

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#140
E

ss
en

ti
al

 M
u

le
 3

.3

By John D'Emic

ABOUT MULE

Mule is the world’s most widely used open source integration platform
and Enterprise Services Bus (ESB). Inspired by the seminal Enterprise
Integration Patterns, Mule is designed to support high-performance, multi-
protocol transactions between heterogeneous systems and services. It
provides the basis for service-oriented architecture.

This Refcard covers the use of Mule 3.3. For new users it will serve as a
handy reference when building your integration flows in Mule. For existing
users of Mule, especially users of previous versions of Mule 3, it will
highlight the new features available in Mule 3.3.

WHAT'S NEW IN MULE 3.3?

•	 Graphical	data	transformation	with	DataMapper

•	 Mule	Expression	Language,	an	MVEL	based,	unified	expression	
language

•	 Pattern-based	exception	handling

•	 Simplified	iteration	over	data	structures	in	message	payloads

BUILDING INTEGRATION APPLICATIONS WITH MULE

Mule 3.3 provides a powerful, Eclipse-based authoring environment for
developing integration applications.

Mule studio allows you to round-trip between the graphical view of your
application and the corresponding configuration XML.

A: The Message Processor pallet displays the available Message
Processors for you to use in your flows. They are grouped by function. You
can use the filter at the top of the pallet to search for message processors
by name.

B: Mule integration flows are built by dragging message processors from
the pallet view to the flow view. You can switch between the Message Flow
and the Configuration XML at the bottom of this pane.. In this area you can
also see Global Elements, like JMS connector configurations.

C: These tabs display various status about your Mule project,
including any errors, the embedded Mule instance’s console log, access
to Javadoc and JUnit test results. Its also the place where you can
define and edit your transformations for DataMapper.

D: This pane displays the Mule project’s directory structure, including the
XML configuration files and any Java classes required by your application.

E: You can run and debug your application from here.

Flows
Flows provide a free-form method of orchestrating message processing in
Mule. A flow consists of a message source, typically an inbound-endpoint,
followed by a sequence of message processors. Message processors, like
filters, transformers, or Java components, process a message as it passes
through the flow.

An exception strategy can be added to a flow to handle errors that occur
during the flow’s execution.

CONTENTS INCLUDE:
n	Building Integration Applications
n	Messages
n	Connectivity
n	Modules
n	Message Processors
n	and More!

Essential Mule 3.3
Simplifying SOA

Hot
Tip

End a flow with a router or endpoint to send the message to another
flow or external service.

Brought to you by:

Updated for
Mule 3.3!

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.eaipatterns.com/
http://www.eaipatterns.com/
http://answerhub.com
http://answerhub.com/
http://answerhub.com

2 Essential Mule 3.3

DZone, Inc. | www.dzone.com

Sending a JMS Message with a Flow
Sending a JMS message is easy with a flow. Here’s how you can use a flow
to read files from a directory and send their payload to a JMS queue.

<flow name=”FileToJMS” doc:name=”FileToJMS”>
 <file:inbound-endpoint path=”/opt/files/in”
responseTimeout=”10000” doc:name=”File”/>
 <byte-array-to-string-transformer doc:name=”Byte Array to
String”/>
 <jms:outbound-endpoint queue=”files” connector-ref=”Active_MQ”
doc:name=”JMS”/>
 </flow>

This flow uses a file inbound-endpoint to read files from the specified
directory path. Each file is then converted to a string by the byte-array-
to-string-transformer. The string is then used as the payload of the JMS
message to the “files” queue by the JMS outbound-endpoint.

Transforming Payloads with DataMapper
Mule 3.3’s DataMapper functionality allows you to easily transform
messages from one format to another. To use DataMapper, select the
“DataMapper” message processor from the pallet and drag it onto your
flow. Then select the DataMapper and launch the “DataMapper Flow
Wizard” to define your transformation.

Transforming CSV to XML
Transforming from CSV to XML is simple with DataMapper. After launching
the “DataMapper Flow Wizard” the Input Type is set to CSV and the Output
Type is set to XML. The CSV Example and XML Schema specify the format
of the input and output to the DataMapper.

In addition to XML and CSV, DataMapper also supports POJO, JSON, Maps
and Excel spreadsheets.

MESSAGES

Messages encapsulate data entering and leaving Mule. The content of a
message is called its payload. The payload is typically a Serializable Java
class, an InputStream or an array of bytes.

Attachments
A message can have zero or more MIME attachments in addition to the
payload. These can be used to associate files, documents and images with
the message.

Properties
Properties, also called headers, are metadata associated with a message.
Mule, the various transports, and you, the developer, can add properties to
messages. Examples of message properties are JMS message headers,
HTTP response headers, or Mule-specific headers like MULE_MESSAGE_ID.
The following table contains examples of message properties set by Mule.

Property Description

MULE_MESSAGE_ID A GUID assigned to the message.

MULE_CORRELATION_ID A GUID assigned to a group of
messages.

MULE_CORRELATION_GROUP_SIZE The amount of messages expected
in the correlation group.

MULE_CORRELATION_SEQUENCE The order of a correlation group.

MULE_SESSION A GUID indicating the session the
message belongs to

Scopes
Properties are scoped differently depending on when they’re set or
accessed during message processing. The following table contains the
available scopes.

Scope Description

inbound Set by message sources, typically an inbound-endpoint.

outbound Set on messages leaving a message processor.
Properties set by the message-properties-transformer
default to the outbound scope.

session Properties in the session scope are available between
processors and services without explicit propagation.

invocation nvocation properties, or flow variables, contain data that
is accessible to a message as it passes through a flow.

Hot
Tip

Message properties leaving a processor on the outbound scope are
available in the inbound scope on the subsequent processor.

Hot
Tip

The fields from the source format can be clicked on and dragged to
the output format.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

3 Essential Mule 3.3

DZone, Inc. | www.dzone.com

CONNECTIVITY

Mule connects to more than 100 applications, protocols and APIs. Mule
endpoints enable connectivity to protocols, such as JMS, HTTP and JDBC.
Cloud Connectors enable connectivity to applications and social media like
SalesForce and Twitter.

Endpoints
Messages can be received with an inbound endpoint and sent with an
outbound endpoint.

Connectors
A connector is used to configure connection properties for an endpoint.
Most endpoints don’t require a connector, but some like JDBC or JMS, do
require connector configuration, as we’ll see next.

Configuring an SMTP connector
The following example illustrates how an SMTP connector is configured in
Mule Studio as well as in XML.

<smtp:connector name=”SMTP” contentType=”text/xhtml”
fromAddress=”mule@acmesoft.com” subject=”A Mail from Mule”
doc:name=”SMTP”/>

The SMTP connector allows you to specify properties that will be shared
across SMTP endpoints. In this case, the connector sets the Content-Type
and “from” address as well as the subject of the messages. A connector is
referenced by its name, allowing you to define multiple connectors for the
same transport.

The following table contains some common endpoints supplied by Mule.

Endpoint Description

HTTP http:// [host]:[port]:[path]?[query] Send and receive data
over HTTP.

AJAX ajax://[channel] Pub / Sub to browser
apps using CometD.

File File://[path] Read and write files.

S/FTP ftp:// [user]@[host]:[port]/[path] Read and write files over
FTP or SFTP.

JMS jms:// [type]:[destination]?[options] Full support for JMS
topics and queues.

SMTP smtp://[user]@[host]:[port] Send email over SMTP.

IMAP Imap:// [user]@[host]:[port]/[folder] Receive email via IMAP

Endpoint Description

JDBC jdbc://[sql query] Send and receive data
from a SQL database.

VM vm://[path] Uses memory-based
queues to send
messages between
services and flows.

The full list of transports is available in the Mule documentation.

Cloud Connectors
Introduced in Mule 3, cloud connectors enable easy access to SaaS, social
media and infrastructure services, such as Twilio and Facebook.
Cloud Connectors can be used anywhere in a flow to invoke a remote
service. A cloud connector usually has a ‘config’ element where service
credentials are set and one or more elements that invoke a service method.
The following will make it possible to publish a tweet using curl:http://
localhost?status=gomule!

<twitter:config name=”twitter” format=”JSON”
 accessKey=”${twitter.consumer.key}”
 accessSecret=”${twitter.consumer.secret}”
 oauthToken=”${twitter.access.token}”
 oauthTokenSecret=”${twitter.access.secret}” />

<flow name=”updateStatus” doc:name=”updateStatus”>
 <http:inbound-endpoint exchange-pattern=”one-way”
host=”localhost” port=”8081” doc:name=”HTTP”/>
 <twitter:update-status config-ref=”Twitter”
status=”#[payload]” doc:name=”Twitter”/>
 </flow>

Polling
Mule has a poll tag that allows data from a remote service of a Cloud
Connector to be received periodically. To get updates from a Twitter
timeline every minute:

<flow name=”pollTwitter” doc:name=”pollTwitter”>
 <poll frequency=”60000”>
 <twitter:get-home-timeline config-ref=”Twitter”
doc:name=”Twitter”/>
 </poll>
 </flow>

MODULES

Modules extend Mule’s functionality by providing namespace support for
a certain set of message processors. The following table contains some of
the modules provided by Mule.

Hot
Tip

Endpoints can be generically referenced using an endpoint URI.

Hot
Tip

Use exchange patterns to define how a message is received by an
endpoint. For endpoints that generate a response (synchronous),
use the request-response. For asynchronous endpoints, use the
one-way exchange pattern.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://localhost?status=gomule!
http://localhost?status=gomule!
http://answerhub.com

4 Essential Mule 3.3

DZone, Inc. | www.dzone.com

Module Description

JSON JSON support, including marshalling,
transformation and filtering.

CXF SOAP support via Apache CXF.

Jersey JAX-RS support for publishing RESTful
services.

Scripting Support for JSR-223 compliant scripting
language, like Groovy or Rhino.

XML XML support, including XML marshalling,
XPath and XSLT support.

The full list of available modules is in the official Mule documentation.
Additional modules are available on MuleForge.

Hosting a JAX-RS Web Service
The following demonstrates how the Jersey module can be used to host a
JAX-RS annotation service classusing Mule.

<flow name=”JAXRSService” doc:name=”JAXRSService”>
 <http:inbound-endpoint exchange-pattern=”request-response”
host=”localhost” port=”8080” path=”orders” doc:name=”HTTP”/>
 <jersey:resources doc:name=”REST”>
 <component class=”com.acmesoft.service.OrderService”/>
 </jersey:resources>
 </flow>

MESSAGE PROCESSORS

Message Processors are used in flows to route, transform, filter and
perform business logic on messages.

Flow Control
Flow Control Message Processors, or routers, implement the popular
Enterprise Integration patterns (EIP) and determine how messages are
directed in a flow.

The following table contains commonly used routers.

Router Description

all JSON support, including marshalling,
transformation and filtering.

choice Send the message to the first endpoint that
matches.

round-robin Each message received by the router is sent
to alternating endpoints.

wire-tap Sends a copy of the message to the supplied
endpoint, then passes the original message to
the next processor in the chain.

Router Description

first-successful Sends the message to the first endpoint that
doesn’t throw an exception or evaluates the
failureExpression to true.

until-successful Redelivers a message until it’s successfully
delivered or gives up after a certain amount
of attempts.

foreach Iterates over a collection in the payload of a
message.

The following flow demonstrates how the Foreach processor can iterate
over a collection present in a message payload. This flow accepts a List
of LineItem objects and sends each to an outbound HTTP endpoint for
processing.

																												

 <flow name=”LineItemProcessing” doc:name=”LineItemProcessing”>
 <vm:inbound-endpoint exchange-pattern=”one-way”
path=”lineItems” doc:name=”LineItems”/>
 <foreach collection=”payload” doc:name=”Foreach”>
 <http:outbound-endpoint exchange-pattern=”request-response”
host=”localhost” port=”8081” doc:name=”HTTP”/>
 </foreach>
 </flow>

Transformers
Transformers modify the message and pass it to the next message in the
chain. The following table contains commonly used transformers.

Name Description

message-properties-
transformer

Add and remove properties from a message,
optionally specifying their scope when
different from the default outbound scope.

byte-array-to-string-
transformer

Transforms a byte array to a String.

byte-array-to-object-
transformer

Transforms a byte array to an Object.

xml:object-to-xml Using XStream, this transforms message
payloads to and from XML.

xml:xslt-transformer Transforms a message using the given
stylesheet.

json:object-to-json-
transformer

Using Jackson, this transforms message
payloads to and from JSON.

Components
Components allow business logic to be executed in a flow. Any Java object
or script can be used as a component. Components are configured by
either identifying the class or providing a reference to a Spring bean for
dependency injection.

The following snippet shows how a class called MyService can be
configured as a component using a class and via dependency injection via
Spring.

<bean id=”myService” class=”com.acmesoft.service.MyService”/>

<flow name=”test”>
 <http:inbound-endpoint host=”foo.com”>
 <component>
 <spring-object bean=”myService”/>
 </component>
</flow>

Hot
Tip

Endpoints often include their own transformers. JMS, for instance,
provides transformers to convert message payloads to and from
JMS messages automatically.

Hot
Tip

Use MuleForge to locate community written extensions.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

5 Essential Mule 3.3

DZone, Inc. | www.dzone.com

Mule will use the type of payload that is in the message being processed
to determine what method to invoke. It’s often necessary, however, to
explicitly specify the method to invoke. Entry point resolvers are used for
this purpose. The following table contains a list of available resolvers.

Resolver Description

method-entry-
point-resolver

Resolves the method using the specified name.

property-entry-
point-resolver

Resolves the method using the specified message
property.

custom-entry-
point-resolver

A Java class that implements org.mule.api.model.
EntryPointResolver or extends org.mule.model.resolvers.
AbstractEntryPointResolver.

The use of entry point resolvers allows you to use POJO’s as components,
decoupling your code from Mule.

Sometimes, though, you will need to operate on more then just a
message’s payload. Mule’s annotations give your components runtime
access to a MuleMessage without coupling your component code at
compile time to Mule’s API. The following table contains a list of commonly
used annotations.

Name Type Description

@Payload Parameter Can be specified on the
component entry point and
transformer method parameters
to show the parameter that
indicates the message payload.

@InboundHeaders Parameter Specifies the component-entry-
point or transformer-method
parameter that the inbound
headers should be mapped to.

@OutboundHeaders Parameter Specifies the component-entry-
point or transformer-method
parameter that the outbound
headers should be mapped to.

@InboundAttachments Parameter Specifies the component-entry-
point or transformer-method
parameter that the inbound
attachments should be mapped
to.

@OutboundAttachments Parameter Specifies the component-entry-
point or transformer-method
parameter thatthe outbound
attachments should be mapped
to.

Implementing a Component with Annotations
Here’s an example of a component that accesses the message’s payload
and an inbound header with annotations:

public class LineItemService {
 public void process(@Payload Object lineItem,
 @InboundHeaders(“LINE_ITEM_PRIORITY”)
String priority) {
 // perform processing
 }
}

MULE EXPRESSION LANGUAGE

Mule provides a rich expression language based on MVEL to evaluate data
at runtime using the message currently being processed.

Context Objects
The following are commonly used variables on context objects available in
MEL expressions.

Name Description

message The MuleMessage that gives you access to the payload,
the i.d., and the various properties.

flowVars The flow variables, or invocation properties, available on
the flow.

Name Description

sessionVars The session variables, or session properties, available on
the flow.

server Information about the server Mule is running on,
including its FQDN.

mule Information about the current Mule instance, including
its home.

app Information about the currently running Mule application,
including its name.

Here are some examples of Mule Expressions

Name Description

message.inboundProperties['filename'].
endsWith('.jpg')

Check if the inbound property
’filename’ ends with ’jpg.

<logger message="File Received (size
= #[message.inboundProperties['fileSi
ze']/1024] kb)" level="INFO" />

Embed an expression in a
logger’s message.

xpath('/order/@type’) == 'book' Evaluate an XPath
expression.

regex('^(To|From|Cc):') Evaluate a regular
expression.

Content Based Routing and Filtering
The Mule Expression Language enables Mule to perform content-based
routing and filtering.

The following illustrates how a message is dynamically routed to a
JMS queue by using MEL to evaluate a regular expression against the
message’s payload.

<flow name=”ContentBasedRouting” doc:name=”ContentBasedRouting”>
 <http:inbound-endpoint exchange-pattern=”one-way”
host=”localhost” port=”8081” path=”app” doc:name=”HTTP”/>
 <byte-array-to-string-transformer doc:name=”Byte Array to
String”/>
 <choice doc:name=”Choice”>
 <when expression=”regex(‘^LineItem’) != null”>
 <processor-chain>
 <jms:outbound-endpoint queue=”queue1” connector-
ref=”Active_MQ” doc:name=”Queue1”/>
 </processor-chain>
 </when>
 <otherwise>
 <processor-chain>
 <jms:outbound-endpoint queue=”queue2” connector-
ref=”Active_MQ” doc:name=”Queue2”/>
 </processor-chain>
 </otherwise>
 </choice>
 </flow>

Using Filters with XPath
The following example demonstrates how the expression filter can be
used to only pass certain XML documents. In this case, only ordered XML
documents containing a certain ZIP code are allowed to pass. 											

													

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Essential Mule 3.3

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",’ says PC Magazine.

R E C O M M E N D E D B O O K

 <flow name=”XPathFiltering” doc:name=”XPathFiltering”>
 <vm:inbound-endpoint exchange-pattern=”one-way” path=”in”
 doc:name=”VM”/>
 <expression-filter expression=”xpath(‘/order/@type’).text ==
‘book’”
 doc:name=”Expression”/>
 <vm:outbound-endpoint exchange-pattern=”one-way”
 path=”out” doc:name=”VM”/>
</flow>

HANDLING ERRORS

Exceptions thrown during message processing are handled by exception
strategies. Exception handling has been revamped for Mule 3.3. The
available exception strategies are enumerated below.

default-exception-
strategy

The default exception strategy used by all
flows when an explicit exception strategy isn't
defined.

catch-exception-strategy Selectively handles exceptions based on type.

choice-exception-
strategy

Selectively handles exceptions based on an
MEL evaluation.

reference-exception-
strategy

References an externally defined global
exception strategy.

rollback-exception-
strategy

Attempts to roll back a message when an
exception is thrown.

Catching an Exception
The following example will catch exceptions of the com.acmesoft.
LineItemException type and will route them to a JMS queue.

 <flow name=”XPathFiltering” doc:name=”XPathFiltering”>
 <vm:inbound-endpoint exchange-pattern=”one-way”
 path=”in” doc:name=”VM”/>
 <expression-filter expression=”xpath(‘/order/@type’).text ==
‘book’”
 doc:name=”Expression”/>
 <vm:outbound-endpoint exchange-pattern=”one-way” path=”out”
 doc:name=”VM”/>
 <catch-exception-strategy when=”exception.causedBy(‘com.
acmesoft.LineItemException’)”
 doc:name=”Catch Exception Strategy”>
 <jms:outbound-endpoint queue=”dq” connector-ref=”Active_
MQ” doc:name=”DLQ”/>
 </catch-exception-strategy>
</flow>

CONCLUSION

This RefCard is just a glimpse at the capabilities of Mule 3.3. The complete
documentation for Mule 3.3 is available in the Mule User Guide.

John D’Emic is a software developer and author.
He is the co-author of both editions of Mule in
Action and is currently a Solutions Architect at
MuleSoft, Inc. You can see what John’s up to by
following his Twitter account: @johndemic

Mule in Action, Second Edition is a totally-revised guide
covering Mule 3 fundamentals and best practices. It
starts with a quick ESB overview and then dives into rich
examples covering core concepts like sending, receiving,
routing, and transforming data. You’ll get a close look
at Mule’s standard components and how to roll out
custom ones. You’ll also pick up techniques for testing,
performance tuning, BPM orchestration, and explore cloud
API integration for SaaS applications.

A B O U T T H E A U T H O R S

Scala Collections
JavaFX 2.0
Android
Data Warehousing

Hot
Tip

Exceptions routed by an exception strategy are instances of org.
mule.api.message.ExceptionMessage, which gives you access to
the Exception that was thrown with the payload of the message.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://sematext.com/spm/hbase-performance-monitoring
http://www.mulesoft.org/documentation/login.action?os_destination=%2Fdisplay%2FMULE3USER%2FHome
http://twitter.com/johndemic
http://www.manning.com/dossot2/
http://answerhub.com

