
This DZone Refcard is brought to you by...

http://www.mulesoft.org

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#140
M

u
le

 3
:

S
im

p
lif

yi
n

g
 S

O
A

CONTENTS INCLUDE:
n	 About Mule
n	 Mule XML
n	 Messages
n	 Connectivity
n	 Modules
n	 Hot Tips and more...

By John D’Emic

Mule 3:
Simplifying SOA

ABOUT MULE

Mule is the world’s most widely used open-source integration
platform and Enterprise Services Bus (ESB). Mule is designed to
support high-performance, multi-protocol transactions between
heterogeneous systems and services. It provides the basis
for service-oriented architecture. It is lightweight and can run
standalone or embedded directly in your application.

This Refcard covers the use of Mule 3. If you are a new user, it will
serve as a handy reference when building your integration flows
in Mule. If you are an existing user, especially of Mule 2, it will
help ease your transition into using Mule 3.

MULE XML

The programming model for Mule is XML using namespaces
that provide a DSL authoring environment to orchestrate your
integration applications. The diagram below demonstrates the
structure of a typical Mule configuration.

<?xml version=”1.0” encoding=”UTF-8”?>
<mule xmlns=”http://www.mulesoft.org/schema/mule/core”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:vm=”http://www.mulesoft.org/schema/mule/vm”
 xmlns:jms=”http://www.mulesoft/org/schema/mule/jms”
 xmlns:file=”http://www.mulesoft.org/schema/mule/file”
 xsi:schemaLocation=”
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/3.1/mule.xsd
 http://www.mulesoft.org/schema/mule/vm
 http://www.mulesoft.org/schema/mule/vm/3.1/mule-vm.xsd
 http://www.mulesoft.org/schema/mule/jms
 http://www.mulesoft.org/schema/mule/jms/3.1/mule-jms.xsd
 http://www.mulesoft.org/schema/mule/file
 http://www.mulesoft.org/schema/mule/file/3.1/mule-file.xsd
 “>

<description>Demonstrate Mule Configuration Elements</description>

<jms:connector name=”jmsConnector”
 connectionFactory-ref=”connectionFactory”
 username=”guest”
 password=”guest”/>

<file:connector name=”fileConnector” streaming=”true”/>

<flow name=”Route messages dynamically using a message property”>
 <vm:inbound-endpoint path=”input”/>
 <vm:outbound-endpoint path=”#[header:INBOUND:destination-queue]”/>
</flow>

<simple-service name=”random-number-service”
 address=”http://localhost:8080/rest”
 component-class=”com.mulesoft.refcard.
RandomNumberResource”
 type=”jax-rs”/>
</mule>

Mule XML consists of the following:

•	 An opening mule element containing the namespaces
used in the configuration.

•	 A description of the purpose of the configuration.

•	 Connector definitions.

•	 Global configuration elements like endpoints,
transformers and notification listeners.

•	 Flows, patterns and services.

Flows
Flows, new to Mule 3, provide a free-form method of
orchestrating message processing in Mule. A flow consists of a
message source, typically an inbound-endpoint, followed by a
sequence of message processors.

brought to you by...

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.mulesoft.com

2 Mule 3: Simplifying SOA

DZone, Inc. | www.dzone.com

Message Processor
Message Processors are used in flows to route, transform, filter
and perform business logic on messages. MessageProcessor is
a single method interface implemented by almost everything
in a Flow.

Exception Strategy
An exception strategy can be added to the end of the flow to
route errors that occur during the flow’s execution.

Hot
Tip

Optionally end a flow with an outbound router or
endpoint to send to another flow or external service.

Sending a JMS Message with a Flow
Sending a JMS message is easy with a flow. Here’s how you can
use a flow to read files from a directory and send their payload to
a JMS queue.

<flow name=”File to JMS Message”>
 <file:inbound-endpoint path=”data/files”>
 <byte-array-to-string-transformer/>
 </file:inbound-endpoint>
 <jms:outbound-endpoint queue=”output”/>
</flow>

The file:inbound-endpoint will read files from the given path,
transforming their contents into Strings. The content is then
passed as JMS TextMessages to the “output” queue.

Using Patterns
Mule Configuration Patterns, extending the Enterprise
Integration Patterns, encapsulate common integration paradigms
in a compact configuration format.

Creating a RESTful Web Service
A RESTful web service can be quickly created using the simple-
service pattern.

<simple-service name=”random-number-service”
 address=”http://localhost:8080/rest”
 componentclass=”org.refcard.RandomNumberResource”
 type=”jax-rs”/>

In this case, we are using the simple-service pattern to expose
a JAX-RS resource that returns a random number from an HTTP
GET request.

Hot
Tip

Flows and patterns now supersede services,
which were the predominant integration paradigm
in Mule 2. While services will always be supported,
you should favor flows and patterns for new
applications.

MESSAGES

Messages encapsulate data entering and leaving Mule. The
content of a message is called its payload. The payload is
typically a Serializable Java class, an InputStream or an array
of bytes.

Attachments
A message can have zero or more mime attachments in addition
to the payload. These can be used to associate files, documents
and images with the message.

Properties
Properties, also called headers, are metadata associated with a
message. Mule, the various transports and you the developer
can add properties to a message. Examples of message
properties are JMS message headers, HTTP response headers
or Mule-specific headers like MULE_MESSAGE_ID. The following
table contains examples of message properties set by Mule.

Property Description

MULE_MESSAGE_ID A GUID assigned to the message.

MULE_CORRELATION_ID A GUID assigned to a group of messages.

MULE_CORRELATION_
GROUP_SIZE

The amount of messages expected in the
correlation group.

MULE_CORRELATION_
SEQUENCE

The order of a correlation group.

MULE_SESSION A property that holds encoded session data.

Scopes
Properties are scoped differently depending on when they’re
set or accessed during message processing. The following table
contains the available scopes.

Scope Description

inbound Set by message sources, typically an inbound-endpoint.

outbound Any properties in this scope will get attached to an outbound
or response message. Properties set by the message-
properties-transformer default to the outbound scope.

session Properties in the session scope are available between flows and
services without explicit propagation.

invocation Used internally by Mule and lasts only for an invocation of a
flow or service.

CONNECTIVITY

Mule connects to over 100 applications, protocols and APIs. Mule
endpoints enable connectivity to protocols such as JMS, HTTP
and JDBC. Cloud Connectors enable connectivity to applications
and social media like SalesForce and Twitter.

Endpoints
Messages can be received with an inbound endpoint and sent
with an outbound endpoint. Inbound and outbound endpoints
are configured using the XML namespace prefix of the transport.

Connectors
A connector is used to configure connection properties for an
endpoint. Most endpoints don’t require a connector. However,
some (like JDBC or JMS) do require connector configuration, as
we’ll see below.

Configuring an SMTP connector
The following example illustrates how an SMTP connector is
configured.

<smtp:connector name=”smtpConnector”
 fromAddress=”user@foo.com”
 bccAddresses=”admins@foo.com”
 subject=”A Message from Mule” />

http://www.refcardz.com
http://www.dzone.com

3 Mule 3: Simplifying SOA

DZone, Inc. | www.dzone.com

The SMTP connector allows you to specify properties that will be
shared across SMTP endpoints. In this case, the connector sets
the “from” and “bcc” addresses as well as the subject of the
messages. A connector is referenced by its name, allowing you to
define multiple connectors for the same transport.

Endpoints can be generically referenced using an endpoint URI
as well as having specific XML configuration elements.

The following table describes some common endpoints supplied
by Mule.

Endpoint Description

http://[host]:[port]:[path]?[query] Send and receive data over HTTP.

ajax://[channel] Pub / Sub to browser apps using
CometD.

file://[path] Read and write files.

ftp://[user]@[host]:[port]/[path] Read and write files over FTP or SFTP.

jms://[type]:[destination]?[options] Full support for JMS topics and queues.

smtp://[user]@[host]:[port] Send email over SMTP.

imap://[user]@[host]:[port]/[folder] Receive email via IMAP.

jdbc://[sql query] Send and receive data from a SQL
database.

vm://[path] Uses memory-based queues to send
between services and flows.

The full list of transports is available in the Mule documentation.

Hot
Tip

Use exchange patterns to define how a message is
recieved by an endpoint. For endpoints that generate
a response(synchronous) use the request-response,
for asynchronous endpoints use the one-way
exchange pattern.

Cloud Connectors
Cloud connectors enable easy access to SaaS, social media and
infrastructure services such as Amazon WS and Facebook.

These connectors can be used anywhere in a flow to invoke a
remote service. A cloud connector usually has a ‘config’ element
where service credentials are set and then one or more elements
that invoke service methods. The following demonstrates how the
Twitter cloud connector can be used to post a tweet:

curl –-data “status=go mule!” http://localhost
<twitter:config name=”twitter” format=”JSON”
 consumerKey=”${twitter.consumer.key}”
 consumerSecret=”${twitter.consumer.secret}”
 oauthToken=”${twitter.access.token}”
 oauthTokenSecret=”${twitter.access.secret}” />

<flow name=”updateStatusFlow”>
 <http:inbound-endpoint host=”localhost” port=”80”/>
 <twitter:update-status
 status=”#[header:INBOUND:status]”/>
</flow>

We can now post a tweet to the inbound-endpoint with curl:

curl –-data “status=go mule!” http://localhost

Polling
Mule has a poll tag that allows data from a remote service to be
received periodically. To get updates from a Twitter timeline:

<flow name=”getStatusFlow”>
 <poll>
 <twitter:public-timeline />
 </poll>
</flow>

MODULES

Modules extend Mule’s functionality by providing namespace
support for a certain set of message processors. The following
table contains some of the modules provided by Mule.

Module Description

JSON JSON support, including marshalling, transformation and
filtering.

CXF SOAP support via Apache CXF.

Jersey JAX-RS support for publishing RESTful services.

Scripting Support for JSR-223 compliant scripting language, like Groovy
or Rhino.

XML XML support, including XML marshalling, XPath and XSLT support.

The full list of available modules is available in the official Mule
documentation. Additional modules are available on MuleForge.

Hot
Tip

Use MuleForge.org to locate community-written
extensions.

Bridging REST to SOAP
The following demonstrates how the CXF module can be used to
bridge a RESTful service to a SOAP service.

<flow name=”HTTP to SOAP Bridge”>
 <http:inbound-endpoint host=”localhost” port=”8080”
 path=”service”/>
 <cxf:jaxws-client
 clientClass=”com.mulesoft.refcard.FooService”
 wsdlLocation=”classpath:/wsdl/hello_world.wsdl”
 operation=”greetMe”/>
</flow>

The inbound-endpoint accepts HTTP POST requests to
http://localhost:8080/service. The POST data is then sent to the
SOAP service defined by the CXF jaxws-client.

Routers
Routers implement the Enterprise Integration patterns (EIP) and
determine how messages are directed in a flow.

The following table contains commonly used routers.

Router Description

all Sends the message to each endpoint.

choice Sends the message to the first endpoint that matches.

recipient-list Sends the message to all endpoints in the expression
evaluated with the given evaluator.

round-robin Each message received by the router is sent to alternating
endpoints.

wire-tap Sends a copy of the message to the supplied endpoint
then passes the original message to the next processor in
the chain.

first-successful Sends the message to the first endpoint that doesn’t throw
an exception or evaluates the failureExpression to true.

splitter Will split the current message into parts using an
expression or just split elements of a List.

aggregator Will collect related messages and create a message
collection.

Transformers
Transformers modify the message and pass it to the next
message in the chain.

http://www.refcardz.com
http://www.dzone.com

4 Mule 3: Simplifying SOA

DZone, Inc. | www.dzone.com

The following table contains commonly used transformers.

Name Description

message-properties-
transformer

Adds and removes properties from a message,
optionally specifying their scope.

byte-array-to-string-
transformer

Many basic type transformers are included.

xml:jaxb-xml-to-object-
transformer

Transforms JAXB objects explicitly.

auto-transformer Will automatically find the best transformer for a
specified type.

xml:xslt_transformer Transforms a message using the given stylesheet.

json:object-to-json-
transformer

Transforms message payloads to and from JSON.

gzip-compress-
transformer

Compresses and uncompress message payloads
using gzip.

encrypt-transformer Encrypts and decrypts message payloads.

Hot
Tip

Endpoints often include their own transformers.
JMS for instance, allows transformers to convert
message payloads to and from JMS messages
autormatically.

Components
Components allow business logic to be executed in a flow. Any
Java object or script can be used as a component. Components
are configured by either identifying the class or providing a
reference to a Spring bean for dependency injection.

The following snippet shows how a class called MyService can be
configured as a component using a class and via dependency-
injection via Spring.

<bean class=”com.acmesoft.service.MyService”/>

<flow name=”test”>
 <http:inbound-endpoint host=”foo.com”>
 <component>
 <spring-object bean=”myService”/>
 </component>
</flow>

Mule will use the type of the payload of the message being
processed to determine what method to invoke. It’s often
necessary, however, to explicitly specify the method to invoke.
Entry point resolvers are used for this purpose. The following
table contains a list of available resolvers.

Resolver Description

method-entry-point-resolver Resolves the method using the specified
name.

property-entry-point-resolver Resolves the method using the specified
message property.

custom-entry-point-resolver A Java class that implements
org.mule.api.model.EntryPointResolver
or extends org.mule.model.resolvers.
AbstractEntryPointResolver.

The use of entry point resolvers allows you to use POJO’s as
components, decoupling your code from Mule. Sometimes,
you will want access to the MuleMessage or MuleContext when
processing a message. In cases like this, you can implement
the org.mule.api.lifecycle.Callable interface. Callable includes a
single method, onCall, to implement that provides direct access
to the MuleMessage when the method is invoked.

In addition to custom components, Mule provides the following
utility components.

Component Description

<log-component> Logs messages.

<echo-component> Returns and passes along.

<test:component> Helps test message flows (in the test namespace).

Hot
Tip

Try to avoid implementing Callable to keep your
component code decoupled from Mule’s API.

Filters
Filters selectively pass messages to the next processor in
the chain.

The following table contains commonly used filters.

Name Description

expression-filter Passes messages using any of the expressions
languages supported by Mule.

regex-filter Decides what messages to pass by applying the
supplied regular expression to the message payload.

payload-type-filter Passes messages only of the given type.

custom-filter Specifies the class of a custom filter that implements
the org.mule.api.routing.filter.Filter interface.

and-filter, or-filter,
not-filter

Logic filters that work with other filters.

Using Filters with XPath
The following example demonstrates how the xpath-filter can
be used to only pass certain XML documents. In this case, only
order XML documents containing a certain ZIP code are allowed
to pass.

<flow name=”Filter messages using the XPath filter”>
 <vm:inbound-endpoint path=”input”/>
 <mulexml:xpath-filter pattern=”/order/zipCode”
 expectedValue=”11209”/>
 <vm:outbound-endpoint path=”output”/>
</flow>

EXPRESSIONS

Mule provides a rich expression language to evaluate data at
runtime using the message currently being processed.

Evaluators
The following are commonly used expression evaluators.

Name Description

xpath Query the message payload using XPath

payload Use the message’s payload for evaluation.

map-payload A Java class that implements org.mule.api.model.
EntryPointResolver or extends org.mule.model.resolvers.
AbstractEntryPointResolver.

regex Perform a regular expression evaluation against a message
payload.

bean Evaluates the message payload as a JavaBean.

groovy Use Groovy to evaluate an expression. Mule provides
certain variables, like payload, properties and
muleContext, to the script context to aid in evaluation.

header:[scope] Return the given header for a specific scope, as
demonstrated below.

http://www.refcardz.com
http://www.dzone.com

5 Mule 3: Simplifying SOA

DZone, Inc. | www.dzone.com

Routing Messages Dynamically
The following illustrates how a message can be dynamically
routed to a JMS queue passed on a message header.

<flow>
 <vm:inbound-endpoint path=”input”/>
 <jms:outbound-endpoint
 queue=”#[header:INBOUND:destination-queue]”/>
</flow>

This example accepts a message off the given VM queue. The
outbound-endpoint uses the header evaluator to dynamically
route the message to the queue defined by an inbound message
property called “destination-queue”.

ANNOTATIONS

Annotation support, introduced in Mule 3, further simplifies Mule
configuration by reducing or eliminating the XML needed to
configure components and transformers.

The following table contains a list of commonly used annotations.

Name Type Description

@Transformer Method Indicates the method
can be used as a
transformer.

@ContainsTransformerMethods Class Indicates the annotated
class contains
transformation methods.

@Schedule Method Schedules a method for
periodic execution.

@Lookup Field,
Parameter

Looks up the annotation
field or parameter for
dependency injection
from the Mule registry.

@Payload Parameter
(component or
transformer)

Injects the payload into
a method. If the param
type is different from the
payload type, Mule will
attempt to transform it.

@InboundHeaders Parameter
(component or
transformer)

Injects any inbound
headers at runtime. Can
be filtered by name and
used to inject individual
headers.

@OutboundHeaders Parameter
(component or
transformer)

Injects a Map of
outbound headers that
can be used to add
headers to the outgoing
message.

@Inbound Attachments Parameter
(component or
transformer)

Injects any inbound
attachments at runtime.
Can be filtered by name.

@Outbound Attachments Parameter
(component or
transformer)

Injects a Map of
outbound attachments
that can be used to
add attachments to the
message.

You can use the Mule 3 annotation support to quickly implement
transformers and components.

Implementing a Transformer with Annotations
Here’s an example of a transformer that lowercases a message’s
payload.

@ContainsTransformerMethods
public class LowercaseTransformer {

 @Transformer
 public String toLowercase(String string) {
 return string.toLowerCase();
 }
}

This class can be used a message source in a flow to generate a
timestamp every minute.

Implementing a Component with Annotations
Components can also be implemented with annotations. The
following class demonstrates how the @Schedule annotation can
be used to periodically generate data.

public class HeartbeatMessageSource {
 @Schedule(interval = 60000)
 public long pulse() {
 return new Date().getTime();
 }
}

This class can be used as a message source in a flow to generate
a timestamp every minute.

HANDLING ERRORS

Exceptions thrown during message processing are handled by
exception strategies. The default-exception-strategy, configured
at the end of the flow, allows you to route the exception to
another endpoint for handling.

Sending Messages to a DLQ
Messages that can’t be delivered, for instance if an exception is
thown during their processing, it can be sent to a Dead Letter
Queue (DLQ). The following example will send any errors that
occur in the flow to the “dlq” VM queue.

<flow>
 <vm:inbound-endpoint path=”input”/>
 <vm:outbound-endpoint
 path=”#[header:INBOUND:destination-queue]”/>
 <default-exception-strategy>
 <vm:outbound-endpoint path=”dlq”/>
 </default-exception-strategy>
</flow>

Building upon the previous example, the default-exception-
strategy will route messaging failures (for example, when the
destination-queue inbound header is null) to the VM queue
named “dlq”.

Hot
Tip

Exceptions routed by the default-exception-
strategy are instances of org.mule.api.message.
ExceptionMessage, which gives you access to the
Exception that was thrown along with the payload of
the message.

FUNCTIONAL TESTING

Functional testing is an important part of testing Mule
applications. Mule provides a helper class, org.mule.tck.
FunctionalTestCase, which you can extend to simplify setting up
a TestCase.

http://www.refcardz.com
http://www.dzone.com

6 Mule 3: Simplifying SOA

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

Functionally Testing a Flow
public class XPathFilterFunctionalTestCase extends FunctionalTestCase
{
 @Override
 protected String getConfigResources() {
 return “xpath-filter-config.xml”;
 }

 public void testMessageNotFiltered() throws Exception {
 String xml = “<order><zipCode>11209</zipCode></order>”;

 MuleClient client = new MuleClient(muleContext);
 client.dispatch(“vm://input”, xml, null);

 assertNotNull(client.request(“vm://output”, 15000).
 getPayloadAsString());
 }

 public void testMessageIsFiltered() throws Exception {
 String xml = “<order><zipCode>11210</zipCode></order>”;

 MuleClient client = new MuleClient(muleContext);
 client.dispatch(“vm://input”, xml, null);

 assertNull(client.request(“vm://output”, 5000));
 }
}

Hot
Tip

The test-component can be used to simulate remote
services during functional testing.

CONCLUSION

This Refcard is just a glimpse into what you can do with Mule 3.
Consult the full documentation on the MuleSoft website. The
full code and test cases for the examples used in this Refcard are
available on GitHub:

https://github.com/johndemic/essential-mule-refcard

John D’Emic is a software developer and author.
He has used Mule extensively since 2006 and is
the “despot” of the MongoDB transport. He also
co-authored Mule in Action with David Dossot in
2009. You can read about what he’s up to in his
blog: johndemic.blogspot.com.

Mule in Action covers Mule fundamentals and
best practices. It is a comprehensive tutorial that
starts with a quick ESB overview and then gets
Mule to work. It dives into core concepts like
sending, receiving, routing and transforming data.
Next, it gives you a close look at Mule’s standard
components and how to roll out custom ones.

You’ll pick up techniques for testing, performance tuning, BPM
orchestration and even a touch of Groovy scripting.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Continuous Delivery
CSS3
NoSQL
Android Application Development

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

