

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#138
R

ic
h

F
ac

e
s

4
.0

:
A

 N
e

xt
 G

e
n

e
ra

ti
o

n
 J

S
F

 F
ra

m
e

w
o

rk

CONTENTS INCLUDE:
n	 Introduction
n	 Getting Started
n	 Core JSF 2 Extensions
n	 Render Options
n	 Queue
n	 Client-Side Validation and more... By Nick Belaevski, Ilya Shailkovsky, Max Katz, and Jay Balunas

 RichFaces 4.0
A Next Generation JSF Framework

INTRODUCTION

RichFaces 4.0 is an advanced JSF 2.0 based framework that
provides a complete range of rich Ajax enabled UI components,
as well as other features such as a component development kit,
dynamic resource support, and skinning. The 4.0 version brings
complete JSF 2.0 support to the project.

RichFaces is made up of two component tag libraries. “a4j:”
represents core Ajax functionality, and page wide controls.
While the “rich:” component set represent self contained and
advanced UI components such as calendars, and trees.

JavaServer Faces 2.0
The second version of JSF added many features such as, core
Ajax functionality, integrated Facelets support, annotations,
view parameters, and more. RichFaces 4.0 has been specifically
redesigned to not only work with these new features, but to
extend them.

Hot
Tip

JSF 2.0 is covered in detail in the DZone JavaServer
Faces 2.0 Refcard.

GETTING STARTED

RichFaces can be used in any container that JSF 2.0 is
compatible with. This means all servers compliant with the EE6
specification (JBoss AS6/7, Glassfish 3) and all major servlet
containers (Tomcat, Jetty).

Hot
Tip

Check the RichFaces project page for the latest
information and downloads: http://richfaces.org

Installing RichFaces
Since RichFaces is build on top of JSF 2.0 its installation is as
easy as adding a few jars to your project.

For Maven-based projects configure your repositories following
the Maven Getting Started Guide here:
http://community.jboss.org/wiki/MavenGettingStarted-Users

Then simply add the following to you projects pom.xml.
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.richfaces</groupId>
 <artifactId>richfaces-bom</artifactId>
 <version>${richfaces.version}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>
…
<dependency>
 <groupId>org.richfaces.ui</groupId>
 <artifactId>richfaces-components-ui</artifactId>
</dependency>
<dependency>
 <groupId>org.richfaces.core</groupId>
 <artifactId>richfaces-core-impl</artifactId>
</dependency>

For other build systems such as Ant just add the following jars to
your projects WEB-INF/lib directory: richfaces-core-api-<ver>.jar,
richfaces-core-impl-<ver>.jar, richfaces-components-api-<ver>.jar,
richfaces-components-ui-<ver>.jar, sac-1.3.jar, cssparser-0.9.5.jar,
and google-guava-r08.jar.

Hot
Tip

No filters or other updates to your web.xml are
needed to install RichFaces 4.0.

Page Setup
To use RichFaces components in your views add:

xmlns:a4j=”http://richfaces.org/a4j”
xmlns:rich=”http://richfaces.org/rich”

Maven Archetypes
The project also contains several Maven archetypes to
quickly create projects (including one for Google App Engine
targeted project).

Simple project generation:
mvn archetype:generate
-DarchetypeGroupId=org.richfaces.archetypes
-DarchetypeArtifactId=richfaces-archetype-simpleapp
-DarchetypeVersion=<version> -DgroupId=<yourGroupId>
-DartifactId=<yourArtifactId> -Dversion=<yourVersion>

From the generated project directory you can build, and deploy
as with any Maven project.

Hot
Tip

Easily import in JBoss Tools using m2eclipse
http://jboss.org/tools.

CORE JSF 2 EXTENSIONS

a4j:ajax
Upgrades the standard f:ajax tag/behavior with more features.

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

2 RichFaces 4.0: A Next Generation JSF Framework

DZone, Inc. | www.dzone.com

<h:inputText value=”#{bean.input}”>
 <a4j:ajax execute=”#{bean.process}” render=”#{bean.update}”/>
</h:inputText>
<h:panelGrid id=”list1”>...</h:panelGrid>

Execute & Render EL Resolution
JSF 2.0 determines the values for execute and render attributes
when the current view is rendered. In the example above if
#{bean.update} changes on the server the older value will be
used. RichFaces processes attribute values on the server side so
you will always be using the most current value.

Addition Common Enhancements
All RichFaces components that fire Ajax requests share the
features above, and all of the ones from below:

Attribute Description

limitRender Turns off all auto-rendered panels (see Render Options section).

bypassUpdates When set to true, skips Update Model and Invoke Application phases.
Useful for form validation requests.

onbegin JavaScript code to be invoked before Ajax request is sent.

onbeforedomupdate JavaScript code to be invoked after response is received but before
Ajax updates happen.

oncomplete JavaScript code to be invoked after Ajax request processing is
complete.

status Name of status component to show during Ajax request.

a4j:commandButton, a4j:commandLink
Similar to standard h:commandButton and h:commandLink tags
but with Ajax behavior built-in.

<a4j:commandButton value=”Add”
 action=”#{bean.add}” render=”cities”/>
<h:panelGrid id=”cities”>...</h:panelGrid>

Hot
Tip Default execute value for both controls is @form.

a4j:poll
Periodically fires an Ajax request based on polling interval
defined via interval attribute and can be enabled/disabled via
enabled attribute (true|false). For example, in the following code
snippet, an Ajax request will be sent every 2 seconds and render
the time component:

<a4j:poll interval=”2000” enabled=”#{bean.active}”
 action=”#{bean.count}” render=”time”/>
<h:outputText id=”time” value=”#{bean.time}”/>

a4j:jsFunction
Allows the sending of an Ajax request from any JavaScript function.

<a4j:jsFunction name=”setdrink” render=”drink”>
 <a4j:param name=”param1” assignTo=”#{bean.drink}”/>
</a4j:jsFunction>
...
<td onmouseover=”setdrink(‘Espresso’)”
 onmouseout=”setdrink(‘’)”>Espresso</td>
<h:outputText id=”drink” value=”I like #{bean.drink}” />

When the mouse hovers or leaves a drink, the setdrink()
JavaScript function is called. The function is defined by an
a4j:jsFunction tag which sets up standard Ajax call. You can also
invoke an action. The drink parameter is passed to the server via
a4j:param tag.

a4j:status
Displays Ajax request status. The component can display
content based on Ajax start, stop, and error conditions. Status
can be defined in the following three ways: status per view, status
per form and named statuses. The following example shows
named status:

<a4j:status name=”ajaxStatus”>
 <f:facet name=”start”>
 <h:graphicImage value=”/ajax.gif” />
 </f:facet>
</a4j:status>
<a4j:commandButton value=”Save” status=”ajaxStatus”/>

All RichFaces controls which fire an Ajax request have status
attribute available.

a4j:repeat
Works just like ui:repeat but also supports partial table update
(see Data Iteration):

 <a4j:repeat value=”#{bean.list}” var=”city”>
 #{city.name}
 </a4j:repeat>

a4j:push
“Push” server-side events to client using Comet or WebSockets.
This is implemented using Atmosphere (http://atmosphere.
java.net), and uses JMS for message processing (such as JBoss’s
HornetQ - http://www.jboss.org/hornetq). This provides excellent
integration with EE containers, and advanced messaging services.

The <a4j:push> tag allows you to define named topics for
messages delivery and actions to perform:

<a4j:push address=”topic@chat”
 ondataavailable=”alert(event.rf.data)” />

Server side messages are published and topics are created/
configured using a class similar to this:

@PostConstruct
public void init() {
 topicsContext = TopicsContext.lookup();
}
private void say(String message) throws
 MessageException {
 TopicKey key = new TopicKey(“chat”,”topic”);
 topicsContext.publish(key, message);
}
private void onStart() {
 topicsContext.getOrCreateTopic(new
 TopicKey(“chat”));
}

For more details on usage and setup, including examples please
see the RichFaces Component Guide (http://docs.jboss.org/
richfaces/latest_4_0_X/Component_Reference/en-US/html/).

a4j:param
Works like <f:param> also allows client side parameters and will
assign a value automatically to a bean property set in assignTo :

<a4j:commandButton value=”Select”>
 <a4j:param value=”#{rowIndex}”
 assignTo=”#{bean.row}”/>
</a4j:commandButton>

a4j:log
Client-side Ajax log and debugging.

<a4j:log/>

a4j:region
Provides declarative definition of components to be executed
during Ajax request instead of using component ids. The
following example wouldn’t work without a4j:region as no
execute ids are defined on the a4j:poll which defaults to
execute=”@this”:

http://www.refcardz.com
http://www.dzone.com

3 RichFaces 4.0: A Next Generation JSF Framework

DZone, Inc. | www.dzone.com

<a4j:region>
 <a4j:poll interval=”10000”/>
 <h:inputText value=”#{bean.name}”/>
 <h:inputText value=”#{bean.email}”/>
</a4j:region>

If components are wrapped inside a4j:region without execute id
defined, then the default value is execute=”@region”. You can
also explicitly set execute=”@region”.

RENDER OPTIONS

In addition to supporting the standard render attribute in all
controls which fire an Ajax request, RichFaces provides a number
of advanced rendering options.

a4j:outputPanel
<a4j:outputPanel ajaxRendered=”true”> is an auto-rendered
panel. All child components within a4j:outputPanel will be
rendered on any Ajax request. There is no need to point to the
panel via the render attribute.

<a4j:outputPanel ajaxRendered=”true”>
 <h:outputText />
 <h:dataTable>...</h:dataTable>
<a4j:outputPanel>

In example above, all components within a4j:outputPanel will be
always rendered. Note that ajaxRendered must be set to true.

Limiting Rendering
To limit rendering to only components set in current render
list, set limitRender=”true”. In the following example, only
components c1 and c2 will be rendered (a4j:outputPanel update
is turned off):

<a4j:commandLink render=”c1, c2” limitRender=”true”/>
<h:outputText id=”c1”/>
<h:panelGrid id=”c2”></h:panelGrid>
<a4j:outputPanel ajaxRendered=”true”>
 <h:dataTable>...</h:dataTable>
</a4j:outputPanel>

limitRender=true turns off all auto-rendered containers
(a4j:outputPanel, rich:message(s)).

QUEUE

JSF 2 provides a basic client request queue out-of the box.
RichFaces extends the standard JSF queue, and provides
additional features to improve usability.

The RichFaces queue is defined via the a4j:queue tag. Queues
can be named or unnamed as described below.

Named Queue
Named queues are given a name and will only be used by
components which reference them directly:

<a4j:queue name=”ajaxQueue”>
<h:form>
 <a4j:commandButton>
 <a4j:attachQueue name=”ajaxQueue”/>
 </a4j:commandButton>
</h:form>

Unnamed Queue
Unnamed queues are used to avoid having to reference named
queues for every component and come with the following
scopes: global, view, form.

Global level
Global queue is available on all the views and defined in
web.xml file:

<context-param>
 <param-name>
 org.richfaces.queue.enabled</param-name>
 <param-value>true</param-value>
</context-param>

View level
Placed outside any form. All Ajax control on the view will use
this queue:

<a4j:queue/>
<h:form>...</h:form>

Form-level
Queue definition is placed inside a form. All controls inside the
form will use this queue:

<h:form>
 <a4j:queue/>
</h:form>

Queue Attributes
Attribute Description

requestDelay Will delay sending the request by that number of millisecond.
<a4j:queue requestDelay=”3000”/>

Used to “wait” to combine requests from the same request group

requestGroupingId Combines two or more controls into the same request group.
Requests from this group are treated as if coming from the same
“logical” component.
<a4j:attachQueue requestGroupingId=”grp1”/>

ignoreDupResponses Response processing for requests will not occur if a similar request is
already waiting in the queue, saving the client side processing.

There are two ways to set queue options. Directly on
a4j:queue tag:

<a4j:queue name=”ajaxQueue” requestDelay=”3000”/>

Or attaching a4j:attachQueue behavior to Ajax components:

<a4j:queue/>
<a4j:commandButton>
 <a4j:attachQueue requestDelay=”3000”
 requestGroupingId=”ajaxGroup”>
</a4j:commandButton>

CLIENT-SIDE VALIDATION

Bean Validation
Bean Validation (JSR-303) provides a tier agnostic approach to
define constraints on model objects. Every tier must then validate
those constraints. There are a set of built in constraints, defined
by the Bean Validation specification. JSF 2.0 has built in Bean
Validation support, but only with server side validation.

rich:validator
RichFaces 4.0 provides true client side validation that
seamlessly integrates into JSF 2.0 Bean Validation support.
There is an Ajax server side fallback mechanism if client side
validation is not possible.

Object constrained using Bean Validation

public class Foo{
 ...
 @NotNull
 @Pattern(regexp=”^\d{5}(-\d{4})?$”)
 private String zipcode;
 ...
}

Client side validation on a specific field

<h:inputText id=”input” value=”#{foo.zipcode}>
 <rich:validator event=”keyup”>
</h:inputText>
<rich:message for=”input”/>

http://www.refcardz.com
http://www.dzone.com

4 RichFaces 4.0: A Next Generation JSF Framework

DZone, Inc. | www.dzone.com

Hot
Tip

rich:message is required for client-side
message updates.

The client side versions of constraints, converters, and messages
must be implemented for this to work. All standard bean
validation constraints are supported.

Hot
Tip

Additional constraints and features will be added in
the future.

Object Validation
Validate complete objects allowing for complex validation such as
cross-field validation before the model gets updated (i.e. in the
validation phase). Supports bean validation, but does not support
client side validations at this time.

New password validation

<rich:graphValidator “value=”#{passwordBean}”>
 <h:inputText “value=”#{passwordBean.password}” />
 <h:inputText “value=”#{passwordBean.retypePassword}” />
</rich:graphValidator>

PasswordBean Implementation

public class PasswordBean implements Cloneable {

@Size(min=6) @GoodPassword
private String password ;

@Size(min=6)
private String retypePassword ;

@AssertTrue(message=”Passwords do not match”)
public boolean match(){
 return password.equals(retypePassword);
}}

The password bean is cloned, updated, and validated all in the
validation phase, allowing only clean data to move to the update
model phase.

RICH:* TAGS

Inputs and Selects:

Component Description

inplaceInput,inplaceSelect Inplace editing components.

inputNumberSpinner,
inputNumberSlider

UI controls for numerical input.

autocomplete Input component with live suggestions.

select Advanced select control. Provides skinning and direct
typing feature.

calendar Advanced Date and Time input with various customization
options.

fileUpload Asynchronous multiple files upload control.

Output

Component Description

panel, popupPanel,
collapsiblePanel

Simple panels with header. Expansion, collapse, modal and
non modal popups.

tabPanel, accordion,
togglePanel

Complex switchable panels.

tooltip, progressBar, message,
messages

Various status/message/ indication components.

Data Iteration

Component Description

dataTable Customizable table with collapsible master-detail layouts, with sorting,
filtering, partial Ajax updates.

extendedDataTable Additional features of: ajax scrolling, frozen columns, rows selection,
columns re-adjustment and switching visibility.

list Allows dynamic rendering of any kind of HTML lists.

dataGrid panelGrid analog with dynamic models support

dataScroller paging support for any iteration component

Child components: column, columnGroup, collapsibleSubTable.

Trees

Component Description

tree Rendering of hierarchical data in a tree control. Built in
selection and nodes lazy loading.

treeNode Defines representation for a node of a concrete type.

treeModelAdaptor,
treeModelRecursiveAdaptor

Declarative definition of tree data model from various
data structures.

Menus

Component Description

panelMenu Vertical page menu.

dropDownMenu Drop-down menu for popup menus creation.

toolbar Laying out drop-down menus or just menu items.

Child component for content definition: panelMenuItem, panelMenuGroup,

menuItem, menuGroup, menuSeparator, toolbarGroup.

Drag and Drop
Component Description

dragSource Add dragging capabilities to the parent component.

dropTarget Marks parent component as target for Ajax drop processing.

dragIndicator Visualization for dragged element.

Misc
Component Description

jQuery Declarative jQuery calls definitions.

componentControl Calling any RichFaces component client-side API.

CLIENT FUNCTIONS

RichFaces provides a number of client-side functions which make
it easy to access elements in the browser.

http://www.refcardz.com
http://www.dzone.com

5 RichFaces 4.0: A Next Generation JSF Framework

DZone, Inc. | www.dzone.com

Function Description/Example

rich:clientId(‘id’) Returns client id.
#{rich:client(‘id’)} returns form:id

rich:element(‘id’) Shortcut for
document.getElementById(#{rich:clientId(‘id’)})

rich:component(‘id’) Used to invoke client-side component JavaScript API.

rich:findComponent(‘id’) Returns an instance of UIComponent taking the
component id.
<h:inputText id=”in”>
 <a4j:ajax />
</h:inputText>
<a4j:outputPanel
 ajaxRendered=”true”>
 #{rich:findComponent(‘in’) .value}
</a4j:outputPanel>

rich:isUserInRole(‘role’) Returns true or false whether current user is in specified role.

RICH COMPONENTS JS API

Using rich:component(‘id’)
Many rich components come with client-side JavaScript API.
To use the API, get a reference to the client JavaScript object
and invoke the available methods. Full description of each
component API can be found in RichFaces Component Guide1.
In the following example, show() and hide() method are used to
show/hide panel:

<h:outputLink onclick=”#{rich:component(‘pnl’)}.show();”>
 Open
</h:outputLink>
<rich:popupPanel id=”pnl”>
 <h:outputLink onclick=”#{rich:component(‘pnl’)}.hide();”>
 Hide
 </h:outputLink>
</rich:popupPanel>

Using rich:componentControl
An alternative and more declarative approach to call JavaScript
API is to use rich:componentControl:

<h:outputLink value=”#”>
 <h:outputText value=”Open” />
 <rich:componentControl operation=”show”
 target=”pnl” event=”click”/>
</h:outputLink>
<rich:popupPanel id=”pnl”>
 <h:outputLink value=”#”>
 <h:outputText value=”Close” />
 <rich:componentControl event=”click”
 target=”pnl” operation=”hide”/>
 </h:outputLink>
</rich:popupPanel>

SKINNING

Basic Architecture
The same three-level hierarchy that is used for RF 3.3.X is used here:
Skin parameters: configure an application-wide look and feel using dozens of
parameters.

rf-* classes: added to all the components to provide a default look and feel
based on parameters. To be used for redefinitions.

*Class: attributes on components.

New ECSS File Formats
Components use new *.ecss format of stylesheets:

.rf-pnl {
 color:’#{richSkin.panelBorderColor}’;
}

 1) Same CSS under the hood

 2) Dynamic properties using EL expressions

Out-of-the-box Skins
Richfaces provides various skins out of the box:

blueSky, classic, deepMarine, emeraldTown, japanCherry, plain,
ruby, wine.

Application Skin Parameter Definition
To have the ability to change skin at runtime use a context
parameter in the web.xml:
<context-param>
 <param-name>org.richfaces.skin</param-name>
 <param-value>#{skinBean.skin}</param-value>
</context-param>

The param-value from listing below could be just static string
name. (e.g. bluesky).

Skinning Standard Components and Elements
With org.richfaces.enableControlSkinning context parameter set
to true all the standard and third-party components will become
skinned.

Usage of Skin Parameters on the Page
You could use implicit richSkin object in order to access skin
parameters on the pages:

<h:button style=”background-color:’#{richSkin.tableBackgroundColor}’” .../>

The Same as CSS
It is the same as for usuall CSS:
<h:outputStylesheet name=”panel.ecss”/>

or
@ResourceDependency(name = “panel.ecss”)

Skinning using Static Resources
Finally you are able to serve our dynamic skins in a static way
(E.g. using CDN):

 1) �Add org.richfaces.cdk:maven-resources-plugin to build.

 2) �Configure it. You should define directory which should be
used to store generated recourses, skin names which should
be processed, resources types to be included and so on…
Refer to RichFaces GAE archetype or richfaces-showcase
pom.xml files for getting complete code.

 3) �Define static resources location via org.richfaces.
staticResourceLocation context parameter using implicit
resourceLocation variable in web.xml

COMPONENT DEVELOPMENT KIT

RichFaces CDK has been developed to boost productivity by
providing easy-to-use environment for simplifying common
components development tasks. Main features are:

•	Very easy creation and maintenance of classes such as component,
converter, validator, etc.

•	Generation of renderer classes from files with VDL-like syntax.

•	Easy-to-use annotation—or XML-based configuration following
Convention-over-Configuration principles.

•	Generation of XML configuration files.

1. richfaces/latest_4_0_X/Component_Reference/en-US/html/

http://www.refcardz.com
http://www.dzone.com

6

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Continuous Delivery
CSS3
NoSQL
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

RichFaces 4.0: A Next Generation JSF Framework

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

GOOGLE APPLICATION ENGINE SUPPORT

Google Application Engine deployments require specific changes
to be done at the application level mostly because of GAE’s
restrictions and issues related to JSF deployment.

Archetype Usage
RichFaces provides a special archetype to generate an
application skeleton for GAE deployments:

mvn archetype:generate -DarchetypeGroupId=org.richfaces.archetypes
-DarchetypeArtifactId=richfaces-archetype-gae -DarchetypeVersion=<archetyp
eVersion>
-DgroupId=<yourGroupId> -DartifactId=<yourArtifactId> -Dversion=1.0-
SNAPSHOT

Now you can run mvn install as usually to build application and
use mvn gae:deploy for deployment.

Deployment Requirements
Exploring the application generated by the archetype is the
easiest way to check settings which are required to be done for
deployment. It includes:

•	static resources for skins has to be used as GAE not allows Java2D usage
(see skinning section for details)

•	GAE-specific web.xml settings added

Nick Belaevski
Publications: DZone Richfaces 3 Refcard co-author
Projects: RichFaces, JBoss Tools

Ilya Shaikovsky
Publications: DZone RichFaces 3 Refcard co-author
Blog: �http://jroller.com/a4j, http://in.relation.to/Bloggers/Ilya
Twitter: http://twitter.com/ilya_shaikovsky

Jay Balunas
Publications: DZone RichFaces 3 Refcard co-author
Projects: RichFaces, Seam, Weld, and TattleTale
Blog: http://in.relation.to/Bloggers/Jay
Twitter: http://twitter.com/tech4j

Max Katz
Publications: �DZone, TheServerSide, Practical RichFaces (Apress),

DZone RichFaces 3 Refcard co-author
Projects: �Flamingo, jsf4birt, Fiji, JavaFX plug-in for Eclipse on exadel.org,

Interactive HTML prototypes: http://gotiggr.com
Blog: http://mkblog.exadel.com
Twitter: http://twitter.com/maxkatz

RichFaces 4.0 is an advanced JSF 2.0 based framework that
provides a complete range of rich Ajax enabled UI components,
as well as other features such as a component development kit,
dynamic resource support, and skinning. The 4.0 version brings
complete JSF 2.0 support to the project.

Practical RichFaces 4 describes how the new RichFaces 4
upgrades and extends JSF 2 with new features, advanced
functionality and customization. Learn how to use a4j:* tags,
rich:* tags, component JavaScript API, skins, and client-side
validation. Assuming some JSF background, it shows you how
you can radically reduce programming time and effort to create
rich enterprise Ajax based applications.

�In this definitive RichFaces 4 book, the authors bases all
examples on Maven so that any IDE can be used—whether it’s
NetBeans, Eclipse, IntelliJ or JBoss Tools.

BUY NOW
http://www.apress.com/book/view/9781430234494

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

