

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#141
N

o
d

e
.j

s:
 B

u
ild

in
g

 f
o

r
S

ca
la

b
ili

ty
 w

it
h

 S
e

rv
e

r-
S

id
e

 J
av

aS
cr

ip
t

CONTENTS INCLUDE:
n	 What is Node?
n	 Where does Node fit?
n	 Installation
n	 Quick Start
n	 Node Ecosystem
n	 Node API Guide and more... By Todd Eichel

Node.js: Building for Scalability
with Server-Side JavaScript

WHAT IS NODE?

In its simplest form, Node is a set of libraries for writing high-
performance, scalable network programs in JavaScript. Take a
look at this application that will respond with the text “Hello
world!” on every HTTP request:

// require the HTTP module so we can create a server object
var http = require(‘http’);

// Create an HTTP server, passing a callback function to be
// executed on each request. The callback function will be
// passed two objects representing the incoming HTTP
// request and our response.
var helloServer = http.createServer(function (req, res) {

 // send back the response headers with an HTTP status
 // code of 200 and an HTTP header for the content type
 res.writeHead(200, {‘Content-Type’: ‘text/plain’});

 // send back the string “Hello world!” and close the
 // connection
 res.end(‘Hello world!’);
});

// tell our hello world server to listen for HTTP requests
// on localhost’s port 8124
helloServer.listen(8124, “127.0.0.1”);

// log a message to the console
console.log(‘Server running at http://127.0.0.1:8124/’);

By itself, Node provides only very simple, low-level functionality.
However, several external factors have created excitement and
interest around it:

 1. �Developers are increasingly focused on scalability. Node’s
asynchronous programming model is well suited to building highly
scalable web applications.

 2. �JavaScript is naturally asynchronous, being born and developed inside
web browsers.

 3. �A huge base of developers are already familiar with both JavaScript
and asynchronous programming from years developing JavaScript in
web browsers.

 4. �Huge advances in execution speed have made it practical to write server-
side software entirely in JavaScript.

Let’s take a closer look at the qualities of Node that make these
four things possible.

Asynchronous
Node’s speed and scalability comes largely
from its asynchronous programming model.
Traditional web application software is
based around the request-response cycle.
A request arrives; the application routes
it, builds up a response by consulting
databases, disks, APIs, etc., and finally sends
the completed response back to the client
in one piece.

This monolithic approach is very simple but
leaves a lot of potential performance on the
table. This is easiest to illustrate with a real-
world analogy.

Consider a food vending
truck on a city street or
at a festival. A food truck
operating like a traditional
synchronous web server
would have a worker take
an order from the first
customer in line, and then
the worker would go off to
prepare the order while the customer waits at the window. Once
the order is complete, the worker would return to the window,
give it to the customer, and take the next customer’s order.

Contrast this with a food truck operating like an asynchronous
web server. The workers in this truck would take an order from
the first customer in line, issue that customer an order number,
and have the customer stand off to the side to wait while the
order is prepared. The worker and window is freed to take the
next customer’s order. When orders are finished, customers are
called back to the window by their number to pick them up.

In the real world, food trucks operate on the asynchronous
model. It’s the clear choice for efficiency and effective use of
resources, at the cost of a little extra complexity with calling
people back to the window for pick up. Node works the
same way, with similar tradeoffs. Node strives to never block
subsequent code from executing, just like a real-world food truck
operator would never hold a customer at the window waiting for
their order, blocking other customers.

Server Side JavaScript
Asynchronous programming is not a new concept in computer
science by any means, and many asynchronous web servers are
in use in all corners of the web (e.g., Ruby has EventMachine,
Python has Twisted). But Node has one thing that sets it apart
from the others: JavaScript.

JavaScript is an inherently asynchronous language. It was born

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

2 Node.js: Building for Scalability with Server-Side JavaScript

DZone, Inc. | www.dzone.com

in the web browser, where making blocking calls meant holding
up the rendering of web pages or responses to user actions. As
a result, JavaScript has no standard library full of blocking file
I/O functions or network code. This is where Node comes in—
to provide all that functionality we’d expect in a programming
language in a completely asynchronous, non-blocking way.

In contrast, normal synchronous languages have standard libraries
and open-source packages chock full of blocking code. Writing
an asynchronous web server in a synchronous language makes it
really easy to trip up and call a blocking function, stopping your
web server process cold while the blocking call completes. In
Node, it’s impossible to accidentally do this because everything
has been written from the ground up to be asynchronous.

Common Language
There is a certain elegance to writing both the server- and client-
side application code in the same language. Doing this makes
it simple to share data back and forth, and it becomes natural
to share code as well. This decreases the cost of development
and maintenance for shared functionality (e.g., custom string
formatting functions).

Speed
Server Side JavaScript owes its growing prominence largely to
recent advances in the speed of JavaScript engines. Over the
past few years, browser makers like Google and Mozilla have
been making huge investments in their JavaScript engines
to improve the speed of both their browsers and the web
applications running within them. As software is increasingly
delivered over the web, JavaScript execution speed has become
a larger and larger factor in application performance. The
competition between browser makers over JavaScript execution
speed has resulted in many orders of magnitude of improvement,
to the point that JavaScript now beats many other interpreted
languages in common benchmarks[1]. The result of this has been
increased interest in running JavaScript on the server, which Node
enables in a practical and useful way.

Developer Familiarity
Almost any developer working with web software will have
touched JavaScript at some point in his career. JavaScript has
been around since the dawn of the web in the mid-nineties, and
at least some JavaScript is present in almost every non-trivial web
site. This has yielded a huge base of JavaScript-savvy developers
already familiar with working in asynchronous programming
models. Node is beginning to blur the lines between front-end
and back-end developers, and some are starting to cross over
from the front-end to the server-side. Developing JavaScript
in the browser turns out to be excellent preparation for writing
highly scalable network (and web) applications.

See the following two examples. In the first, we have client-side
code setting up a callback to be executed on every click of a
button. On each click, we print the message “Hello, button
clicker!”. In the second example, we have Node code setting up
an HTTP server to execute a function on every request. Every time
an HTTP request comes in, we respond with the message “Hello,
web request maker!”.

document.getElementById(‘helloButton’).onclick = function () {
 alert(‘Hello, button clicker!’);
};

http.createServer(
 function (req, res) {
 res.writeHead(200, {‘Content-Type’: ‘text/plain’});
 res.end(“Hello, web request maker!”);
 }
).listen(8124);

This is a powerful demonstration of how developer familiarity
with asynchronous programming in JavaScript on the client side

translates to the server side. Any developer who has set up an
event handler in the browser should be immediately familiar with
Node’s asynchronous way of doing things.

WHERE DOES NODE FIT?

Where does Node fit into the web development ecosystem?
Where should you use it? What is it good at? What can you do
with Node that you can’t already do now?

Node’s specialty is high-concurrency, real-time applications: anything
where you need to have a large number of users connected at the
same time. But Node can be used to serve any website or application,
and it will do so with its characteristic speed and efficiency.

A couple of years ago, the explosion in popularity of MVC web
frameworks like Rails and Django opened up the possibility of building
database-backed applications to a whole new class of developers
who had never been able to do that before. Those frameworks made
that type of application development accessible to a large number of
people who before wouldn’t have known where to start.

Node is doing the same thing for real-time, high concurrency
applications. The kind of highly concurrent programs that can
now be written quickly and easily in Node—until recently the sole
province of hardcore network programmers—can now be written
by any JavaScript-savvy web developer.

Fundamentally, it is important to understand that Node exists
on a different level of the stack than web frameworks like Rails;
it’s actually much closer to the language level than the
framework level. Those who try to use it like a framework will
walk away disappointed (they should try out Express at
http://expressjs.com, a web micro-framework written in Node
which we’ll cover later). Node is not the new Rails or the new
PHP. It is a different tool entirely, and it actually fits in well as a
complement to existing tools.

Hybrid Apps
Currently, a common practice is to use Node to supplement
existing applications where real-time features are desired. Though
it is not impossible to add those types of features using existing
tools, Node is so well suited to the task that it’s a natural fit.

A typical scenario involves an existing monolithic application
with a small additional feature added on being served by a
Node application. Typical features to be served this way are
chat functionality (like Facebook or Gmail chat) or real-time
push notifications (which sites like Quora use extensively).
In this scenario, the clients interact with both sides
simultaneously, and both sides are probably accessing the same
datastores. The main application features are served by the
existing application, and the real-time features are served by a
small Node application running alongside.

http://www.refcardz.com
http://www.dzone.com

3 Node.js: Building for Scalability with Server-Side JavaScript

DZone, Inc. | www.dzone.com

Node Specialties
Node handles some real-world examples in web architecture
completely naturally, but these examples are very difficult or
impossible to do with existing frameworks. These are where
Node can really shine when added to an existing application or
used standalone.

Push Notifications
As the web moves towards more highly interactive web sites,
a common feature to add to them is push notifications. Push
notifications are a hallmark of the emerging real-time web. This is
something that is very difficult to implement inside of traditional
synchronous application frameworks.

The way push notifications are implemented now is a bit of a
stop-gap measure. There are three main ways to get fresh data
from the server to the client, illustrated below.

The first is traditional polling. The client makes a request to the
server on an interval, asking for any new data. This can only be as
real-time as the polling interval, but decreasing the polling interval
results in increased server load as every client hits the server on
that interval even if there is no new data for them. This model does
not scale well and is not commonly used for high-traffic sites.

The second is the holy grail of client-server communications: the
real-time socket. A persistent, full-duplex, bi-directional channel is
opened between the client and the server, and both can push data
through at any time with almost no overhead (compared to HTTP).
This is the goal of the WebSocket protocol. The trouble with this
method is that most clients and many web servers do not support
it currently. While WebSocket support is improving, it represents a
big shift in the way the web works and it will be a long time before
we can depend on it as developers working in the real world.

So neither of our first two models for implementing push
notifications actually work in the real world. Traditional polling is
too heavy on the server and doesn’t get data out fast enough.
Real-time sockets are perfect for this but aren’t supported by
most browsers.

The third and final model is long polling. This is actually the way
most of the real-time web currently works. Clients are instructed
to always open a request to the server waiting for new data. If
the server doesn’t have anything, it holds the request open and
doesn’t return it until it has a piece of data to push out. Upon
receiving data, the client always immediately reopens a new
connection to the server waiting for more data. This is an effective
way to implement push notifications; however, the cost is that
for each client using the site, a connection on the server must be
kept open indefinitely. Since most traditional web frameworks
can only support one client connection per server thread, this
can get expensive quickly in terms of CPU and memory usage.
Node, however, can handle many thousands of concurrent client
connections with a single server process.

Node’s ability to transparently handle huge numbers

of concurrent connections makes it perfectly suited for
implementing long polling-based push notifications in a web
application, where other synchronous frameworks struggle.

Streaming Responses
As mentioned before, current web technologies are heavily based
around the request-response cycle. The server software receives
a request from the client, routes it to the appropriate handler,
and begins to render a response. It may consult one or more
databases, it might call external APIs, or it may perform some
computation. It will then probably render a view template with
the resulting data; and only after all that is done, it will ship the
finished, rendered response off to the client.

This monolithic approach is easy to develop for but leaves a lot
of potential performance benefits sitting on the table. Browsers
were built from the beginning to work with partial responses
trickling in over slow dial-up connections. Browsers would still
start rendering the page as best they could to give the user a
good initial experience while still downloading the remainder of
the page in the background.

By waiting on the server until the entire response is rendered
before returning anything at all, we’re leaving this capability
untapped. Why shouldn’t we first send down the header for our
document, which likely contains a bunch of CSS and JavaScript
assets that the browser could start loading while we’re building
the rest of our response?

Streaming responses provides a better way to do this. We can
return a little bit of the page at a time, as soon as we have it ready.
This is impossible under many existing frameworks, which
are entirely built around the request-response cycle. But it’s a
completely natural model for Node.

Here’s an example
illustrating
streaming
responses in
Node. As soon
as the request
comes in, we
immediately write
out the headers
and the first line
“Starting...”. Then
we set up an
interval to write
the word “data” to
the client every half a second. Finally, we set a timeout to end the
response with the word “Done!” after five seconds have elapsed.
If you connected to this Node application in your browser, you
would see the first line immediately and then each subsequent
line as it comes in. If you wrote a similar example program in a
synchronous language using sleep functions instead of callbacks,
the browser would show nothing for the first five seconds and
then show the full result all at once.

var http = require(‘http’);

http.createServer(function (request, response) {

 response.writeHead(200, {‘Content-Type’: ‘text/plain’});

 response.write(“Starting...\n”);

 var dataWriter = setInterval(function () {
 response.write(“data\n”);
 }, 500);

 setTimeout(function () {
 clearInterval(dataWriter);
 response.end(“Done!”);
 }, 5000)

}).listen(8124);

http://www.refcardz.com
http://www.dzone.com

4 Node.js: Building for Scalability with Server-Side JavaScript

DZone, Inc. | www.dzone.com

INSTALLATION

Node
Node falls into the category of software that is under such rapid
development that the recommended installation method is to
compile it from source code. Pre-packaged binaries do exist,
but the recommended method is still to install from source. The
following will work on any POSIX-compliant system (Mac OS,
Linux, Cygwin on Windows, etc.).

Sidebar: Windows
Node does not run natively on Windows. It does run fine under
Cygwin (http://www.cygwin.com/), which is an easily installed,
self-contained POSIX environment that runs on top of Windows.
Or you can always install Node inside a Linux virtual machine.

If you do choose to run Node under Cygwin, you will need to
use the Cygwin package manager to install several additional
packages that are not included by default in order for the
following commands to work. You’ll have an opportunity to do
this inside the Cygwin installer. At the time of this writing, the
following Cygwin packages need to be selected to install Node
and npm (a Node package manager that is explained later):

•	 python

•	 openssl

•	 openssl-devel

•	 gcc4-g++

•	 git

•	 make

•	 pkg-config

•	 zlib-devel

Some troubleshooting steps are available on the Node Wiki:
https://github.com/joyent/node/wiki/Building-node.js-on-
Cygwin-(Windows).

Compiling Node
 1. �First make sure you have the build prerequisites. You’ll need to have a C

compiler (like gcc) installed if you don’t already. Other than that, the only
required packages are python and libssl-dev. Use your OS’s package
manager to install these before proceeding.

 2. �Grab the latest version of the source (v0.4.7 as of this writing), extract, and
switch into the resulting folder. The latest version can always be obtained
from the Node web site (http://nodejs.org/#download).

wget http://nodejs.org/dist/node-v0.4.7.tar.gz
tar xzvf node-v0.4.7.tar.gz
cd node-v0.4.7/

 3. �Configure, make, and make install, as with any other package you’d

compile from source:

./configure
make
make install

After you complete these steps, you should have access to the
node binary from your command line. Try it out with node -v,
which should print the version number. You can also try running it
with no arguments, which will start up an interactive REPL (read-
eval-print loop) session where you can type lines of JavaScript
and have the result evaluated and printed immediately. In normal
use when developing Node programs, you would run this with a
filename, e.g. node myapp.js.

npm
The other essential piece of software for developing in Node is npm
(http://npmjs.org/), the most popular Node package manager. A
great number of useful Node libraries and open-source projects are
distributed through npm, and you can use npm to distribute your
own programs or simply manage their dependencies.

npm offers a one-line installer. Just paste the following into
your terminal.

curl http://npmjs.org/install.sh | sh

You can test it by running npm -v to get the version number.

When running npm commands (e.g., to install or uninstall
packages), you should always use sudo for better security. Because
npm packages can execute arbitrary scripts during different
parts of their lifecycles (install, uninstall, etc.), npm attempts to
downgrade its permissions to the nobody user before running
any package scripts. Running npm with sudo allows it to do this,
whereas if you ran them as your own user, the package scripts
would execute with whatever permissions you have.

npm’s authors recommend setting the following configuration to
enforce this security measure:

npm config set unsafe-perm false

QUICK START

As a way to get started with Node development, we’ll
demonstrate installing the Express web framework and using it to
make a simple web application. Make sure you have both Node
and npm installed, as described above.

 1. �Install Express. It’s distributed as an npm package, so it’s as easy as:

 sudo npm install express

 2. �Express also installs a binary, which you can use to generate new skeleton

applications. If you’ve used other frameworks like Rails or Django, this will
seem familiar. We’ll call our app “demoapp”.

 express demoapp

 3. �You’ll see some output as Express generates your application skeleton.

Note at the end that it suggests installing Jade, which is a JavaScript
templating library along the lines of Ruby’s HAML. Express uses Jade for
templating by default. We can go ahead and install that with npm:

 sudo npm install jade

 4. �At this point, you can take a look at the files Express created using your text

editor. The main application file is app.js, and there are folders for view
templates, static files, tests, etc. that you would expect in a web framework.
If you take a look at app.js, you’ll see some app setup and configuration
lines, a route handler for the root path (/) that renders the index.jade
template; and at the end is the call to start up the app server on port 3000.

 �Once you’re done looking through the code, we can start up the server
using Node and take a look at our new application.

 node app.js

 5. �If you open up http://localhost:3000/ in your web browser, you

should see a simple “Welcome to Express” message. Let’s try changing
part of this and reloading the page. In app.js, find the handler for the
root path and change the title attribute to “Demo App”. If we reloaded
the page in the browser, we’d expect to see the change reflected as
“Welcome to Demo App”. But unless you’ve also restarted the node
process, we’ll still see the original message. This is a common trap
that new Node developers coming from the browser or Rails/Django/
etc. worlds experience. While those other more involved frameworks
will reload your source files on every request, Node is very simple. So
restarting the process is up to you. Libraries do exist to make this easier.
See the next section for an example.

NODE ECOSYSTEM

The Node ecosystem is in its infancy and still rapidly evolving, but some
important projects have emerged for solving common problems.

Express
http://expressjs.com
Express, as demonstrated in the quick start guide, is a web micro-
framework along the lines of Ruby’s Sinatra or Python’s Bottle.

http://www.refcardz.com
http://www.dzone.com

5 Node.js: Building for Scalability with Server-Side JavaScript

DZone, Inc. | www.dzone.com

Socket.IO
http://socket.io
Socket.IO is a library for making real-time web apps easy to write
by abstracting away browser differences and incompatibilities. It
will automatically select the best available transport mechanism
(including WebSocket) supported by both the browser and
the server. Use Socket.IO whenever you want to add real-
time features to you application or if you’re writing something
inherently real-time like a game or chat app.

streamline.js, step, flow-js
https://github.com/Sage/streamlinejs
https://github.com/creationix/step
https://github.com/willconant/flow-js
As you start to write more complex asynchronous code, you’ll
begin to see that the complexity of nested callbacks can easily
get out of control. This is especially true in the case of database
interactions where you may need to perform operations in
sequence or only perform a cleanup operation after several
others have completed. Several libraries can help you untangle
your callback functions in these situations. Because each one is a
little different, the best approach would be to take a look at each
one and see which best suits your present situation.

Mongoose
http://mongoosejs.com
Mongoose is an ORM for interacting with a MongoDB database.
MongoDB is a popular choice of datastore for Node apps, and
Mongoose makes it easy to use.

NowJS
http://nowjs.com
NowJS is an excellent demonstration of the things you can do
when the client-side and server-side language are the same. It
lets you share functions and variables back and forth between the
client and the server as well as call client functions from the server
and server functions from the client.

Supervisor
https://github.com/isaacs/node-supervisor
This package solves the problem mentioned at the end of the
Quick Start section. When you start a Node program using
supervisor (supervisor myapp.js), it will monitor your application
directory and reload Node on the fly whenever it detects
changes. This is an indispensible tool for Node development.

Additional Resources
If you need help with Node development, here are some places
you can go.

Official Sites
Homepage: http://nodejs.org
Manual and documentation: http://nodejs.org/docs/v0.4.7/api/
Wiki: https://www.github.com/joyent/node/wiki
Blog: http://blog.nodejs.org/
Source code: https://github.com/joyent/node

Articles and Tutorials
Screencast tutorials for beginners: http://nodetuts.com
Advanced articles by Node community leaders:
http://howtonode.org

Community
Node official mailing list:
http://groups.google.com/group/nodejs
Node Official IRC channel: #node.js on irc.freenode.net
Node User Q&A via StackOverflow:
http://stackoverflow.com/questions/tagged/node.js

NODE API GUIDE

Below is a list of the most commonly used Node modules and
how you might typically use them. View the full list in the Node
documentation http://nodejs.org/docs/v0.4.7/api/.

Timers
Functions for setting and clearing timeouts and intervals just like
you would in a browser.

Process
Use for accessing stdin, stdout, command line arguments, the
process ID, environment variables, and other elements of the
system related to the currently-executing Node process.

Utilities
Logging, debugging, and object inspection functions.

Events
Contains the EventEmitter class used by many other Node
objects. Defines the API for attaching and removing event
listeners and interacting with them.

Buffers
Functions for manipulating, creating, and consuming octet
streams, which you may encounter when doing your own network
or file system I/O. You likely won’t interact with these much if
you’re only doing web application programming.

Streams
An abstract interface for streaming data which is implemented by
other Node objects, like HTTP server requests, and even stdio.
Most of the time you’ll want to consult the documentation for
the actual object you’re working with rather than looking at the
interface definition.

Crypto
Functions for dealing with secure credentials that you might use
in an HTTPS connection.

TLS/SSL
Functions for making or serving requests over SSL. See also the
HTTPS module.

File System
File system interaction functions. Read/write files and directories,
move, copy, rename files. Some functions have synchronous
versions alongside the normal asynchronous ones, as noted
in their names. These are useful in the setup phases of an
application’s execution, where speed is unimportant and the
simplicity of a synchronous function is desired.

Path
Complements the File System module; provides functions to
manipulate paths and filenames, resolve relative paths, etc.

Net
The meat of Node’s functionality. Create network server objects
to listen for connections and act on them. Read from and write to
sockets. Most of the time if you’re working on web applications,
you won’t interact with this directly. Instead you’ll use the HTTP
module to create HTTP-specific servers. If you want to create TCP
servers and sockets and interact with them directly, look here.

UDP/Datagram
Functions for handling UDP servers and messages. If you don’t
know what UDP is, then you probably don’t need to worry about
this module.

DNS
Contains functions for doing regular or reverse DNS lookups (e.g.
of a domain name to an IP address) and fetching DNS records
(e.g. A, CNAME, MX) for a domain.

http://www.refcardz.com
http://www.dzone.com

6 Node.js: Building for Scalability with Server-Side JavaScript

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

HTTP
This is the most important and most used module for a web
developer. Create HTTP servers and have them listen on a
given port. This also contains the request and response objects
that hold information about incoming requests and outgoing
responses. You can also use this to make HTTP requests from
your application and do things with their responses.

HTTPS
Contains functions for creating HTTPS servers or requests. This is
regular HTTP secured with SSL. See also the TLS/SSL module.

URL
Interact with URLs: parsing, formatting, resolving an absolute URL
from a relative URL with a base URL

Query String
Handle parsing or composing query string parameters (including
escaping/unescaping strings).

REPL
Short for read-eval-print-loop. You can add a REPL to your own
programs just like Node’s standalone REPL (which you get if you
run node with no arguments).

VM
Allows you to compile arbitrary JavaScript code and optionally
execute it new sandboxed context.

Child Processes
Functions for spawning new processes and handling their input
and output.

Assertion Testing
Basic facilities for writing and running unit tests.

TTY
Functions for interacting with TTYs. This will probably only be
useful to you if you’re writing Node programs to be run on the
console (e.g. devops or system administration scripts), rather than
accessed over the web via HTTP requests (web apps).

OS
Get information from the operating system. Your hostname, OS
name and type, uptime, load averages, memory, CPUs.

Debugger
You can access the V8 engine’s debugger with Node’s built-in
client and use it to debug your own scripts. Just launch node
with the debug argument (node debug server.js). See the
documentation for more usage details.

[1] http://shootout.alioth.debian.org/u32/benchmark.
php?test=all&lang=v8&lang2=yarv

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Continuous Delivery
CSS3
NoSQL
Android Application Development

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Written by a core contributor to the framework, Node: Up
and Running shows you how Node scales up to support
large numbers of simultaneous connections across multiple
servers, and scales down to let you create quick one-off
applications with minimal infrastructure. Built on the V8
JavaScript engine that runs Google Chrome, Node is
already winning the hearts and minds of many companies,
including Google and Yahoo! This book shows you why.

Pre-order it now!

Todd Eichel is a co-founder of Duostack, a cloud platform
for Node and Ruby applications. Prior to Duostack, Todd led
the development of a Pittsburgh-based local e-commerce
company, where he intensively developed his JavaScript and
Ruby expertise. Todd has a Master of Information Systems
Management degree from Carnegie Mellon University,
where he also earned his B.S. in Information Systems with an
additional major in Statistics.

When Todd isn’t working on apps in the cloud, he’s
flying through the clouds as a recreational pilot. He
currently resides in San Francisco. Find him online at http://
toddeichel.com/, on Twitter at http://twitter.com/toddeichel,
or on GitHub at https://github.com/tfe.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.amazon.com/gp/product/1449398588/ref=as_li_ss_tl?ie=UTF8&tag=toddeichelcom-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1449398588

