
• Auto-generate APIs from 
 data models

• Unlock enterprise data and 
 services including Oracle, MySQL,
 MongoDB, REST, SOAP, SQL Server, 
 ATG and more!

• Run LoopBack on premise or on over
 four supported clouds including
 Amazon, Heroku and Red Hat’s
 OpenShift

• Model business data and behavior

• API security and management

• iOS, Android and AngularJS 
 JavaScript SDKs to develop
 hybrid or native apps 

• Prebuilt mobile services like push,
 geolocation, user and files

• Open source and extensible 
 by design

• Create, manage and scale 
 Node clusters

• CPU, memory and heap profiling

• Memory leak detection

• Resource utilization

• Bottleneck identification

• Response times

• Event loop monitoring

• Debugging

• Log management

• Profiling

• Build and deploy

• Technical support

• Consulting

• Training

• Certification

For more information visit: strongloop.com

Connect devices 
to data with APIs 
developed in Node

Manage Node and
APIs in production

Node 
Expertise

LoopBack is an open source 
API Server powered by Node

Use StrongLoop API Server to 
monitor, optimize and scale Node 
apps

Technical support and 
consulting from the biggest 
contributors to Node v0.12

Node.js Products and Expertise 

               from the Biggest Contributors to v0.12

http://www.strongloop.com?dzone.com
http://marketing.strongloop.com/acton/attachment/5334/u-00aa/0/-/-/-/-/


  

DZone, Inc.  |   www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#141
N

o
d

e.
js

What is Node?

The official description according to the nodejs.org website is as follows:

“A platform built on Chrome’s JavaScript runtime for easily building fast, 
scalable network applications.”

Translation: Node runs on top of Google’s open source JavaScript engine 
called V8. It’s written in C++ and is used in Google’s Chrome browser. It’s 
fast!

“Uses an event-driven, non-blocking I/O model that makes it lightweight and 
efficient.”

Translation: Developing distributed, multi-threaded applications using 
traditionally synchronous languages can be complex and daunting, Node 
leverages JavaScript’s asynchronous programming style via the use of 
event loops with callbacks to make applications naturally fast, efficient, and 
non-blocking. If you know JavaScript, you already know quite a bit about 
Node!

“Perfect for data-intensive real-time applications that run across distributed 
devices.”

Translation: Many application performance problems stem from being 
I/O bound. Because Node is designed to be non-blocking and event driven 
when manipulating data, reading files or accessing APIs, it’s ideally suited to 
be distributed across multiple process and machines in a network. Popular 
uses for Node include web servers, API gateways and backends for mobile 
applications.

Because it’s not limited to one connection per thread like most web server 
architectures, Node scales to many thousands of concurrent connections. 
This makes it perfect for writing Mobile and Internet of Things APIs which 
must interact with many devices in small increments, often holding open a 
connection while the device connects over a slow network.

Node is JavaScript on the server

Node allows developers to write server-side applications in JavaScript. 
Server-side applications perform tasks that aren’t suitably performed on the 
client, like processing and persisting data or files, plus tasks like connecting 
to other networked servers, serving web pages and pushing notifications. 
Seeing that JavaScript is an incredibly popular language with web and 
mobile front-end developers, the ability to use this same skill to program 
server-side tasks, in theory, increases a developer’s productivity. It may also 
reduce the need for separate languages or code bases between front-end 
and backend applications.

How does Node work?

Synchronous vs asynchronous programming
C and Java traditionally use synchronous I/O, which means time is wasted 
waiting. You can get around this by writing multithreaded programs, but 
for some developers, writing these types of applications in a distributed 
networking environment can be daunting. Of course there is also the 
issue of the number of threads a system can actually spawn. Node by 
contrast is a single-threaded way of programming evented, non-blocking, 
asynchronous I/O applications.

Synchronous vs asynchronous: by analogy
In order to understand non-blocking I/O, let’s picture a common scenario. 
Suppose you are at a restaurant with friends.

A typical experience at a restaurant would be something like this:
• You sit at a table and the server grabs your drink order.
• The server goes back to the bar and passes your order to a bartender.
• While the bartender is working on your drink, the server moves on to grab 

another table’s drink order.
• The server goes back to the bar and passes along the other table’s order.
• Before the server brings back your drinks, you order some food.
• Server passes your food order to the kitchen.
• Your drinks are ready now, so the server picks them up and brings them 

back to your table.
• The other table’s drinks are ready, so the server picks them up and takes 

them to the other table.
• Finally your food is ready, so server picks it up and brings it back to your table.

Basically every interaction with the server follows the same pattern. First, 
you order something. Then, the server goes on to process your order and 
return it to you when it’s ready. Once the order is handed off to the bar or 
kitchen, the server is free to get new orders or to deliver previous orders that 
are completed. Notice that at no point in time is the server doing more than 
one thing. They can only process one request at a time. This is how non-
blocking Node.js applications work. In Node, your application code is like a 
restaurant server processing orders, and the bar/kitchen is the operating 
system handling your I/O calls. 

Your single-threaded JavaScript application is responsible for all the 
processing up to the moment it requires I/O. Then, it hands the work off to 
the operating system, which takes care of processing the rest. Back to our 
restaurant example, if every time the server got an order request they had 
to wait for the bar/kitchen to finish before taking the next request, then the 
service for this restaurant would be very slow and customers would most 
likely be unsatisfied. This is how blocking I/O works.

Event Loop concurrency model
Node leverages a browser-style currency model on the server. As we all 
know, JavaScript was originally designed for the browser where events are 
things like mouse movements and clicks. Moved to the server, this same 
model allows for the idea of an event loop for server events such as network 
requests. In a nutshell, JavaScript waits for an event and whenever that 
event happens, a callback function occurs. 
For example, your browser is constantly looping waiting for events like clicks 
or mouse-overs to occur, but this listening for events doesn’t block the 
browser from performing other tasks. On the server this might mean that 
instead of a program waiting to return a response until it queries databases, 

CONTENTS INCLUDE:

❱ What is Node?

❱ Architecture

❱ Install Node

❱ Node v 0.12

❱ API Guide

Node.js 
Server-Side JavaScript for Backends, API Servers and Web Apps

Brought to you by:

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.nodejs.org
http://marketing.strongloop.com/acton/attachment/5334/u-00aa/0/-/-/-/-/
http://www.strongloop.com?dzone.com


Node.js

DZone, Inc.  |   www.dzone.com

accesses files or connects to various APIs, it immediately moves on to the next 
unit of work until the event returns with whatever response was asked of it.
Instead of blocking entire programs waiting for I/O to complete, the event 
loop allows applications to move on and wait for events in order to continue 
the flow of the program. In this way Node achieves multitasking more 
efficiently than using threads.

Event Loop analogy
Think of event loops as some delivering mail. They collect the letters or 
events from the post office (server). These letters can be equated to events 
or incoming requests that need to be handled i.e. delivered. The letter 
carrier goes to every mailbox in his area and delivers the letters/events to 
the destination mailboxes. These destination mailboxes can be equated to 
JavaScript functions or downstream. 

The postman does not wait at the mailbox to receive a reply. When the user 
of the mailbox responds with a letter, on his routes, he picks it up. Every 
mailbox has a separate route and routes here can be thought of as the 
callback. Every incoming letter/request has a callback associated, so that 
a response can be sent anytime when ready (asynchronously) using the 
callback routes.

Event Loop code example
Let’s look at a simple example of asynchronously reading a file into a buffer. 
This is a two step process in which first there is a request to read the file, then a 
callback to handle the file buffer (or error) from the asynchronous file read.

var fs = require(‘fs’);
fs.readFile(‘my_file.txt’, function (err, data) {
	 if (err) throw err;
	 console.log(data);
});

The second argument to readFile is a callback function that runs after the 
file is read. The request to read the file goes through Node bindings to libuv. 
Then libuv gives the task of reading the file to a thread. When the thread 
completes reading the file into the buffer, the result goes to V8. It then goes 
through the Node Bindings in the form of a callback with the buffer. In the 
callback shown the data argument has the buffer with the file data.

Example of an HTTP server using Node:
var http = require(‘http’);

http.createServer(
 function (request, response) {
   response.writeHead(200, {‘Content-Type’: ‘text/plain’});
   response.end(‘Hello World\n’);
 }
).listen(8080);

console.log(‘Server running at http://localhost:8080/’);

Architecture

There are four building blocks that constitute Node. First, Node encap-
sulates libuv to handle asynchronous events and Google’s V8 to provide 
a run-time for for JavaScript. Libuv is what abstracts away all of the 
underlying network and file system functionality on both Windows and 
POSIX-based systems like Linux, Mac OSX and Unix. The core functional-
ity of Node, modules like Assert, HTTP, Crypto etc., reside in a core library 
written in JavaScript. The Node Bindings provide the glue connecting these 
technologies to each other and to the operating system.

 

What are the performance characteristics of Node?

Everyone knows benchmarks are a specific measurement and don’t account 
for all cases. Certainly, what and how you measure matters a lot. But there’s 
one thing we can all agree on: at high levels of concurrency (thousands of 
connections) your server needs to become asynchronous and non-blocking. 
We could have finished that sentence with IO, but the issue is that if any part 
of your server code blocks, you’re going to need a thread. At these levels of 
concurrency, you can’t go about creating threads for every connection. So, 
the whole code path needs to be non-blocking and async, not just the IO 
layer. This is where Node excels.

Here’s a collection of articles and blogs concerning Node  performance:

Node  Performance and Benchmarks

What is Node good for?

Web Applications
Node is becoming popular for web application because web applications 
are now slowly shifting from purely server-side rendering to single-page 
applications to optimize the user experience on the client side. 

Reasons why:
• Single page applications have the MVC paradigm self-contained within 

the browser so that the only server side interaction that is required can be 
through an efficient API for RPC invocation of server side functions and 
data behind the firewall or in the cloud

• Node’s rich ecosystem of npm modules allows you to build web 
applications front to back with the relative ease of a scripting language that 
is already ubiquitously understood on the front end

• Single Page Applications and Node are all built on the common dynamic 
scripting language of JavaScript

Examples of frameworks for Node:
• Express
• Sails.js
• Compound.js
• Flatiron.js
• Derby.js
• Socketstream.js
• Meteor
• Tower.js

Mobile Backends
Node is popular for backends, especially those required by mobile 
applications.  As an I/O library at its heart, Node’s ease of use has been 
applied toward the classic enterprise application use case to be able to 
gather and normalize existing data and services. 

Reasons why:
• As the shift toward hybrid mobile applications becomes more dominant 

in the enterprise, the re-use of code written in JavaScript on the client side 
can be leveraged on the server

• Node’s rich ecosystem has almost every underlying driver or connector to 
enterprise data sources such as RDBMS, Files, NoSQL, etc. that would be of 
interest to mobile clients

• Node’s use of JavaScript as a scripting language makes it easy to 
normalize data into mobile APIs

Examples of mobile backends built in Node:
• Parse (Proprietary)
• LoopBack (Open source)
• FeedHenry (Proprietary)
• Appcelerator Cloud Services (Proprietary)

API Servers
Node is popular for backends, especially those required by mobile applications.

Reasons why:
• Node utilizes JSON as the content-type for data modeling and for the data 

payload itself.  This lightweight format is already evolving to become the 
most dominant standard for REST APIs

• Node’s rich ecosystem consists of asynchronous libraries that can be easily 
utilized to handle massive concurrency for the API use case

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://github.com/joyent/libuv
http://strongloop.com/node-js/performance/
http://expressjs.com/
http://sailsjs.org/#!
http://compoundjs.com/
http://flatironjs.org/
http://derbyjs.com/
https://www.meteor.com/
https://www.meteor.com/
http://tower.github.io/
https://parse.com/
https://github.com/strongloop/loopback
http://www.feedhenry.com/
http://www.appcelerator.com/cloud/
http://www.strongloop.com?dzone.com


3

DZone, Inc.  |   www.dzone.com

Examples of open source API Servers built in Node:
• Restify
• Deployd
• LoopBack
• actionhero.js

How do I install Node?

The good news is that installers exist for a variety of platforms including 
Windows, Mac OS X, Linux, SunOS – and of course you can compile it 
yourself from source. Official downloads are available from the nodejs.org 
website: http://nodejs.org/download/

How can I make Node useful?

What is npm?
Node Package Manager (“npm”) is the command-line package manager 
for Node that manages dependencies for your application. npmjs.org is the 
public repository where you can obtain and publish modules.

How does npm work?
In order for your Node application to be useful, it is going to need things like 
libraries, web and testing frameworks, data-connectivity, parsers and other 
functionality. You enable this functionality by installing specific modules via npm.

There’s nothing to install to start using npm if you are already running Node 
v0.6.3 or higher. 

You can install any package with this command:
$ npm install <name of module>

Some popular and most used modules include:
express
A fast, unopinionated, minimalist web framework for Node. Express aims to 
provide small, robust tooling for HTTP servers, making it a great solution for 
single page applications, web sites, hybrids, or public HTTP APIs.
async
Async is a utility module which provides straightforward, powerful functions 
for working with asynchronous JavaScript. Although originally designed for 
use with Node, it can also be used directly in the browser. Async provides 
around 20 functions that include the usual ‘functional’ suspects (map, 
reduce, filter, each…) in addition to your async function.
request
A simplified HTTP request client. It supports HTTPS and follows redirects by 
default.
grunt
A JavaScript task runner that helps automate tasks. Grunt can perform 
repetitive tasks like minification, compilation, unit testing, linting, etc. The 
Grunt ecosystem is also quite large with hundreds of plugins to choose from. 
You can find the listing of plugins here.
socket.io
Socket.io makes WebSockets and real-time possible in all browsers and 
provides built-in multiplexing, horizontal scalability, automatic JSON 
encoding/decoding, and more.
mongoose
A MongoDB object modeling tool designed to work in an asynchronous 
environment. It includes built-in type casting, validation, query building, 
business logic hooks and more, out of the box.

What is new in Node v0.12?

Round-robin clustering 
Prior to v0.12, Node’s round-robin functionality didn’t distribute incoming 
connections evenly (although everyone expected it to). Node used an old 
technique which just about all web servers have used at one time or another. 
The way it typically worked was: a developer would bring up a server and 
start a few processes that would be made ready to accept new connections. 
Under the hood, when a new connection was required, all the processes 
would race to accept the connection. 
In theory, this sounded great and should have scaled well, but in practice 
most operating systems, specifically Linux-based systems, tried to defeat 
this scheme. 

Instead of every available process being considered for a connection, there 
was the tendency to pick the same process each the time. This meant that 
the load-balancing scheme didn’t work as efficiently as it could. Now, with 
the new round-robin scheme implemented in v0.12, the master process 
accepts all the connections and it decides which worker gets to send a 
response. 

For example:
var cluster = require(‘cluster’);

// This is the default:
cluster.schedulingPolicy = cluster.SCHED_RR;
// .. or Set this before calling other cluster functions.
cluster.schedulingPolicy = cluster.SCHED_NONE;

// Spawn as many workers as there are CPUs in the system.
for (var i = 0, n = os.cpus().length; i < n; i += 1)
 cluster.fork();

Note that the new round-robin scheme is on by default on all operating 
systems except for Windows. To learn more about the clustering feature, 
read the official docs and a technical blog by Node contributor Ben 
Noordhuis.

Multi-Context: running multiple instances in a single process
An oft-requested feature was the ability to embed Node.js in other 
applications, particularly in ways that let it integrate with other event loops 
and (“while you’re at it”) with support for multiple Node execution contexts: 
that is, the ability to have multiple instances of Node co-exist peacefully 
within the same process. Imagine a phone or network switch where it is 
performing routing logic for multiple connections, but in a single process and 
you’re not far off.

In Node v0.12 you can now use multiple execution contexts from within the 
same event loop. Don’t worry, from a user perspective, there are no visible 
changes, everything still works like before. But if you are an embedder or a 
native add-on author you should read a technical blog by Ben Noordhuis on 
how it works.

spawnSynch execSync
Although it might be a bit odd to think about adding these synchronous 
features to Node, many developers have been implementing various hacks to 
get precisely this type of synchronous behavior. execSync and spawnSync 
work by running a process, then blocking while it runs, and then exiting when 
the function returns. The motivation for putting this feature into v0.12 was 
that an increasing number of developers were using Node for more than just 
writing servers. 

For example, many developers are using Node as a replacement for shell 
scripting. Grunt is a perfect example of this. Grunt is like make, in that it 
allows you to run small tasks to set things up on your operating system. 
Under the hood it relies heavily on shelljs. Shelljs goes to great lengths to 
emulate execsyncc although Node doesn’t actually support it.

For example:
var child_process = require(‘child_process’);
var fs = require(‘fs’);

function execSync(command) {
 // Run the command in a subshell
 child_process.exec(command + ‘ 2>&1 1>output && echo done! > done’);

 // Block the event loop until the command has executed.
 while (!fs.existsSync(‘done’)) {
   // Do nothing
 }

 // Read the output
 var output = fs.readFileSync(‘output’);

 // Delete the output and done files
 fs.unlinkSync(‘output’);
 fs.unlinkSync(‘done’);

 return output;
}

The above code isn’t particularly efficient. As of v0.12, the execSync and 
spawnSync APIs are supported. How it works under the hood is: a nested 
loop is spawned in libuv, which only reads the output and sleeps when 
nothing is happening. For example: 

var spawnSync = require(‘child_process’).spawnSync;

var result = spawnSync(‘cat’,
                      [‘-’],
                      { input: ‘hello world!’,
                        encoding: ‘utf8’ });

console.log(‘exit code: %d’, result.exitCode);
console.log(‘output: %s’, result.stdout);
console.log(‘error: %s’, result.stderr);

Node.js

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
https://github.com/mcavage/node-restify
https://github.com/deployd/deployd
https://github.com/strongloop/loopback
http://actionherojs.com/
http://nodejs.org/download/
https://npmjs.org/
https://npmjs.org/package/express
https://npmjs.org/package/async
https://npmjs.org/package/request
https://npmjs.org/package/grunt
https://npmjs.org/package/socket.io
https://npmjs.org/package/mongoose
http://nodejs.org/api/cluster.html
http://strongloop.com/strongblog/whats-new-in-node-js-v0-12-cluster-round-robin-load-balancing/
http://strongloop.com/strongblog/whats-new-node-js-v0-12-multiple-context-execution/
http://gruntjs.com/
http://www.gnu.org/software/make/manual/make.html
http://www.strongloop.com?dzone.com


4

DZone, Inc.  |   www.dzone.com

To learn more about the spawnSync and execSync APIs, read this technical 
blog by Node contributor Bert Belder.

Profiling APIs
Prior to v0.12, profiling could only be enabled at startup and heap dumps 
required a native add-on. In the latest release, APIs have been added to 
address these issues so that if you wanted to monitor gc behavior for 
example, you could use the following:

var v8 = require(‘v8’);

v8.cpuProfiler.setSamplingInterval(1);
v8.cpuProfiler.start();

v8.on(‘gc’, function() {
 console.log(‘Garbage collection just happened!’);
});

To learn more about the profiling APIs, you can read this technical blog 
by Node contributor Ben Noordhuis that dives deep into the performance 
optimizations in the latest release.

Node API Guide

Below is a list of the most commonly used Node APIs. For a complete list 
and for an APIs current state of stability or development, please consult the 
Node API documentation. 

Buffer
Functions for manipulating, creating and consuming octet streams, which 
you may encounter when dealing with TCP streams or the file system. Raw 
data is stored in instances of the Buffer class. A Buffer is similar to an array 
of integers but corresponds to a raw memory allocation outside the V8 heap. 
A Buffer cannot be resized.

Child Process
Functions for spawning new processes and handling their input and output. 
Node provides a tri-directional popen(3) facility through the child_process 
module.

Cluster
A single instance of Node runs in a single thread. To take advantage of multi-
core systems, the user will sometimes want to launch a cluster of Node 
processes to handle the load. The cluster module allows you to easily create 
child processes that all share server ports.

Crypto
Functions for dealing with secure credentials that you might use in an 
HTTPS connection. The crypto module offers a way of encapsulating secure 
credentials to be used as part of a secure HTTPS net or http connection. It 
also offers a set of wrappers for OpenSSL’s hash, hmac, cipher, decipher, sign 
and verify methods.

Debugger
You can access the V8 engine’s debugger with Node’s built-in client and use 
it to debug your own scripts. Just launch Node with the debug argument 
(node debug server.js). A more feature-filled alternative debugger is node-
inspector. It leverages Google’s Blink DevTools, allows you to navigate 
source files, set breakpoints and edit variables and object properties, among 
other things.

Events
Contains the EventEmitter class used by many other Node objects. Events 
defines the API for attaching and removing event listeners and interacting 
with them. Typically, event names are represented by a camel-cased string; 
however, there aren’t any strict restrictions on case, as any string will be 
accepted. Functions can then be attached to objects, to be executed when 
an event is emitted. These functions are called listeners. Inside a listener 
function, the object is the EventEmitter that the listener was attached to. All 
EventEmitters emit the event newListener (when new listeners are added) 
and removeListener (when a listener is removed).

To access the EventEmitter class use:
require(‘events’).EventEmitter.

emitter.on(event, listener) adds a listener to the end of the listeners array 
for the specified event. For example:

server.on(‘connection’, function (stream) {
 console.log(‘someone connected!’);
});

This calls returns emitter, which means that calls can be chained.

Globals
Globals allow for objects to be available in all modules. (Except where noted 
in the documentation.)

HTTP
This is the most important and most used module for a web developer. It 
allows you to create HTTP servers and make them listen on a given port. It 
also contains the request and response objects that hold information about 
incoming requests and outgoing responses. You also use this to make HTTP 
requests from your application and do things with their responses. HTTP 
message headers are represented by an object like this:

{ ‘content-length’: ‘123’,
 ‘content-type’: ‘text/plain’,
 ‘connection’: ‘keep-alive’,
 ‘accept’: ‘*/*’ }

In order to support the full spectrum of possible HTTP applications, Node’s 
HTTP API is very low-level. It deals with stream handling and message 
parsing only. It parses a message into headers and body but it does not 
parse the actual headers or the body.

Modules
Node has a simple module loading system. In Node, files and modules are in 
one-to-one correspondence. As an example, foo.js loads the module circle.js 
in the same directory.

The contents of foo.js:
var circle = require(‘./circle.js’);
console.log( ‘The area of a circle of radius 4 is ‘
          + circle.area(4));

The contents of circle.js:
var PI = Math.PI;

exports.area = function (r) {
 return PI * r * r;
};

exports.circumference = function (r) {
 return 2 * PI * r;
};

The module circle.js has exported the functions area() and circumference(). 
To add functions and objects to the root of your module, you can add them 
to the special exports object. Variables local to the module will be private, as 
though the module was wrapped in a function. In this example the variable PI 
is private to circle.js.

Net
Net is one of the most important pieces of functionality in Node core. It 
allows for the creation of network server objects to listen for connections and 
act on them. It allows for the reading and writing to sockets. Most of the time, 
if you’re working on web applications, you won’t interact with Net directly. 
Instead you’ll use the HTTP module to create HTTP-specific servers. If you 
want to create TCP servers or sockets and interact with them directly, you’ll 
want to work with the Net API.

Process
Used for accessing stdin, stdout, command line arguments, the process 
ID, environment variables, and other elements of the system related to the 
currently-executing Node processes. It is an instance of EventEmitter. Here’s 
example of listening for uncaughtException:
process.on(‘uncaughtException’, function(err) {
 console.log(‘Caught exception: ‘ + err);
});

setTimeout(function() {
 console.log(‘This will still run.’);
}, 500);

// Intentionally cause an exception, but don’t catch it.
nonexistentFunc();
console.log(‘This will not run.’);

REPL
Stands for Read-Eval-Print-Loop. You can add a REPL to your own programs 
just like Node’s standalone REPL, which you get when you run node with no 
arguments. REPL can be used for debugging or testing.

Stream
An abstract interface for streaming data that is implemented by other Node 
objects, like HTTP server requests, and even stdio. Most of the time you’ll 
want to consult the documentation for the actual object you’re working with 

Node.js

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://strongloop.com/strongblog/whats-new-in-node-js-v0-12-execsync-a-synchronous-api-for-child-processes/
http://strongloop.com/strongblog/whats-new-in-node-js-v0-12-execsync-a-synchronous-api-for-child-processes/
http://strongloop.com/strongblog/performance-node-js-v-0-12-whats-new/
http://nodejs.org/api/
http://nodejs.org/api/buffer.html
http://nodejs.org/api/child_process.html
http://nodejs.org/api/cluster.html
http://nodejs.org/api/crypto.html
http://nodejs.org/api/debugger.html
https://npmjs.org/package/node-inspector
https://npmjs.org/package/node-inspector
http://nodejs.org/api/events.html
http://nodejs.org/api/globals.html
http://nodejs.org/api/http.html
http://nodejs.org/api/modules.html
http://nodejs.org/api/net.html
http://nodejs.org/api/process.html
http://nodejs.org/api/repl.html
http://nodejs.org/api/stream.html
http://www.strongloop.com?dzone.com


5

DZone, Inc.  |   www.dzone.com

rather than looking at the interface definition. Streams are readable, writable, 
or both. All streams are instances of EventEmitter.

VM
Allows you to compile arbitrary JavaScript code and optionally execute it in a 
new sandboxed environment immediately, or saved for each client and each 
server run later.

Developer Tools for Node

Below are some key tools widely adopted in the enterprise and in the 
community for developing Node applications:

Development Environments

Product/Project Features/Highlights

WebStorm - Code analysis
- Cross-platform
- VCS integration

Sublime Text - Goto anything
- Customizable
- Cross-platform

Nide - Project tree display
- Npm integration
- Command-line and Mac

Nodeclipse - Open source
- Built on Eclipse

Cloud9 IDE - Cloud-based
- Collaborative
- Debug and deploy

IntelliJ - Node plugin
- Code completion
- Code analysis

Application Performance Monitoring

Product/Project Features/Highlights

StrongOps - Error tracing
- Event loop response times
- Slowest endpoints

Product/Project Features/Highlights

New Relic - Error rates
- Transaction response times
- Throughput monitoring

AppDynamics - Error tracing
- Endpoint response time
- Historical metrics

Debugging

Product/Project Features/Highlights

V8 Debugger - Manual code injection
- Breakpoints
- Event exception handling

StrongOps – Node Inspector - Google Blink Dev-Tools based

Cloud9 IDE - Cloud-based
- Code completion
- Debug and deploy

WebStorm - Code analysis
- Cross-platform
- VCS integration

Nodeclipse - Code completion
- Built-on Eclipse
- Tracing and breakpoints

DTrace - SmartOS only
- Transaction tracing

Resources

• StrongLoop website

• StrongLoop technical blog

• Official Node website: nodejs.org

• Node downloads

• Node documentation

• Node on GitHub

• Official npm website: npmjs.org

• npm documentation

• Node Linkedin Group

Node.js

 

Having been programming since he was a little kid, Bert 
Belder got involved with open source when he started to 
port Node.js to Windows. It got him the core contributor 
badge, and he hasn’t left the project since. In 2012, Bert 
founded his company StrongLoop together with long-
time Node contributor Ben Noordhuis, in an effort to lead 
Node to world domination.

A B O U T  t h e  A ut  h o r R e c o m m e n d e d  B oo  k

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com 

Sponsorship Opportunities 

sales@dzone.com 

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior 
written permission of the publisher. 

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to 
more than 3.3 million software developers, architects and decision 
makers. DZone offers something for everyone, including news, 
tutorials, cheat sheets, blogs, feature articles, source code and more. 
“"DZone is a developer's dream",” says PC Magazine.

This book introduces you to Node, the new web development 
framework written in JavaScript. You’ll learn hands-on how 
Node makes life easier for experienced JavaScript developers: 
not only can you work on the front end and back end in the 
same language, you’ll also have more flexibility in choosing 
how to divide application logic between client and server.

BUY NOW

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://nodejs.org/api/events.html#events_class_events_eventemitter
http://nodejs.org/api/vm.html
http://www.jetbrains.com/webstorm/
http://www.sublimetext.com/2
http://coreh.github.io/nide/
http://www.nodeclipse.org/
https://c9.io/
http://www.jetbrains.com/idea/
http://strongloop.com/node-js-performance/strongops/
http://newrelic.com/nodejs
http://www.appdynamics.com/solutions/nodejs-monitoring
https://code.google.com/p/v8/wiki/DebuggerProtocol
https://github.com/node-inspector/node-inspector
https://c9.io/
http://www.jetbrains.com/webstorm/
http://www.nodeclipse.org/
http://dtrace.org/
http://strongloop.com/
http://strongloop.com/strongblog/
http://nodejs.org/
http://nodejs.org/download/
http://nodejs.org/api/
https://github.com/joyent/node
https://npmjs.org/
https://npmjs.org/doc/
http://www.linkedin.com/groups/Nodejs-2906459
https://github.com/piscisaureus
https://github.com/piscisaureus
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.strongloop.com?dzone.com
http://shop.oreilly.com/product/9780596004194.do
http://chimera.labs.oreilly.com/books/1234000001808/pr03.html#chap0_id35817089

