This DZone Refcard is brought to you by...

Mule 3

The #1 open source ESB

http://www.mulesoft.org

~~!DZone Refcardz G

Mule 3:
:;Zr;lnj:zivity S|mp|lfylﬂg SOA

* Hot Tips and more...
By John D’Emic

e Connector definitions.
ABOUT MULE
e Global configuration elements like endpoints,

)))) transformers and notification listeners.
Mule is the world’s most widely used open-source integration

platform and Enterprise Services Bus (ESB). Mule is designed to * Flows, patterns and services.

support high-performance, multi-protocol transactions between Flows

heterogeneous systems and services. It provides the basis Flows, new to Mule 3, provide a free-form method of

for service-oriented architecture. It is lightweight and can run orchestrating message processing in Mule. A flow consists of a
standalone or embedded directly in your application. message source, typically an inbound-endpoint, followed by a

S
O
o
N
J)
-
©
O
G
(O}
al
5=
o
>
N
O
1 S
©
(S}
(e
Q
o
()
1S
(o)
=
S
()
O

. - sequence of message processors.
This Refcard covers the use of Mule 3. If you are a new user, it will 4 gep

serve as a handy reference when building your integration flows
in Mule. If you are an existing user, especially of Mule 2, it will Message Source
help ease your transition into using Mule 3.

MULE XML

The programming model for Mule is XML using namespaces
that provide a DSL authoring environment to orchestrate your Message
integration applications. The diagram below demonstrates the Processor
structure of a typical Mule configuration.

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:vm="http://www.mulesoft.org/schema/mule/vm”
xmlns:jms="http://www.mulesoft/org/schema/mule/jms”
xmlns:file="http://www.mulesoft.org/schema/mule/file” Message
xsi:schemalLocation="
http://www.mulesoft.org/schema/mule/core Processor
http://www.mulesoft.org/schema/mule/core/3.1/mule.xsd
http://www.mulesoft.org/schema/mule/vm
http://www.mulesoft.org/schema/mule/vm/3.1/mule-vm.xsd
http://www.mulesoft.org/schema/mule/jms
http://www.mulesoft.org/schema/mule/jms/3.1/mule-jms.xsd
http://www.mulesoft.org/schema/mule/file
http://www.mulesoft.org/schema/mule/file/3.1/mule-file.xsd Except|°n

"> Strategy

<description>Demonstrate Mule Configuration Elements</description>

<jms:connector name="jmsConnector”
connectionFactory-ref="connectionFactory”
username="guest”
password="guest"”/>

<file: connector name="fileConnector” streaming="true”/> N eed h e lp Wi t h M u le?

<flow name="Route messages dynamically using a message property”>
<vm:inbound-endpoint path="input”/>
<vm:outbound-endpoint path="#[header:INBOUND:destination-queue]”/>
</flow>

<simple-service name="random-number-service” H f @ f
address="http://localhost:8080/rest” 'n O mUIeSO t-Com
component-class="com.mulesoft.refcard.

RandomNumberResource”
type="jax-rs"/>

</mule>

Simplifying SOA

Mule XML consists of the following:

® An opening mule element containing the namespaces @

used in the configuration. MuleSoft” www.mulesoft.com

e A description of the purpose of the configuration.

Mule 3

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.mulesoft.com

A7 DZone Refcardz s

Mule 3: Simplifying SOA

Message Processor

Message Processors are used in flows to route, transform, filter
and perform business logic on messages. MessageProcessor is
a single method interface implemented by almost everything
in a Flow.

Exception Strategy
An exception strategy can be added to the end of the flow to
route errors that occur during the flow’s execution.

Optionally end a flow with an outbound router or

endpoint to send to another flow or external service.

Sending a JMS Message with a Flow

Sending a JMS message is easy with a flow. Here's how you can
use a flow to read files from a directory and send their payload to
a JMS queue.

<flow name="File to JMS Message”>
<file:inbound-endpoint path="data/files”>
<byte-array-to-string-transformer/>
</file:inbound-endpoint>
<jms:outbound-endpoint queue="output”/>
</flow>

The file:inbound-endpoint will read files from the given path,
transforming their contents into Strings. The content is then
passed as JMS TextMessages to the “output” queue.

Using Patterns

Mule Configuration Patterns, extending the Enterprise
Integration Patterns, encapsulate common integration paradigms
in a compact configuration format.

Creating a RESTful Web Service
A RESTful web service can be quickly created using the simple-
service pattern.

<simple-service name="random-number-service”
address="http://localhost:8080/rest”
componentclass="org. refcard.RandomNumberResource”
type="jax-rs"/>

In this case, we are using the simple-service pattern to expose
a JAX-RS resource that returns a random number from an HTTP
GET request.

Flows and patterns now supersede services,
which were the predominant integration paradigm
in Mule 2. While services will always be supported,
you should favor flows and patterns for new

applications.

MESSAGES

Messages encapsulate data entering and leaving Mule. The
content of a message is called its payload. The payload is
typically a Serializable Java class, an InputStream or an array
of bytes.

Attachments

A message can have zero or more mime attachments in addition
to the payload. These can be used to associate files, documents
and images with the message.

Properties

Properties, also called headers, are metadata associated with a
message. Mule, the various transports and you the developer
can add properties to a message. Examples of message
properties are JMS message headers, HTTP response headers
or Mule-specific headers like MULE_MESSAGE_ID. The following
table contains examples of message properties set by Mule.

Property Description
MULE_MESSAGE_ID
MULE_CORRELATION_ID | A GUID assigned to a group of messages.

MULE_CORRELATION_

A GUID assigned to the message.

The amount of messages expected in the

GROUP_SIZE correlation group.
MULE_CORRELATION_ The order of a correlation group.
SEQUENCE

MULE_SESSION

A property that holds encoded session data.

Scopes

Properties are scoped differently depending on when they're
set or accessed during message processing. The following table
contains the available scopes.

Scope Description

inbound Set by message sources, typically an inbound-endpoint.

outbound | Any properties in this scope will get attached to an outbound
or response message. Properties set by the message-
properties-transformer default to the outbound scope.

session Properties in the session scope are available between flows and
services without explicit propagation.

invocation | Used internally by Mule and lasts only for an invocation of a
flow or service.

Mule connects to over 100 applications, protocols and APIs. Mule
endpoints enable connectivity to protocols such as JMS, HTTP
and JDBC. Cloud Connectors enable connectivity to applications
and social media like SalesForce and Twitter.

Endpoints

Messages can be received with an inbound endpoint and sent
with an outbound endpoint. Inbound and outbound endpoints
are configured using the XML namespace prefix of the transport.

Connectors

A connector is used to configure connection properties for an
endpoint. Most endpoints don't require a connector. However,
some (like JDBC or JMS) do require connector configuration, as
we'll see below.

Configuring an SMTP connector
The following example illustrates how an SMTP connector is
configured.

<smtp:connector name="smtpConnector”
fromAddress="user@foo.com”
bccAddresses="admins@foo.com”
subject="A Message from Mule” />

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

A7 DZone Refcardz s

Mule 3: Simplifying SOA

The SMTP connector allows you to specify properties that will be
shared across SMTP endpoints. In this case, the connector sets
the "from” and "bcc” addresses as well as the subject of the
messages. A connector is referenced by its name, allowing you to
define multiple connectors for the same transport.

Endpoints can be generically referenced using an endpoint URI
as well as having specific XML configuration elements.

The following table describes some common endpoints supplied
by Mule.

Endpoint Description

http://[host]:[port]:[path]?[query] Send and receive data over HTTP.

ajax://[channel] Pub / Sub to browser apps using

CometD.

Read and write files.

file://[path]

ftp://[user]@[host]:[port]/[path] Read and write files over FTP or SFTP.

jms://[type]:[destination]?[options] | Full support for JMS topics and queues.

smtp://[user]@[host]:[port] Send email over SMTP.

imap://[user]@[host]:[port]/[folder] | Receive email via IMAP.

Send and receive data from a SQL
database.

jdbc://[sql query]

vm://[path]

Uses memory-based queues to send
between services and flows.

The full list of transports is available in the Mule documentation.

Use exchange patterns to define how a message is
recieved by an endpoint. For endpoints that generate

a response(synchronous) use the request-response,
for asynchronous endpoints use the one-way
exchange pattern.

Cloud Connectors
Cloud connectors enable easy access to SaaS, social media and
infrastructure services such as Amazon WS and Facebook.

These connectors can be used anywhere in a flow to invoke a
remote service. A cloud connector usually has a ‘config’ element
where service credentials are set and then one or more elements
that invoke service methods. The following demonstrates how the
Twitter cloud connector can be used to post a tweet:

curl —-data “status=go mule!” http://localhost

<twitter:config name="twitter” format="JSON”
consumerKey="${twitter.consumer.key}”
consumerSecret="${twitter.consumer.secret}”
oauthToken="${twitter.access.token}”
oauthTokenSecret="${twitter.access.secret}” />

<flow name="updateStatusFlow”>
<http:inbound-endpoint host="localhost” port="80"/>
<twitter:update-status
status="#[header:INBOUND:status]”/>

</flow>

We can now post a tweet to the inbound-endpoint with curl:

curl —-data “status=go mule!” http://localhost

Polling
Mule has a poll tag that allows data from a remote service to be
received periodically. To get updates from a Twitter timeline:

<flow name="getStatusFlow”>
<poll>
<twitter:public-timeline />
</poll>
</flow>

MODULES

Modules extend Mule's functionality by providing namespace
support for a certain set of message processors. The following
table contains some of the modules provided by Mule.

Module | Description

JSON JSON support, including marshalling, transformation and
filtering.

CXF SOAP support via Apache CXF.

Jersey JAX-RS support for publishing RESTful services.

Scripting | Support for JSR-223 compliant scripting language, like Groovy
or Rhino.

XML XML support, including XML marshalling, XPath and XSLT support.

The full list of available modules is available in the official Mule
documentation. Additional modules are available on MuleForge.

Use MuleForge.org to locate community-written

extensions.

Bridging REST to SOAP
The following demonstrates how the CXF module can be used to
bridge a RESTful service to a SOAP service.

<flow name="HTTP to SOAP Bridge”>
<http:inbound-endpoint host="1localhost” port="8080"
path="service”/>
<cxf:jaxws-client
clientClass="com.mulesoft.refcard.FooService”
wsdlLocation="classpath:/wsdl/hello world.wsdl”
operation="greetMe”/>
</flow>

The inbound-endpoint accepts HTTP POST requests to
http://localhost:8080/service. The POST data is then sent to the
SOAP service defined by the CXF jaxws-client.

Routers
Routers implement the Enterprise Integration patterns (EIP) and
determine how messages are directed in a flow.

The following table contains commonly used routers.

Router Description
all Sends the message to each endpoint.
choice Sends the message to the first endpoint that matches.

recipient-list Sends the message to all endpoints in the expression

evaluated with the given evaluator.

round-robin Each message received by the router is sent to alternating
endpoints.
wire-tap Sends a copy of the message to the supplied endpoint

then passes the original message to the next processor in
the chain.

first-successful | Sends the message to the first endpoint that doesn't throw

an exception or evaluates the failureExpression to true.

splitter Will split the current message into parts using an
expression or just split elements of a List.
aggregator Will collect related messages and create a message
collection.
Transformers

Transformers modify the message and pass it to the next
message in the chain.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

A7 DZone Refcardz s

Mule 3: Simplifying SOA

The following table contains commonly used transformers.

Name Description

Adds and removes properties from a message,
optionally specifying their scope.

message-properties-
transformer

byte-array-to-string- Many basic type transformers are included.

transformer

xml;jaxb-xml-to-object- | Transforms JAXB objects explicitly.

transformer

Will automatically find the best transformer for a
specified type.

auto-transformer

xml:xslt_transformer Transforms a message using the given stylesheet.

json:object-to-json- Transforms message payloads to and from JSON.

transformer

Compresses and uncompress message payloads
using gzip.

gzip-compress-
transformer

encrypt-transformer Encrypts and decrypts message payloads.

Endpoints often include their own transformers.
JMS for instance, allows transformers to convert

message payloads to and from JMS messages
autormatically.

Components

Components allow business logic to be executed in a flow. Any
Java object or script can be used as a component. Components
are configured by either identifying the class or providing a
reference to a Spring bean for dependency injection.

The following snippet shows how a class called MyService can be
configured as a component using a class and via dependency-
injection via Spring.

<bean class="com.acmesoft.service.MyService”/>

<flow name="test"”>
<http:inbound-endpoint host="foo.com”>
<component>
<spring-object bean="myService”/>
</component>
</flow>

Mule will use the type of the payload of the message being
processed to determine what method to invoke. It's often
necessary, however, to explicitly specify the method to invoke.
Entry point resolvers are used for this purpose. The following
table contains a list of available resolvers.

Resolver Description

method-entry-point-resolver | Resolves the method using the specified

In addition to custom components, Mule provides the following
utility components.

Component Description

<log-component> Logs messages.

<echo-component> | Returns and passes along.

<test:component> Helps test message flows (in the test namespace).

Try to avoid implementing Callable to keep your

component code decoupled from Mule’s API.

Filters
Filters selectively pass messages to the next processor in
the chain.

The following table contains commonly used filters.

Name Description

expression-filter Passes messages using any of the expressions

languages supported by Mule.

regex-filter Decides what messages to pass by applying the

supplied regular expression to the message payload.

payload-type-filter | Passes messages only of the given type.

custom-filter Specifies the class of a custom filter that implements

the org.mule.api.routing filter.Filter interface.

and-filter, or-filter,
not-filter

Logic filters that work with other filters.

Using Filters with XPath

The following example demonstrates how the xpath-filter can
be used to only pass certain XML documents. In this case, only
order XML documents containing a certain ZIP code are allowed
to pass.

<flow name="Filter messages using the XPath filter”>
<vm:inbound-endpoint path="input”/>
<mulexml:xpath-filter pattern="/order/zipCode”
expectedValue="11209"/>
<vm:outbound-endpoint path="output”/>
</flow>

EXPRESSIONS

Mule provides a rich expression language to evaluate data at
runtime using the message currently being processed.

Evaluators
The following are commonly used expression evaluators.

name. Name Description
property-entry-point-resolver | Resolves the method using the specified xpath Query the message payload using XPath
message property. payload Use the message’s payload for evaluation.
- -point- A lass that impl . -
Sl S L Java class .t atimp ement§ map-payload A Java class that implements org.mule.api.model.
org.mule.api.model.EntryPointResolver .
EntryPointResolver or extends org.mule.model.resolvers.
or extends org.mule.model.resolvers. .
. AbstractEntryPointResolver.
AbstractEntryPointResolver.
regex Perform a regular expression evaluation against a message
The use of entry point resolvers allows you to use POJO's as payload.
components, decoupling your code from Mule. Sometimes, e Evaluates the message payload as a JavaBean.
you will want access to the MuleMessage or MuleContext when — Vi Gromy o Crelieie e exereesion. Mulsprovidss

processing a message. In cases like this, you can implement

the org.mule.api.lifecycle.Callable interface. Callable includes a
single method, onCall, to implement that provides direct access
to the MuleMessage when the method is invoked.

certain variables, like payload, properties and
muleContext, to the script context to aid in evaluation.

header:[scope] | Return the given header for a specific scope, as
demonstrated below.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

’DZone Refcardz =~ vuesor

Mule 3: Simplifying SOA

Routing Messages Dynamically
The following illustrates how a message can be dynamically
routed to a JMS queue passed on a message header.

<flow>
<vm:inbound-endpoint path="input”/>
<jms:outbound-endpoint
queue="#[header:INBOUND:destination-queue]”/>
</flow>

This example accepts a message off the given VM queue. The
outbound-endpoint uses the header evaluator to dynamically
route the message to the queue defined by an inbound message
property called “destination-queue”.

Annotation support, introduced in Mule 3, further simplifies Mule
configuration by reducing or eliminating the XML needed to
configure components and transformers.

The following table contains a list of commonly used annotations.

Name Type
Method

Description

Indicates the method
can be used as a
transformer.

@Transformer

Indicates the annotated
class contains
transformation methods.

@ContainsTransformerMethods | Class

@Schedule Method Schedules a method for
periodic execution.
@Lookup Field, Looks up the annotation
Parameter field or parameter for
dependency injection
from the Mule registry.
@Payload Parameter Injects the payload into

(component or | a method. If the param

transformer) type is different from the
payload type, Mule will
attempt to transform it.
@InboundHeaders Parameter Injects any inbound

(component or | headers at runtime. Can

transformer) be filtered by name and
used to inject individual
headers.
@OutboundHeaders Parameter Injects a Map of

(component or | outbound headers that

transformer) can be used to add
headers to the outgoing
message.
@Inbound Attachments Parameter Injects any inbound

(component or | attachments at runtime.
transformer) Can be filtered by name.

@Outbound Attachments Parameter Injects a Map of
(component or | outbound attachments
transformer) that can be used to
add attachments to the

message.

You can use the Mule 3 annotation support to quickly implement
transformers and components.

Implementing a Transformer with Annotations
Here's an example of a transformer that lowercases a message's
payload.

@ContainsTransformerMethods
public class LowercaseTransformer {

@Transformer
public String tolLowercase(String string) {
return string.toLowerCase();

}

This class can be used a message source in a flow to generate a
timestamp every minute.

Implementing a Component with Annotations
Components can also be implemented with annotations. The
following class demonstrates how the @Schedule annotation can
be used to periodically generate data.

public class HeartbeatMessageSource {
@Schedule(interval = 60000)
public long pulse() {
return new Date().getTime();

}

This class can be used as a message source in a flow to generate
a timestamp every minute.

HANDLING ERRORS

Exceptions thrown during message processing are handled by
exception strategies. The default-exception-strategy, configured
at the end of the flow, allows you to route the exception to
another endpoint for handling.

Sending Messages to a DLQ

Messages that can't be delivered, for instance if an exception is
thown during their processing, it can be sent to a Dead Letter
Queue (DLQ). The following example will send any errors that
occur in the flow to the “dlg” VM queue.

<flow>
<vm:inbound-endpoint path="input”/>
<vm:outbound-endpoint
path="#[header:INBOUND:destination-queue]”/>
<default-exception-strategy>
<vm:outbound-endpoint path="dlq"/>
</default-exception-strategy>
</flow>

Building upon the previous example, the default-exception-
strategy will route messaging failures (for example, when the
destination-queue inbound header is null) to the VM queue

named “dlq”.

Exceptions routed by the default-exception-
strategy are instances of org.mule.api.message.

ExceptionMessage, which gives you access to the
Exception that was thrown along with the payload of
the message.

F TIONAL TESTING

Functional testing is an important part of testing Mule
applications. Mule provides a helper class, org.mule.tck.
FunctionalTestCase, which you can extend to simplify setting up
a TestCase.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com

6 Mule 3: Simplifying SOA

41 DZone Refcardz 9o

Functionally Testing a Flow

The test-component can be used to simulate remote

public class XPathFilterFunctionalTestCase extends FunctionalTestCase
{ services during functional testing.
@Ooverride
protected String getConfigResources() {
return “xpath-filter-config.xml”;

}

CONCLUSION

This Refcard is just a glimpse into what you can do with Mule 3.
Consult the full documentation on the MuleSoft website. The
full code and test cases for the examples used in this Refcard are
available on GitHub:

public void testMessageNotFiltered() throws Exception {
String xml = “<order><zipCode>11209</zipCode></order>";

MuleClient client = new MuleClient(muleContext);
client.dispatch(“vm://input”, xml, null);

assertNotNull(client.request(“vm://output”, 15000).
getPayloadAsString());

} https://github.com/johndemic/essential-mule-refcard

public void testMessageIsFiltered() throws Exception {
String xml = “<order><zipCode>11210</zipCode></order>";

MuleClient client = new MuleClient(muleContext);
client.dispatch(“vm://input”, xml, null);

assertNull(client.request(“vm://output”, 5000));

ABOUT THE AUTHOR RECOMMENDED BOOK

John D’Emic is a software developer and author.
| He has used Mule extensively since 2006 and is
the “despot” of the MongoDB transport. He also
co-authored Mule in Action with David Dossot in
2009. You can read about what he's up to in his

Mule in Action covers Mule fundamentals and
best practices. It is a comprehensive tutorial that
starts with a quick ESB overview and then gets
Mule to work. It dives into core concepts like
sending, receiving, routing and transforming data.

blog: johndemic.blogspot.com.

4% DZone Refcardz

Getting Started with

Cloud Computing
By Dariel Rublo

Next, it gives you a close look at Mule’s standard
components and how to roll out custom ones.
You'll pick up techniques for testing, performance tuning, BPM
orchestration and even a touch of Groovy scripting.

Browse our collection of over 100 Free Cheat Sheets

Upcoming Refcardz
Continuous Delivery

Free PDF | |

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,

tutorials, cheat sheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,

without prior written permission of the publisher.

Android Application Development

DZone, Inc. ISBN-13: 978-1-93k502-40-0

140 Preston Executive Dr. ISBN-10: 1-93bL502-40-2

Suite 100 50795

Cary, NC 27513

888.678.0399

919.678.0300

Refcardz Feedback Welcome 10
refcardz@dzone.com 1936"5024 a

Sponsorship Opportunities

sales@dzone.com Version 1.0

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

