

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#139
S

p
ri

n
g

 R
o

o
:

O
p

e
n

-S
o

u
rc

e
 R

ap
id

 A
p

p
lic

at
io

n
 D

e
ve

lo
p

m
e

n
t

w
it

h
 J

av
a

CONTENTS INCLUDE:
n	 About Spring Roo
n	 Architectural Overview
n	 First Hops
n	 But Wait... There’s More!
n	 Tips & Tricks
n	 Hot Tips and more...

By Stefan Schmidt

Spring Roo:
Open-Source Rapid Application Development for Java

ABOUT SPRING ROO

Spring Roo is a popular open-source rapid application
development (RAD) tool for Java developers. It enables the
developer to build best-practice, high-quality, lock-in-free
enterprise applications in minutes – a task that would otherwise
take days if not weeks. Developers using Roo can fundamentally
and sustainably improve their productivity without compromising
engineering integrity or flexibility. Roo is highly modular: it allows
developers to extend its functionality by installing new add-ons in
a secure and trusted way.

You can load the Spring Roo shell in the background and let it
monitor your project or directly interact with it by issuing shell
commands. The shell offers many usability features such as tab
completion, context awareness, help and hinting support and
automatic roll-back. Roo even keeps a log of your shell commands
so you can easily replay them if desired.

ARCHITECTURAL OVERVIEW

Projects created with Spring Roo are standard Java enterprise
applications using the Spring Framework. This means you’ll
find all the typical artifacts such as Java source files, XML
configuration files, properties files and view artifacts such as jspx
files in your project. Besides automatic configuration of Maven
build artifacts, logging and dependency injection, Roo allows you
to connect to or transparently create new backend databases. It
achieves that by automatically configuring the Spring application
context for your database and object relational mapping (ORM)
tool through the Java Persistence API (JPA) standard. Transaction
management is also configured out of the box. Furthermore, it
can take care of maintaining your JUnit integration tests, Web
front-ends and other common project layers.

Spring Roo’s unique approach
One of the major benefits of using Spring Roo is its deep
integration of AspectJ’s inter-type declaration (ITD) features. This
allows Roo to automatically produce and maintain boiler-plate
code such as getter and setter methods in a different compilation
unit (the .aj file). AspectJ ITD files are kept separate from the
normal .java code you’d write as a developer so Roo can maintain

the file’s lifecycle and contents completely independently of
whatever you are doing to the .java files. Your .java files do not
need to do anything unnatural like reference the generated ITD
file and the whole process is completely transparent.

Spring Roo selectively merges the best of the passive and active
code generation models. Roo will passively ‘watch’ (i.e., read
and monitor) any activity in your project’s .java sources and
automatically adjust the AspectJ ITDs in the background to
support your activities. For example, typical domain classes only
contain field definitions that are either added through Roo shell
commands (passive generation – the user asks for it) or manually
added by the developer in the IDE. Boilerplate code like
toString(), accessors and mutators for the fields as well as many
other functionalities are then transparently added and managed
in the ITDs. Roo will actively make adjustments in the ITDs when
the developer renames or deletes the field from his Person.java
file. Note that source code members like the toString() or
getName() and setName() methods in a separate file (.aj) are fully
available for code completion in modern IDEs such as STS and
IntelliJ thanks to fully integrated support for AspectJ Eclipse.

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

2 Spring Roo: Open-Source Rapid Application Development with Java

DZone, Inc. | www.dzone.com

Since the ITDs are not expected to be edited by the developer,
Roo can manage the contents of an ITD actively. This allows Roo
to integrate new features in Spring Framework once they become
available or make the code more efficient simply by updating the
ITD sources when upgrading to a new version of Spring Roo.

A development-time only tool
The ITD files are automatically managed by the Spring Roo
shell, which is kept running in the background while developing
your project. The contents of the ITDs can be controlled and
customized by Java annotations placed in your .java source
files. These annotations always start with @Roo and are source-
level retention only: hence, they are not compiled in your .class
files. This means that Roo-managed applications deployed to
production environments have absolutely no dependency on Roo
itself. You can observe this by taking a look at your application
runtime classpath; for example, in Web applications, your WEB-
INF/lib directory will contain no Roo-related JARs.

The use of Spring Roo as a productivity RAD tool that is present
only at development time brings many advantages; you avoid
lock-in, keep full flexibility for future extensions and gain
better performance due to the absence of additional runtime
dependencies. Furthermore, there is no scope for possible Roo
bugs to affect your project, and there is no risk of upgrading to a
later version of Roo due to the lack of executable code anywhere
in your project classpath.

Roo’s default architecture
Depending on the requirements of the application, there are a
number of approaches to designing and subsequently layering a
Java enterprise application. Persistence logic is often encapsulated
in a Data Access Object (DAO) layer in combination with an
additional repository layer. In front of these persistence layers,
developers frequently use a façade or service layer, which can
contain business logic that applies to multiple domain types.
In MVC-style Web applications, there is a controller layer and
finally there is a domain layer. There are ,of course, any number of
alternative approaches to architecting enterprise Java applications.

In a typical Roo application, you’ll only use an entity layer (which
is similar to a domain layer) and a web layer. An optional services
layer might be added if your application requires it, although a
DAO layer is rarely added. The domain entity approach taken by
Roo is conceptually related to the active record pattern employed
by many modern RAD frameworks. Through the use of separate
ITDs for adding different functionalities to a target type, Roo
applications still adheres to the separation of concerns principle.

For more information on high-level features and concepts
employed by Spring Roo, refer to the first sections of the
reference documentation.

FIRST HOPS

Spring Roo is easy to install as standalone tool and runs on
Windows, Mac OSX and Linux alike. Integrated development
environments (IDEs) for Java such as the SpringSource Tool Suite
(STS), Eclipse (+ AJDT) and JetBrains IntelliJ also integrate Spring
Roo directly into their toolset.

The only prerequisites for running the Spring Roo shell are a working
Java 6 SDK and Apache Maven (2.0.9+) installation. Once these
two are installed, you can go ahead and download and unpack
the Spring Roo distribution. You can find the ~7MB download for
the latest release of Spring Roo at http://www.springsource.com/
download/community?project=Spring%20Roo. Once downloaded,
simply unpack it into and add it to your path. Windows users can
add %ROO_HOME%\bin to their path and *nix users can create a
symbolic link to $ROO_HOME/bin/roo.sh.

Alternatively, you can install STS, which includes an integrated version
of the Spring Roo shell without any need for further configuration.

Once this is complete, you can simply start your Spring Roo shell
in a fresh directory:

The Spring Roo shell
The Spring Roo shell offers hinting support for newcomers.
This way you can learn about the suggested steps beginning
with the creation of a new project, followed by configuration of
persistence features to the creation of your first domain classes.

Tab completion plays a central role when using the Spring
Roo shell. By simply hitting the Tab key, the Roo shell will offer
commands, command attributes or even brief comments about
the functionality offered by a command or a command attribute.
Typing the first letters of a command followed by Tab will
complete the command. Subsequent uses of Tab will complete
mandatory command attributes until a user selection or input is
required. Note, the integrated Roo shell in STS uses the Ctrl +
Space key combination familiar to Eclipse users in lieu of the Tab
completion in the standalone Roo shell.

The Roo shell will automatically hide commands, which are not
applicable in the current context. For example, the ‘persistence
setup’ command will not be shown when using Tab before a
new project has been created using the ‘project’ command. Roo
also offers help for any of the commands it offers. To see help
details for the ‘persistence setup’ command, simply type ‘help
persistence’ and Roo will present a short description and also all
mandatory and optional command attributes along with a brief
description for each. Finally, the Roo shell will automatically roll-
back changed files in case a problem is encountered.

Your first Roo project
The first action to take in a new Spring Roo managed project is to
create a new project:

roo> project –topLevelPackage net.addressbook
Created /home/sschmidt/AddressBook/pom.xml
Created SRC_MAIN_JAVA
Created SRC_MAIN_RESOURCES
Created SRC_TEST_JAVA
Created SRC_TEST_RESOURCES
Created SRC_MAIN_WEBAPP
Created SRC_MAIN_RESOURCES/META-INF/spring
Created SRC_MAIN_RESOURCES/META-INF/spring/applicationContext.xml
Created SRC_MAIN_RESOURCES/log4j.properties

As you can see, Roo has created a standard Maven project layout
with a Spring application context and a Log4J configuration.
After the creation of the project, you can type ‘hint’ and follow
the suggestions for your next steps. Note, the integrated ‘hinting’
support is context sensitive. This means that the ‘hint’ command
is aware of state of your project and adjusts its suggestions
accordingly. For example, after the creation of a new project, the
‘hint’ command will suggest to configure your persistence setup.

http://www.refcardz.com
http://www.dzone.com

3 Spring Roo: Open-Source Rapid Application Development with Java

DZone, Inc. | www.dzone.com

Then in the same fashion, you can create your first domain entity
(along with a JUnit integration test) and create a few fields for it:

roo> entity --class ~.domain.Person --testAutomatically
~.domain.Person roo> field string --fieldName name
~.domain.Person roo> field date --fieldName birthDay --type java.util.Date

Of course, you can refine your domain model through the Spring
Roo shell or directly in your .java source code, create new types,
fields, references, etc.

Once your work is complete, you may want to test the integrity of
your domain model by running the Roo generated integration tests.
You can do that by running ‘perform tests’ in the Roo shell, ‘mvn test’
in your normal shell or through your IDE. The integration tests will
execute against your configured database and the test data will be
cleaned up automatically after the tests have completed.

Taking a look at the source code
A quick look at Person.java reveals the advantage of using
AspectJ ITDs:

package net.addressbook.domain;

import org.springframework.roo.addon.entity.RooEntity;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;
import java.util.Date;
import javax.persistence.Temporal;
import javax.persistence.TemporalType;
import org.springframework.format.annotation.DateTimeFormat;

@RooJavaBean
@RooToString
@RooEntity
public class Person {

 private String name;

 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = “S-”)
 private Date birthDay;
}

As mentioned before, the repetitive boilerplate code for things like
the toString() method, mutators and accessors are managed by
Spring Roo in separate AspectJ ITDs in the background, leaving
you with a more concise code artifact that is much easier to manage
and comprehend. Roo has also taken care of correctly configured
JPA annotations (such as @Temporal) and Spring annotations (such
as @DateTimeFormat) to your fields where appropriate to provide
correct persistence and conversion behavior. You’ll notice the
@RooToString annotation has also been added automatically that
triggers Roo to produce the following ITD:

package net.addressbook.domain;

import java.lang.String;

privileged aspect Person_Roo_ToString {

 public String Person.toString() {
 StringBuilder sb = new StringBuilder();
 sb.append(“Name: “).append(getName()).append(“, “);
 sb.append(“BirthDay: “).append(getBirthDay());
 return sb.toString();
 }
}

You will notice that the toString() method looks just like a normal
Java method with the only difference of the AspectJ target type
definition in front of the method name. Furthermore, AspectJ
type definitions use the ‘privileged aspect’ definition instead of
‘public class’ you would see in typical Java sources.

As discussed in the previous section, Spring Roo integrates all
persistence related functionality through an ITD into the target
type. This allows for a lean architecture without compromising on
functionality or flexibility. Take a look into the Person_Roo_Entity.aj ITD
to see the code generated and maintained by Roo. By default Roo
will generate the following methods to support persisting your Person
domain entity (listing contains the most relevant methods only):

Method Name Purpose

void persist() Save a new person record.

Person merge() Update an existing person record.

void remove() Remove an existing person record.

Person findPerson(ID) Find a person record by ID.

List<Person> findAllPeople() Retrieve a list of all persistent Person records.

List<Person>
findPersonEntries(from, to)

Retrieve a list of persistent Person records for a
given range.

long countPeople() Return a count of all Person records.

roo> controller all --package ~.web

This command will automatically scaffold a complete Spring MVC
Web UI which features:

•	 Best-practice Spring MVC out of the box

•	 REST support (JSON integration optional)

•	 Round tripping of view artifacts (jspx)

•	 Customizable tag library (tagx)

•	 Integrated templating support (Tiles)

•	 Theming support (Spring MVC & CSS)

•	 Pagination support

•	 i18n & i11n built-in

•	 Form validation based on JSR 303

•	 Rich Dojo UI widgets for data selectors, etc

You can easily deploy your Web application to the configured
Tomcat or Jetty Web containers in your project by issuing ‘mvn
tomcat:run’ or ‘mvn jetty:run’ respectively and then navigate to
your Web application in a Web browser:

If you prefer a UI scaffolded using Google Web Toolkit (GWT),
you can issue the following command:

http://www.refcardz.com
http://www.dzone.com

4 Spring Roo: Open-Source Rapid Application Development with Java

DZone, Inc. | www.dzone.com

roo> gwt setup

This command will provide a complete GWT-based UI with similar
features to the MVC UI shown above:

Common commands
Let’s recap what you have done so far by issuing just a few
commands. You have created a fully configured and working
enterprise Java application using Maven, Spring Framework with
features such as dependency injection, transaction support, MVC,
JSP, Tiles, CSS, Dojo, JPA, AspectJ, Java Bean Validation (server
and client side), JUnit, Log4J and more.

The following table summarizes some of the common commands
you should know about to get started with a new Spring Roo project:

Command Purpose

project --topLevelPackage [..] Creates a new Spring Roo managed project.

persistence setup --provider
[..] --database [..]

Installs or update a persistence provider and a
database connection for your project.

entity --class [..] Creates a new persistent entity in your project.

field string | number |
boolean | date | set | [..]

Inserts a private field into the specified java file.

enum type | constant [..] Inserts enum types and constants into your project.

test integration | mock | stub Creates a new integration | mock | stub tests for
the specified entity.

controller all | scaffold [..] Creates a Spring MVC UI for your domain model.

gwt setup Creates a GWT UI for your domain model.

security setup Installs a Spring Security configuration for your
project.

logging setup --level [..] Configures logging in your project.

For a more complete reference of all available commands (and
command options), refer to the command index at:
http://static.springsource.org/spring-roo/reference/html-single/
index.html#command-index

BUT WAIT... THERE’S MORE!

As you have guessed, so far we have barely scratched the surface
of Spring Roo. There are many more features offered by Roo.

Incremental database reverse engineering
With the Roo 1.1.x release, a new add-on called ‘incremental
database reverse engineering’ (DBRE) was added to Roo’s
toolset. DBRE allows you to create a complete JPA-based domain
entity layer based on the introspection of tables in your database.
In addition, DBRE can maintain your domain entity model
incrementally to synchronize all changes to the data model.

For example, data model changes such as adding, removing or
renaming tables or columns in your database will be detected by
DBRE. DBRE has been designed to enable developers to repeatedly
re-introspect a database schema and synchronize all changes with the
application domain model on demand. This approach is different to
traditional JPA reverse engineering tools, which introspect a database
schema and produce a Java application tier only once.

DBRE setup
The typical workflow when using the DBRE feature for the first
time is to create a new project with the Spring Roo shell:

roo> project --topLevelPackage net.addressbook.dbre

This is then followed by setting up your persistence configuration:

roo> persistence setup --provider HIBERNATE --database POSTGRES
--databaseName addressbook --userName rootest --password rootest

If you have not previously installed the database driver, add-on
you need to do so (this is a one-off operation):

roo> addon search postgres /* search for the postgres jdbc add-on */
roo> addon install id 2 /* install search result #2 for postgres add-
on, assuming the author is trusted */

You can now try out the DBRE add-on by using the ‘database
introspect’ command, which displays the database structure, or
schema, in XML format. This can be used to preview the domain
model structure which DBRE will create based on your data schema.

Finally, you can use the database reverse engineer command to
create your domain entity model based on the database schema:

roo> database reverse engineer --schema addressbook

Once the domain model has been created, you can scaffold a
Web UI of your choice (see previous section).

Dynamic finders
Another popular Spring Roo add-on is the dynamic finder add-on.
This add-on allows you to define search query methods for your entity
domain model based on method names. The dynamic finder add-on
can suggest any number of these names using the ‘finder list’ command
and you can then select an appropriate finder, name to let the dynamic
finder add-on take care of code generating the appropriate query:

You can also combine fields and subsequently filter search results
as follows:

Once you have found the appropriate finder you can install it with
the ‘finder add’ command:

Note, the finder add-on creates a new AspectJ ITD, which
introduces the findPeopleByBirthDayBetweenAndNameLike(Date
minBirthDay, Date maxBirthDay, String name) method to the
Person.java target type.

Furthermore, the Spring MVC scaffolding can automatically
scaffold a search form for your finders:

http://www.refcardz.com
http://www.dzone.com

5 Spring Roo: Open-Source Rapid Application Development with Java

DZone, Inc. | www.dzone.com

Remoting support
Java Message Service (JMS)
Spring Roo offers an add-on to integrate JMS functionality into
your application. Specifically, this add-on allows you to define a
message sender, a message listener and even the configuration
of an in-memory message queue service (based on Apache
ActiveMQ). Optionally, to support asynchronous execution of the
message sending functionality you can easily add the new
@Async feature introduced in Spring Framework v3.

To get started, the Roo JMS add-on offers the ‘jms setup’ command:

roo> jms setup --provider ACTIVEMQ_IN_MEMORY

The add-on will take care of adding all necessary configurations and
dependencies to your application.

The ‘field jms template’ command allows you to configure a JMS
sender in an arbitrary target type in your application:

roo> field jms template --class ~.domain.Person --async

This will create a dependency injected field of type JmsTemplate and
also a sendMessage(Object message) method in the target type.

Finally, you can use the ‘jms listener class’ command to create a new
class in your application, which will receive messages from the queue:

roo> jms listener class --class ~.jms.MyListener

Email support
The Spring Roo email add-on offers commands to configure Spring
Framework email support in your application context. For example, it
offers the ‘email sender setup’ command:

roo> email sender setup --hostServer smtp.gmail.com --port 587
--protocol SMTP --username foo --password foo

Similar to the JMS add-on, the email add-on also offers a field
command which offers an optional asynchronous configuration:

roo> field email template --class ~.domain.Person --async

This will create a dependency injected field of type MailSender
and also a sendMessage(String mailFrom, String subject,
String mailTo, String message) method in the target type.

JSON serialization support
The JSON add-on offers JSON support in the domain layer as
well as the Spring MVC scaffolding. A number of methods are
provided to facilitate serialization and deserialization of JSON
documents into domain objects. To install JSON integration, you
can use ‘json all’ command:

roo> json all

This will install a number of methods in each discovered domain type:

Method Function

String toJson() Serializes Person to a JSON
representation.

Person fromJsonToPerson(String json) Creates a Person instance from a
JSON document.

String toJsonArray
(Collection<Person> collection)

Serializes a collection of people to a
JSON array representation.

Collection<Owner>
fromJsonArrayToOwners(String json)

Creates a Person collection from a
JSON document.

TIPS & TRICKS

Taking control
Sometimes, the developer may want to customize the way a
certain member is implemented that is provided through a Roo
ITD. Since code changes to the Roo managed ITDs are not
preserved, the developer needs a way to take control over the

member without loosing Roo’s benefits of maintaining the rest of
the members provided in the ITDs.

Spring Roo offers a convenient approach to this called ‘push-in
refactoring’. Push-in refactoring is achieved by simply moving
the member that needs customization from the ITD to the
associated .java source file. You can do this manually in a text
editor by simply copying the code from the ITD and pasting it
into the target .java file (and removing the AspectJ target type
definition from the member signature) or by leveraging the ‘push-
in refactoring’ support in Eclipse / STS.

Roo will automatically detect if a member (i.e., a method or field),
which it could code-generate in an ITD, is present in the target
.java source file and refrain from adding it to the ITD (or remove it
if it is currently present). Due to its passive approach with regards
to any code found in .java source files, Roo will simply read your
member and make adjustments to the ITDs if appropriate. This
will allow you to customize the member in your .java sources
without any interference by Roo.

Removing Roo in three easy steps
As mentioned in the first section of this Refcard, Spring Roo
does not lock the developer in. Due to its nature of being a
development-time only RAD tool, it is almost trivial to remove all
Roo artifacts from your project.

Hot
Tip

Before removing Spring Roo from your project, we recommend
to back up your project by simply using the ‘backup’ command.

Step 1: Push-in refactor
As discussed in the previous section, Eclipse / STS offer push-in
refactoring of individual members. In fact, it does not only offer
this for individual members but also for complete types, packages
or even your complete project. So a push-in refactoring of your
project will move all source code from the Spring Roo managed
AspectJ ITDs into their respective Java source targets.

Step 2: Remove all @Roo annotations from source code
While your project is now free of AspectJ ITDs, your .java files
will still have @Roo annotations within them. In addition, there
will be import directives at the top of your .java files to import

http://www.refcardz.com
http://www.dzone.com

6 Spring Roo: Open-Source Rapid Application Development with Java

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Continuous Delivery
CSS3
NoSQL
Spring Roo

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

those @Roo annotations. You can easily remove these unwanted
members by clicking Search > Search > File Search in Eclipse
/ STS, containing text “\n.*[@\.]Roo[^t_]+?.*$” (without the
quotes), file name pattern “*.java” (without the quotes), ticking
the “Regular expression” check-box and clicking “Replace”.
When the following window appears and asks you for a
replacement pattern, leave it blank and continue.

Step 3: Annotation JAR Removal
Now that all references to annotations contained in your
org.springframework.roo.annotations-*.jar library are removed
from your Java sources, you can open your project pom.xml and
search for the following dependency:

<!-- ROO dependencies -->
<dependency>
 <groupId>org.springframework.roo</groupId>
 <artifactId>org.springframework.roo.annotations</artifactId>
 <version>${roo.version}</version>
 <scope>provided</scope>
</dependency>

You can delete (or comment out) the entire <dependency> element.
If you’re running STS or Eclipse with m2Eclipse installed, there is
no need to do anything further. If you used the command-line mvn
command to create your Eclipse .classpath file, you’ll need to execute
mvn eclipse:clean eclipse:eclipse to rebuild the .classpath file.

Roo has now been entirely removed from your project and you
should rerun your tests and user interface for verification of
expected operation.

Re-enabling Roo ITDs
If you wish to re-enable support for Roo ITDs in your project,
you need to add/enable the Roo annotations jar dependency
in the project pom.xml, annotate the relevant java sources with
the @Roo annotations and then use the Eclipse / STS Refactor
> Pull Out ITD feature to move the source code out of your java
sources. This is required because Roo takes a passive approach
to managing your java source files. This means it would not touch
any code in your java source files unless you explicitly tell it to.

CONCLUSION

Spring Roo delivers serious productivity gains to Java developers.
It offers integration with popular, proven Java technologies you
already know. It is easy to learn, easy to use and easy to extend.
It builds on Java’s strengths. It supports the developers to
create best-practice enterprise Java applications with excellent
performance while maintaining engineering flexibility with no
runtime, no lock-in and no risk.

Spring Roo Resources
Website: http://www.springsource.org/roo
Twitter: http://twitter.com/springroo

Dr Stefan Schmidt has been a Software Engineer with
SpringSource since early 2008. He is currently based in
the Sydney, Australia office, where he has been a key Roo
developer since the project began. Stefan’s work on Roo
focuses on many of the most popular add-ons, including
those which provide web, search and messaging features.

Stefan has been developing Java enterprise applications
since 2003. Prior to his work at SpringSource, Stefan has
been teaching various Enterprise Java subjects at the

University of Technology in Sydney. He mentored hundreds of students in the
design of enterprise software architectures with focus on scalability, separation
of concerns and design patterns using enterprise Java technologies.

Roo in Action is a unique book that teaches you how to
code Java in Roo, with a particular focus on Spring-based
applications. It starts by getting you into the Roo mindset,
covering Aspect Oriented Programming and annotations
within a don’t-repeat-yourself, convention-over-
configuration framework. Through hands-on examples,
you’ll learn how Roo creates well formed application
structures and supports best practices and tools. Plus,
you’ll get a quick-and-dirty guide to setting up Roo
effectively in your environment

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

