
can be defined in the following three ways: status per view, status
per form and named statuses. The following example shows
named status:

<adj:status name="ajaxStatus”>
<f:facet name="start”>
<h:graphicImage value="/ajax.gif” />
</f:facet>
</a4j:status>
<a4j:commandButton value="Save” status="ajaxStatus”/>

All RichFaces controls which fire an Ajax request have status
attribute available.

adj:repeat
Works just like ui:repeat but also supports partial table update
(see Data Iteration):

<adj:repeat value="#{bean.list}"” var="city">
#{city.name}</1i>
</adj:repeat>

adj:push

"Push” server-side events to client using Comet or WebSockets.
This is implemented using Atmosphere (http://atmosphere.
java.net), and uses JMS for message processing (such as JBoss's
HornetQ - http://www.jboss.org/hornetq). This provides excellent
integration with EE containers, and advanced messaging services.

The <adj:push> tag allows you to define named topics for
messages delivery and actions to perform:

<a4dj:push address="topic@chat”
ondataavailable="alert(event.rf.data)” />

Server side messages are published and topics are created/
configured using a class similar to this:

@PostConstruct
public void init() {
topicsContext = TopicsContext.lookup();

private void say(String message) throws
MessageException {
TopicKey key = new TopicKey(“chat”,”topic”);
topicsContext.publish(key, message);

private void onStart() {
topicsContext.getOrCreateTopic(new
TopicKey(“chat”));
}

For more details on usage and setup, including examples please
see the RichFaces Component Guide (http://docs.jboss.org/
richfaces/latest 4 0 X/Component Reference/en-US/html/).

adj:param
Works like <f:param> also allows client side parameters and will
assign a value automatically to a bean property set in assignTo :

<a4j:commandButton value="Select”>
<adj:param value="#{rowIndex}"”
assignTo="#{bean.row}"/>
</a4j :commandButton>

adj:log

Client-side Ajax log and debugging.

| <adj:log/>

Clear_[info x|

info [21:34:10.733]: Recelved 'begin’
event from <select i1d=f:list ...»
info [21:34:10.791]: Received
'beforedomupdate’ event from <select
1d=f:list ...=

adj:region

Provides declarative definition of components to be executed
during Ajax request instead of using component ids. The
following example wouldn't work without a4j:region as no
execute ids are defined on the adj:poll which defaults to
execute="@this":

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

DZone Refcardz

RichFaces 4.0: A Next Generation JSF Framework

<adj:region>
<adj:poll interval="10000"/>
<h:inputText value="#{bean.name}"/>
<h:inputText value="#{bean.email}"/>
</a4j:region>

<context-param>
<param-name>
org.richfaces.queue.enabled</param-name>
<param-value>true</param-value>
</context-param>

If components are wrapped inside a4j:region without execute id
defined, then the default value is execute="@region"”. You can
also explicitly set execute="@region”.

RENDER OPTIONS

In addition to supporting the standard render attribute in all
controls which fire an Ajax request, RichFaces provides a number
of advanced rendering options.

adj:outputPanel

<adj:outputPanel ajaxRendered="true"> is an auto-rendered
panel. All child components within adj:outputPanel will be
rendered on any Ajax request. There is no need to point to the
panel via the render attribute.

<adj:outputPanel ajaxRendered="true"”>
<h:outputText />
<h:dataTable>...</h:dataTable>
<adj:outputPanel>

In example above, all components within a4j:outputPanel will be
always rendered. Note that ajaxRendered must be set to true.

Limiting Rendering

To limit rendering to only components set in current render

list, set limitRender="true". In the following example, only
components c1 and c2 will be rendered (a4j:outputPanel update
is turned off):

<adj:commandLink render="cl, c2” limitRender="true”/>

<h:outputText id="cl"/>

<h:panelGrid id="c2"”></h:panelGrid>

<a4j:outputPanel ajaxRendered="true”>
<h:dataTable>...</h:dataTable>

</a4j:outputPanel>

limitRender=true turns off all auto-rendered containers
(adj:outputPanel, rich:message(s)).

JSF 2 provides a basic client request queue out-of the box.
RichFaces extends the standard JSF queue, and provides
additional features to improve usability.

The RichFaces queue is defined via the a4j:queue tag. Queues
can be named or unnamed as described below.

Named Queue
Named queues are given a name and will only be used by
components which reference them directly:

<adj:queue name="ajaxQueue”>
<h:form>
<a4j :commandButton>
<adj:attachQueue name="ajaxQueue”/>
</a4j :commandButton>
</h:form>

Unnamed Queue

Unnamed queues are used to avoid having to reference named
queues for every component and come with the following
scopes: global, view, form.

Global level
Global queue is available on all the views and defined in
web.xml file:

View level
Placed outside any form. All Ajax control on the view will use
this queue:

<adj :queue/>
<h:form>...</h:form>

Form-level
Queue definition is placed inside a form. All controls inside the
form will use this queue:

<h:form>
<adj:queue/>
</h:form>

Queue Attributes
Attribute

Description

requestDelay Will delay sending the request by that number of millisecond.

<adj:queue requestDelay="3000"/>

Used to “wait” to combine requests from the same request group

requestGroupingld Combines two or more controls into the same request group.
Requests from this group are treated as if coming from the same
“logical” component.
<adj:attachQueue requestGroupingld="grp1"/>
ignoreDupResponses | Response processing for requests will not occur if a similar request is

already waiting in the queue, saving the client side processing.

There are two ways to set queue options. Directly on
adj:queue tag:

<a4j:queue name="ajaxQueue” requestDelay="3000"/>

Or attaching a4j:attachQueue behavior to Ajax components:

<adj:queue/>
<a4j : commandButton>
<adj:attachQueue requestDelay="3000"
requestGroupingId="ajaxGroup”>
</a4j :commandButton>

CLIENT-SIDE VALIDATION

Bean Validation

Bean Validation (JSR-303) provides a tier agnostic approach to
define constraints on model objects. Every tier must then validate
those constraints. There are a set of built in constraints, defined
by the Bean Validation specification. JSF 2.0 has built in Bean
Validation support, but only with server side validation.

rich:validator

RichFaces 4.0 provides true client side validation that
seamlessly integrates into JSF 2.0 Bean Validation support.
There is an Ajax server side fallback mechanism if client side
validation is not possible.

Object constrained using Bean Validation

public class Foo{
@NotNulL
@Pattern(regexp=""\d{5} (-\d{4})?$")
private String zipcode;

Client side validation on a specific field

<h:inputText id="input” value="#{foo.zipcode}>
<rich:validator event="keyup”>

</h:inputText>

<rich:message for="input”/>

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

DZone Refcardz 4 RichFaces 4.0: A Next Generation JSF Framework

tabPanel, accordion, Complex switchable panels.
togglePanel

rich:message is required for client-side

tooltip, progressBar, message, | Various status/message/ indication components.
message updates.

messages

o 4 4 Data Iteration
The client side versions of constraints, converters, and messages

must be implemented for this to work. All standard bean Products
validation constraints are supported. CodelmneceiisaiesiCost Reason
1 21 20.0 [3ust Good [ES
Additional constraints and features will be added in 2 B 10.0 Nobody Needs it [R
the future.
Component Description
object validation dataTable ?lust‘omizablg Ta:le Witgco\lapsible master-detail layouts, with sorting,
. ¢ , parti j tes.
Validate complete objects allowing for complex validation such as TIerng parte] Fyr ubeeres
cross-field validation before the model gets updated (I e.in the extendedDataTable | Additional features of: ajax scrolling, frozen columns, rows selection,

columns re-adjustment and switching visibility.

validation phase). Supports bean validation, but does not support

. i R X L list Allows dynamic rendering of any kind of HTML lists.
client side validations at this time.
dataGrid panelGrid analog with dynamic models support
New password validation dataScroller paging support for any iteration component

<rich:graphValidator “value="#{passwordBean}">
<h:inputText “value="#{passwordBean.password}” />
<h:inputText “value="#{passwordBean.retypePassword}” />

Child components: column, columnGroup, collapsibleSubTable.

</rich:graphValidator> Trees
- [Jusa
PasswordBean Implementation - 7 Columbia
public class PasswordBean implements Cloneable { | | Bob Dylan - Empire Burlesque
@Size(min=6) @GoodPassword L] WWill Smith - Big Willie style

rivate Strin assword ;
privi ing passw + D RCA
@Size(min:ﬁ)_
private String retypePassword ; Component Description

@AssertTrue(message="Passwords do not match”)

; tree Rendering of hierarchical data in a tree control. Built in
public boolean match(){ i X
return password.equals(retypePassword); selection and nodes lazy loading.
13
treeNode Defines representation for a node of a concrete type.
The password bean is cloned, updated, and validated all in the treeModelAdaptor, Declarative definition of tree data model from various

validation phase, allowing only clean data to move to the update treeModelRecursiveAdaptor | data structures.
model phase.

Menus
RICH:* TAGS L[" File Links
|} New
Inputs and Selects: [~ Open

0 100 e

Component | Description

o

50 B panelMenu Vertical page menu.

dropDownMenu | Drop-down menu for popup menus creation.
Component DeSCFIptIOH toolbar Laying out drop-down menus or just menu items.
e 3§ hplacsiectiglcomponent Child component for content definition: panelMenultem, panelMenuGroup,
inputNumberSPinner, Ul controls for numerical input. menultem, menuGroup, menuSeparator, toolbarGroup.
inputNumberSlider
autocomplete Input component with live suggestions. Drag and DrOP
select Advanced select control. Provides skinning and direct Component Description

typing feature.

dragSource Add dragging capabilities to the parent component.

calendar Advanced Date and Time input with various customization
options. dropTarget Marks parent component as target for Ajax drop processing.
fileUpload Asynchronous multiple files upload control. draglindicator Visualization for dragged element.
Output Misc
Overview JSF 2 and RichFaces 4 Component Description
jQuery Declarative jQuery calls definitions.
RichFaces iz a compenent library for JSF componentControl Calling any RichFaces component client-side API.

Component Descrlptlon CLIENT FUNCTIONS
panel, popupPanel, Simple panels with header. Expansion, collapse, modal and
collapsiblePanel non modal popups.

RichFaces provides a number of client-side functions which make
it easy to access elements in the browser.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

DZone Refcardz

RichFaces 4.0: A Next Generation JSF Framework

Function Description/Example

rich:clientld('id’) Returns client id.

#{rich:client('id")} returns form:id

Shortcut for
document.getElementByld(#{rich:clientld('id")})

rich:element(‘id’)

rich:component('id’) Used to invoke client-side component JavaScript API.

rich:findComponent(‘id’) Returns an instance of UlComponent taking the
component id.
<h:inputText id="in">

<adj:ajax />
</hiinputText>
<adj:outputPanel

ajaxRendered="true">

#{rich:findComponent(‘in’) .value}

</adj.outputPanel>

rich:isUserlnRole(‘role’) Returns true or false whether current user is in specified role.

RICH COMPONENTS JS API

Using rich:component('id’)

Many rich components come with client-side JavaScript API.
To use the AP, get a reference to the client JavaScript object
and invoke the available methods. Full description of each
component APl can be found in RichFaces Component Guide'.
In the following example, show() and hide() method are used to
show/hide panel:

<h:outputLink onclick="#{rich:component(‘pnl’)}.show();"”>
Open

</h:outputLink>

<rich:popupPanel id="pnl">

<h:outputLink onclick="#{rich:component(‘pnl’)}.hide();">
Hide

</h:outputlLink>

</rich:popupPanel>

Using rich:componentControl
An alternative and more declarative approach to call JavaScript
APl is to use rich:componentControl:

<h:outputLink value="#">
<h:outputText value="Open” />
<rich:componentControl operation="show”
target="pnl” event="click”/>
</h:outputLink>
<rich:popupPanel id="
<h:outputLink value=
<h:outputText value="Close” />
<rich:componentControl event="click"”
target="pnl” operation="hide"/>
</h:outputLink>
</rich:popupPanel>

1>

Overview JSF 2 and RichFaces 4
Overview JSF 2 and RichFaces 4
Overview JSF 2 and RichFaces 4

Basic Architecture
The same three-level hierarchy that is used for RF 3.3.Xis used here:

Skin parameters: configure an application-wide look and feel using dozens of
parameters.

rf-* classes: added to all the components to provide a default look and feel
based on parameters. To be used for redefinitions.

*Class: attributes on components.

New ECSS File Formats

Components use new *.ecss format of stylesheets:

1. richfaces/latest_4_0_X/Component_Reference/en-US/html/

.rf-pnl {
color: "#{richSkin.panelBorderColor}’;

1) Same CSS under the hood
2) Dynamic properties using EL expressions

Out-of-the-box Skins
Richfaces provides various skins out of the box:

blueSky, classic, deepMarine, emeraldTown, japanCherry, plain,
ruby, wine.

Application Skin Parameter Definition
To have the ability to change skin at runtime use a context
parameter in the web.xml:

<context-param>
<param-name>org.richfaces.skin</param-name>
<param-value>#{skinBean.skin}</param-value>
</context-param>

The param-value from listing below could be just static string
name. (e.g. bluesky).

Skinning Standard Components and Elements

With org.richfaces.enableControlSkinning context parameter set
to true all the standard and third-party components will become
skinned.

Usage of Skin Parameters on the Page
You could use implicit richSkin object in order to access skin
parameters on the pages:

| <h:button style="background-color: '#{richSkin.tableBackgroundColor}'” .../> |

The Same as CSS

It is the same as for usuall CSS:

| <h:outputStylesheet name="panel.ecss”/> |

or

| @ResourceDependency (name = “panel.ecss”) |

Skinning using Static Resources
Finally you are able to serve our dynamic skins in a static way
(E.g. using CDN):

1) Add org.richfaces.cdk:maven-resources-plugin to build.

2) Configure it. You should define directory which should be
used to store generated recourses, skin names which should
be processed, resources types to be included and so on...
Refer to RichFaces GAE archetype or richfaces-showcase
pom.xml files for getting complete code.

3) Define static resources location via org.richfaces.
staticResourcelocation context parameter using implicit
resourcelLocation variable in web.xml

COMPONENT DEVELOPMENT KIT

RichFaces CDK has been developed to boost productivity by
providing easy-to-use environment for simplifying common
components development tasks. Main features are:

e \ery easy creation and maintenance of classes such as component,
converter, validator, etc.

® Generation of renderer classes from files with VDL-like syntax.

e Easy-to-use annotation—or XML-based configuration following
Convention-over-Configuration principles.

¢ Generation of XML configuration files.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

A3 DZone Refcardz

6 RichFaces 4.0: A Next Generation JSF Framework

GOOGLE APPLICATION ENGINE SUPPORT

Google Application Engine deployments require specific changes
to be done at the application level mostly because of GAE's
restrictions and issues related to JSF deployment.

Archetype Usage
RichFaces provides a special archetype to generate an
application skeleton for GAE deployments:

mvn archetype:generate -DarchetypeGroupId=org.richfaces.archetypes
-DarchetypeArtifactId=richfaces-archetype-gae -DarchetypeVersion=<archetyp
eVersion>

-DgroupId=<yourGroupId> -DartifactId=<yourArtifactId> -Dversion=1.0-

SNAPSHOT

Now you can run mvn install as usually to build application and
use mvn gae:deploy for deployment.

Deployment Requirements
Exploring the application generated by the archetype is the
easiest way to check settings which are required to be done for
deployment. It includes:

e static resources for skins has to be used as GAE not allows Java2D usage

(see skinning section for details)

® GAE-specific web.xml settings added

ABOUT THE AUTHOR

i

Nick Belaevski
Publications: DZone Richfaces 3 Refcard co-author
Projects: RichFaces, JBoss Tools

llya Shaikovsky

Publications: DZone RichFaces 3 Refcard co-author

Blog: http://jroller.com/a4j, http://in.relation.to/Bloggers/Ilya
Twitter: http://twitter.com/ilya_shaikovsky

Jay Balunas

Publications: DZone RichFaces 3 Refcard co-author
Projects: RichFaces, Seam, Weld, and TattleTale
Blog: http://in.relation.to/Bloggers/Jay

Twitter: http://twitter.com/tech4j

Max Katz
Publications: DZone, TheServerSide, Practical RichFaces (Apress),
DZone RichFaces 3 Refcard co-author
Projects: Flamingo, jsfdbirt, Fiji, JavaFX plug-in for Eclipse on exadel.org,
Interactive HTML prototypes: http://gotiggr.com
Blog: http://mkblog.exadel.com
Twitter: http://twitter.com/maxkatz

RECOMMENDED BOOK

g RichFaces 4.0 is an advanced JSF 2.0 based framework that
Practical provides a complete range of rich Ajax enabled Ul components,
RichFaces as well as other features such as a component development kit,
dynamic resource support, and skinning. The 4.0 version brings
complete JSF 2.0 support to the project.

Practical RichFaces 4 describes how the new RichFaces 4
upgrades and extends JSF 2 with new features, advanced
functionality and customization. Learn how to use a4j:* tags,
rich:* tags, component JavaScript API, skins, and client-side
validation. Assuming some JSF background, it shows you how
you can radically reduce programming time and effort to create
rich enterprise Ajax based applications.

In this definitive RichFaces 4 book, the authors bases all
examples on Maven so that any IDE can be used—whether it's
NetBeans, Eclipse, IntelliJ or JBoss Tools.

BUY NOW
http://www.apress.com/book/view/9781430234494

& 5 Doneefar Browse our collection of over 100 Free Cheat Sheets

Getting Started with
Cloud Computing
&y Dol b

Upcoming Refcardz

Continuous Delivery

Free PDF | | i

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Spring Roo

DZone, Inc. ISBN-13: 978-1-93b502-38-7

140 Preston Executive Dr. ISBN-10: 1-93L502-38-0

Suite 100 50795
Cary, NC 27513

888.678.0399

919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com ol784992450>287

Sponsorship Opportunities
sales@dzone.com Version 1.0

$7.95

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

