

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#144
E

cl
ip

se
Li

n
k

JP
A

:
A

n
 a

d
va

n
ce

d
 O

R
M

 P
e

rs
is

te
n

ce
 F

ra
m

e
w

o
rk

CONTENTS INCLUDE:
n	 What is EclipseLink
n	 Caching
n	 Query Extensions
n	 Mappings
n	 Connections
n	 Hot Tips and more...

By Gordon Yorke

EclipseLink JPA
An Advanced ORM Persistence Framework

WHAT IS ECLIPSELINK?

Focused on standards, EclipseLink delivers a comprehensive open-
source Java persistence solution with implementations of Java
Persistence API (JPA), Java Architecture for XML Binding (JAXB), and
Service Data Objects (SDO). EclipseLink also offers many advanced
features to aid users with their applications.

EclipseLink JPA
The focus of this Refcard is EclipseLink’s object to relational
mapping functionality and its extensions of the Java Persistence API
specification. This card assumes you are already familiar with the Java
Persistence API.

EclipseLink has been JPA 1.0 (JSR 220) certified and is the reference
implementation for JPA 2.0 (JSR 317). An offshoot of the code base
called TopLink Essentials was the reference implementation for JPA
1.0 (JSR 220).

How do I get it?
Jars and Bundles
EclipseLink is available in two forms: a single eclipselink.jar file that
contains all that is needed to use any of the EclipseLink functionality
or OSGi bundles for each of the EclipseLink component modules.

Download these from: http://www.eclipse.org/eclipselink/downloads

Maven
There are many versions and component module bundles available
in the EclipseLink maven repository. Each component module has
its own artifactId. For a comprehensive view of what is available, see
http://wiki.eclipse.org/. If you just want the eclipselink.jar file, here
are example pom.xml entries:
<dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>2.2.0</version>
 <scope>compile</scope>
 ...
 </dependency>
</dependencies>

<repositories>
 <repository>
 <id>EclipseLink Repo</id>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>
 </repository>
 ...
</repositories>

How to use it
Java EE and SE
The eclipselink.jar file or combinations of the OSGi bundles can
be treated like normal JAR files and placed in the classpath of your
application or server lib.

In a Java EE compliant server, the eclipselink.jar can be bundled in
the WAR or EAR file if not already present within the server library.

It is a good practice to place the javax.persistence jar file with the
EclipseLink jar.

OSGi Environments
To run in a true OSGi environment, the recommended approach is to
download the bundles from the Gemini JPA project. These bundles

include implementations of the OSGi specification that support
dynamic access to the Persistence Providers.

Download the bundles from http://www.eclipse.org/gemini/jpa/.
Within the download, there is a GettingStarted.txt file that will help
you work through the details of deploying in an OSGi environment.

Weaving
When deployed within a Java EE server or other SPI supporting
servers, EclipseLink has an opportunity to enhance the java classes
automatically. This enhancement step, referred to as “weaving”,
allows EclipseLink to provide many optimizations and improve
functionality. For instance, EclipseLink can offer lazy OneToOne and
ManyToOne relationships, on-the-fly change tracking and dynamic
fetch groups with weaving.

If you are deploying EclipseLink in an environment where weaving
is not automatic (as is the case in Java SE), there are two options for
enabling weaving.

The first and easiest way to enable weaving is to use the -javaagent:
Virtual Machine argument providing the location of the eclipselink.jar.
With the java agent specified, EclipseLink will automatically handle
weaving of the Entities.
java –javaagent:../lib/eclipselink.jar …

The second way to enable weaving is to use the “static weaver”. The
static weaver is a compile time step that is useful in situations where
runtime weaving is not available or not desirable.
java org.eclipse.persistence.tools.weaving.jpa.StaticWeave -classpath c:\my-pu-
jar.jar;<other classpath entries> c:\my-pu-jar.jar c:\my-pu-jar-woven.jar

The Static Weave tool can run against directories as well as jars. If the
persistence.xml is in a non-standard location, the –persistenceinfo
argument can be used to point to the persistence.xml file.

When using static weaving, the Persistence Unit property
“eclipselink.weaving” should be set with a value of “static”.

Details on other advanced weaving properties can be found here:
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)

2 EclipseLink JPA: An Advanced ORM Persistence Framework

DZone, Inc. | www.dzone.com

Canonical Metamodel
With Java Persistence API 2.0 came the Criteria API for dynamically
defining queries. One of the components of the Criteria API is the
Canonical Metamodel. The Canonical Metamodel is a collection
of generated classes whose static attributes allow a query writer to
reference strongly typed Entity metadata for the definition of strongly
typed Criteria queries.
criteriaQuery.from(Employee.class).join(Employee_.phoneNumbers);

Many IDEs, including Eclipse through the Dali project, can generate a
Canonical Metamodel for you. However, if this is unavailable, EclipseLink
can easily generate these classes during compile time by simply adding
the eclipselink-jpa-modelgen_<version>.jar to the javac classpath. For
advanced or non-standard usage, the Canonical Metamodel generator
has numerous options that are detailed in the EclipseLink user guide.

Feature Extensions
Many of EclipseLink’s extensions have been exposed through
annotations and custom xml elements as well as through custom
APIs. The classes org.eclipse.persistence.jpa.JpaQuery and
org.eclipse.persistence.jpa.JpaEntityManager provide many
of the API extensions. org.eclipse.persistence.jpa.JpaHelper
has many static methods to help unwrap the Java Persistence
API artifacts.

eclipselink-orm.xml
The eclipselink-orm.xml contains the Eclipselink annotation
extensions mentioned in this document in xml format. This file
is placed on the application class path at the same locations as
the specification defined orm.xml. All Java Persistence API xml
and EclipseLink extensions can be defined in this single file or a
combination of orm.xml and eclipselink-orm.xml and annotations.

Hot
Tip

All EclipseLink annotations have corresponding elements in the
eclipselink-orm.xml file.

CACHING

Caching provides very efficient data retrieval and can greatly improve
your application’s performance. Caching is a “first class” feature
in EclipseLink and is an integral part of the product. By default, all
Entities are cached as fully realized POJOs.

Hot
Tip

When updating a bi-directional relationship (OneToMany/ManyToOne
or ManyToMany), ensure both Entities are updated. Setting only
the “owning” ManyToOne or ManyToMany mapping will result in
Entities missing from the OneToMany collection when retrieved
from the cache.

Configuring the Cache
Using the Java Persistence APIs, you can configure the cache at the
Entity level with the @Cacheable annotation and corresponding XML.
Using EclipseLink’s cache framework, you can finely configure each
Entity using the @Cache annotation.

@Cache Attributes
type cache type.

isolation Degree to which cached instances are shared with other threads.

expiry Invalidates cache entries after a fixed number of milliseconds.

expiryTimeOfDay Invalidates cache entries at specific time of day.

alwaysRefresh Update cache with any data retrieved from the database. Generally
used by queries that can not be executed against the cache.

refreshOnIyIfNewer Used with the above but only refresh if the database version is newer
than the cached version.

disableHits This will force all queries to execute against the database but
return results from the cache. Can be used in combination with
“alwaysRefresh”.

coordinationType Strategy for communicating instance changes to coordinated
nodes. Cache Coordination services must be configured at the
EntityManagerFactory level.

EclipseLink Cache Types
CacheType.FULL Will cache all Entity instances indefinitely.

CacheType.SOFT Cache uses SoftReference to hold Entities so Cache size is as
large as VM allows.

CacheType.WEAK Cache uses WeakReference to hold entities so cache size
is dependent on how many Entities are referenced by the
application.

CacheType.SOFT_WEAK Recommended. A cache of specific size that uses SoftReference
to hold a specified number of Entities. Remaining Entities are
held by weak references.

CacheType.HARD_WEAK Recommended. A cache of specific size that uses “hard”
references to hold a specified number of Entities. Remaining
Entities are held by weak references.

CacheType.CACHE Legacy cache type that is not generally recommended. Can
be used by Entities that are not referenced by any other Entity.
Cache has an absolute fixed size.

CacheType.NONE Legacy and Not Recommended. Can be used by Entities that
are not referenced by any other Entities. No caching occurs.

What to Cache
Caching can also introduce some challenges to your application.
Choosing what and how much to cache is one of the first steps.
Take into consideration the volatility of the data, who is changing
the data, how distributed the application is, and how sensitive the
application is to stale data.

Stale Data
Stale data occurs when a client has a view of the data that has
been changed since it was read. A concurrent application will
always have some amount of stale data, regardless of caching, as
concurrent clients update the data after other clients have read the
data. Generally, an EclipseLink cache does not increase exposure
to stale data; however, additional servers, virtual machines, or third-
party updates to the data will require a plan. This plan will be a
combination of cache size and cacheability of entities combined with
appropriate locking, refreshing, and invalidation policies.

Cache Invalidation Policies
EclipseLink offers automatic refreshing of Entites based on a time of
day or age within the cache. @Cache(expiry=<ms>) can be used to
specify the age in milliseconds after which Entities of this type will
need to be refreshed. @Cache(expiryTimeOfDay=@TimeOfDay(hour,
minute, second)) can be used to specify a time of day (for instance,
after a third-party nightly batch process has run) after which all
Entities within the cache become invalid. Invalid Entities are
automatically refreshed by EclipseLink as they are queried.

Refreshing
Once a version conflict has been detected or to ensure a stale data
sensitive operation has the latest data, the application can request a
refresh of the latest data from the database. The EclipseLink Query
Hint “eclipselink.refresh” can be used in combination with queries or
EntityManager find and lock operations to cause the refresh to occur
more efficiently.

Cache Coordination
In an environment where multiple instances of the application
are deployed, EclipseLink can coordinate the caches of those
applications with simple configuration. With cache coordination,
active EclipseLink nodes will broadcast either a summary of the
changes made to an Entity or just the Entity id, for invalidation, to
the other connected caches. With this functionality, the number of
Optimistic Lock exceptions experienced can be reduced, which
allows an active application to continue to benefit from caches.

Cache coordination is activated through Persistence Unit
properties. First, the protocol is set through

3 EclipseLink JPA: An Advanced ORM Persistence Framework

DZone, Inc. | www.dzone.com

eclipselink.cache.coordination.protocol:

jms Sends and receives changes through a JMS Topic.

jms-publish Sends changes through JMS, receive through Message Driven Bean.

rmi Uses a fully connected RMI graph to send and receive changes.

rmi-iiop Same as above but uses RMI-IIOP transport protocols.

Additional configuration is completed based on the protocol selected:
<properties>
 …
 <property name=”eclipselink.cache.coordination.protocol” value=”jms” />
 <property name=”eclipselink.cache.coordination.jms.host” value=”t3://
localhost:7001/” />
 <property name=”eclipselink.cache.coordination.jms.topic” value=”jms/
EclipseLinkTopic” />
 <property name=”eclipselink.cache.coordination.jms.factory” value=”jms/
EclipseLinkTopicConnectionFactory” />
…
</properties>

Distributed Caches
Although there are no provided integrations with distributed caches
within the EclipseLink project, the ability to connect to distributed
caches is available through org.eclipse.persistence.sessions.
interceptors.CacheInterceptor and @CacheInterceptors. Oracle’s
TopLink Grid product, which integrates with Oracle Coherence,
leverages this functionality.

Dealing with Multiple Clients
With multiple clients updating and reading data at the same time, it
is important to prevent any data corruption when users update stale
data or perform updates based on related stale data.

Optimistic Locking
Versioning each set of updates to an Entity and tracking and
comparing those versions is one way to prevent updating stale
data. The Java Persistence API provides tracking the version of an
Entity through an attribute of the Entity. EclipseLink also provides
the functionality to store the version value for the user outside of
an Entity class. This can be useful when users do not want to
expose versioning within the Entity. It is currently configured
through a @DescriptorCustomizer.

The Java Persistence API offers only two supported types of
versioning: integer and timestamp mapped to a single attribute.
Through the @OptimisticLocking annotion, Eclipselink also supports
multi-field locking. With multi-field locking, a set list of fields,
changed fields, or all fields can be compared to determine the
version of an Entity. This is useful in legacy systems where a version
column has not been made available.

Not Caching Relationships
An extension to the normal entity cache configuration allows the
developer to mark a relationship so that EclipseLink will not cache
it. As an extension to the normal Entity cache configuration the
@Noncacheable annotation can mark a relationship so that it will not
be cached. Each time the Entity is loaded into a Persistence Context,
the relationship will be rebuilt. This can be useful if different users
have different access rights or if you always want the relationship to
be refreshed.
@Noncacheable
@OneToOne
protected EntityB entityB;

QUERY EXTENSIONS

EclipseLink has many advanced query features that provide far more
flexibility than what is currently in the Java Persistence specification.
These features are easily accessible through Query Hints.

Caching Query Results
If your application repeatedly executes the same queries and these
queries are expected to return the same results, EclipseLink can cache
the query results. Cached query results eliminate the need to query
the database, which greatly improves throughput. As with the Entity

cache, the Query cache can be configured for size and to auto-expire.

The Query Cache can be configured through Query Hints within the
Java Persistence API.

eclipselink.query-results-cache Activates the query cache for this query.

eclipselink.query-results-cache.type Has same cache types as the Entity cache
but the default for the Query cache is
CacheType.cache.

eclipselink.query-results-cache.size Sets a cache size if appropriate.

eclipselink.query-results-cache.expiry Expires cache entries after a fixed
number of milliseconds.

eclipselink.query-results-cache.expiry-time-of-day Expires cache entries at specific time
of day.

Bulk Reading
If your application needs to read in multiple related Entities it can be
far more efficient to read these Entities in a few queries rather than
issue multiple separate queries for each relationship and query result.
Java Persistence API allows for limited bulk reading using the JOIN
FETCH construct in JPQL. However, EclipseLink offers both nested
joins and Batch reading.

Join Fetch
Using the Query Hint eclipselink.join-fetch and a simple dot
notation, an application can request multiple levels of Entities to
be join fetched.
Query query = entityManger.createQuery(
 “SELECT e FROM Employee e WHERE …”);
query.setHint(“eclipselink.join-fetch”, “e.department.address”);

This example will select the Employee, the employee’s
Department, and the department’s Address in a single query.

Batch Reading
EclipseLink has an additional bulk reading feature called Batch
Reading. Using Join Fetch can often require significant resources as
a great deal of duplicate data is returned (for instance, when joining
in a OneToMany relationship). Querying the related data using Batch
Reading can be more efficient. Batch Reading will query for the root
Entity and then use a subsequent query to load the related data.
Although there is an additional query, it reduces the number of joins
on the database and the amount of data returned.
Query query = entityManger.createQuery(
 “SELECT e FROM Employee e WHERE …”);
query.setHint(“eclipselink.batch”, “e.phoneNumbers”);

Hot
Tip

Batch Reading can be used in combination with Join Fetch for
optimized bulk reading.

Stored Procedures
Executing a Stored Procedure through EclipseLink’s Java
Persistence API extensions is as easy as defining a Named Stored
Procedure query.
@NamedStoredProcedureQuery(
 name=”SProcAddress”,
 resultClass=models.jpa.advanced.Address.class,
 procedureName=”SProc_Read_Address”,
 parameters={
 @StoredProcedureParameter(
 direction=IN_OUT,
 name=”address_id_v”,
 queryParameter=”ADDRESS_ID”,
 type=Integer.class),
 @StoredProcedureParameter(
 direction=OUT,
 name=”street_v”,
 queryParameter=”STREET”,
 type=String.class)
 }
)

This query is then called using the Java Persistence APIs.
Query aQuery = em.createNamedQuery(“SProcAddress”)

A call to getResultList() will return a collection of Address entities
through the Stored Procedure’s result set. If no resultset is returned,

4 EclipseLink JPA: An Advanced ORM Persistence Framework

DZone, Inc. | www.dzone.com

EclipseLink can build Entity results from the output parameters if the
resultClass or resultSetMapping is set.

The Direction.OUT_CURSOR is used for stored procedure
parameters that are returning resultsets through “ref cursors”.

If both result sets and output parameters are returned by the
stored procedure, then a SessionEventListener that responds
to outputParametersDetected should be registered with the
EntityManagerFactory and the output parameters will be returned
through this event.

Fetch Groups
Lazy attributes can make queries more efficient by delaying the
loading of data. EclipseLink offers a feature called Fetch Groups that
allows you to define multiple lazy attribute configurations and apply
those on a per-query basis. Attributes are fully lazy accessible, and
accessing an unfetched attribute will cause the Entity attributes to be
loaded as per the static lazy configuration from the Entity metadata.

Configuration
Fetch Groups can be created statically using @FetchGroup.
@FetchGroups({
 @FetchGroup(
 name=”FirstLast”,
 attributes={
 @FetchAttribute(name=”first”),
 @FetchAttribute(name=”last”)
 }
),
 @FetchGroup(
 name=”LastName”,
 attributes={@FetchAttribute(name=”lastName”)}
)
})

They are then applied to the query through the use of Query Hint.
query.setHint(QueryHints.FETCH_GROUP_NAME, “FirstLast”);

Fetch Groups can also be created and used at runtime…
FetchGroup fetchGroup = new FetchGroup(); fetchGroup.addAttribute(“lastName”);
query.setHint(QueryHints.FETCH_GROUP, fetchGroup);

Other Fetch Group query hints are available as well to provide
fine-grained configuration. Details can be found in the QueryHints
javaDocs.

Hot
Tip

Have multiple Persistence Contexts in the same transaction? If
any are performing transactional writes, ensure you disable an
EclipseLink optimization with the Entity Manager property eclipselink.
transaction.join-existing so all queries will access transactional data.

Cursors
When reading a large dataset, the application may wish to stream the
results from a query. This is useful if the dataset is quite large. Using
the query hint “eclipselink.cursor” set to “true”, EclipseLink will return
a org.eclipse.persistence.queries.CursoredStream, which will allow
the results to be retrieved iteratively from the database.

Hot
Tip

Need to load a large dataset and want to bypass the Persistence
Context to save heap space? Use the Query Hint “eclipselink.read-
only” and the results of the Query will not be managed.

Query Redirectors
Should an application have the need to dynamically alter a query or
execute a query against another resource, Query Redirectors can
be used. A redirector implements a simple interface org.eclipse.
persistence.queries.QueryRedirector, and the developer of the
Redirector is free to do most anything. Any cache maintenance will
have to occur within the Redirector if the query is executed against
another resource.

Configuration
Query Redirectors can be set through the Query Hint eclipselink.
query.redirector or set as default Redirectors on an Entity.

@QueryRedirectors(
 allQueries=org.queryredirectors.AllQueriesForEntity.class)
@Entity
public class …

Default Redirectors will be called every time a query is executed
against this Entity type. Default Redirectors can be configured per
Entity by Query type as well.

MAPPINGS

Converters
Sometimes the data in the database column does not match the
type of the corresponding Entity attribute. EclipseLink can handle
simple conversion for @Basic mappings like Number to String but
what if the conversion is more complicated? This is where converters
can be useful. With a converter, custom bi-directional conversion can
occur between the database and the Entity attributes. Converters are
supported on @Basic mappings and primitive @ElementCollections.

EclipseLink offers some predefined converters that support
commonly occurring conversions:

@ObjectTypeConverter Maps column values to attribute values (ie, “t” -> True).

@TypeConverter Converts database type to Java type. Useful for ElementCollections.

@StructConverter Converts from Database Struct type. JGeometry has built in support.

For truly custom conversions, the @Converter that references an
implementation of the org.eclipse.persistence.mappings.converters.
Converter interface can be specified.

Converters can be set directly on the mapping through the
corresponding annotation, or a Converter can be defined at the
Entity level and referenced by name through @Convert. If the
ElementCollection is a Map type, then a Converter can be applied to
the Map’s Key through @MapKeyConvert.
@TypeConverter(
 name=”Long2String”,
 dataType=String.class,
 objectType=Long.class
)
@ObjectTypeConverter(
 name=”CreditLine”,
 conversionValues={
 @ConversionValue(dataValue=”RB”,
 objectValue=ROYAL_BANK),
 @ConversionValue(dataValue=”CIB”,
 objectValue=CANADIAN_IMPERIAL),
 @ConversionValue(dataValue=”SB”,
 objectValue=SCOTTSBANK),
 @ConversionValue(dataValue=”HD”,
 objectValue=HALIFAX_DOWNTOWN)
 }
)
@Entity
public class Entity …
 @ElementCollection
 @MapKeyColumn(name=”BANK”)
 @Column(name=”ACCOUNT”)
 @Convert(“Long2String”)
 @MapKeyConvert(“CreditLine”)
 public Map<String, Long> getCreditLines() {
 return creditLines;
 }

Interface Attribute Types
If an application has single-valued Entity attributes that are interface
types, EclipseLink’s VariableOneToOne mapping can be used to
map these attributes as a polymorphic relationship. This mapping
type uses a discriminator column similar to Java Persistence API
inheritance support; but, in this case, the discriminator is found on
the source table.
 @VariableOneToOne(
 targetInterface=Distributor.class,
 cascade=PERSIST,
 fetch=LAZY,
 discriminatorColumn=@DiscriminatorColumn(
 name=”DISTRIBUTOR_TYPE”,
 discriminatorType=INTEGER),
 discriminatorClasses={
 @DiscriminatorClass(discriminator=”1”,
 value=MegaBrands.class),
 @DiscriminatorClass(discriminator=”2”,
 value=Namco.class)
 }
)
 public Distributor getDistributor() {
 return distributor;
 }

5 EclipseLink JPA: An Advanced ORM Persistence Framework

DZone, Inc. | www.dzone.com

To execute queries with path expressions that include an interface
mapping, a Query Key must be defined on the Interface descriptor.
Currently, this must done using a SessionCustomizer. Details on
Query Keys can be found here: http://wiki.eclipse.org/EclipseLink/
UserGuide/JPA/Basic_JPA_Development/Querying/Query_Keys

Additional Filtering Criteria
Need to support multi-tenancy, temporal filtering or any number
of other use cases where an application has a query restriction
that needs to be applied to the restrictions on all queries?
@AdditionalCriteria can be applied to an Entity class to specify
that additional filtering occurs for any queries on that type. When
specifying the path in an AdditionalCriteria, the identification
variable “this” is used to identify the root of the query.
@AdditionalCriteria(“this.role = :accessRole”);
@Entity
public class EntityA {…}

Additional Criteria supports parameters, and parameter values can
be set at the EntityManagerFactory or EntityManager levels.

entityManager.setProperty(“accessRole”, “bravo”);

Hot
Tip

Combine Additional Criteria with @Noncacheable relationships to
provide EntityManager scoped user data.

Return On Insert/Update
If the database has triggers that return data to the calling client, the
@ReturnInsert / @ReturnUpdate annotations can be applied to the
corresponding @Basic mappings to have EclipseLink apply the return
value to the Entity.

The result from the database will be parsed for the mappings field
and the value placed in the attribute.
@ReturnInsert(returnOnly=true)
@Basic
protected long id;

CONNECTIONS

Partitioning
If an application needs access to multiple databases (perhaps for
load balancing or data affinity), EclipseLink has functionality called
Partitioning that will allow many schemes for accessing multiple
databases.

With partitioning, users can “stripe” data across multiple databases
or schemas by Entity field value or by Entity type.
@RangePartitioning, @HashPartitioning, @PinnedPartitioning, @ValuePartitiong

Other Partitioning Policies are available for load balancing or
replication across multiple databases or schemas.
@ReplicationPartititoning, @RoundRobinPartitioning, @UnionPartitioning

Entirely custom policy implementations are also an option. If users
need certain processing that can not be found in the pre-existing
partitioning implementations the PartitioningPolicy can be extended
and a custom Policy specified using @Partitioning.

An example of an Entity’s partitioning configuration follows:
@Entity
@Table(name = “PART_DEPT”)
@HashPartitioning(
 name=”HashPartitioningByID”,
 partitionColumn=@Column(name=”ID”),
 unionUnpartitionableQueries=true,
 connectionPools={“node2”, “node3”})
@UnionPartitioning(
 name=”UnionPartitioningAllNodes”,
 replicateWrites=true)
@Partitioned(“HashPartitioningByID”)
public class Department implements Serializable {

VPD, Proxy Authentication
If an application needs to access a database when proxy

authentication or row level security is required, EclipseLink has
easy-to-use configuration that will allow “authentication” of the
connection.

For Proxy Authentication, provide the necessary Persistence Unit
properties to the EntityManagerFactory or EntityManager and
EclipseLink will ensure the connection acquired from the datasource
will be “authenticated”.
Map emProperties = new HashMap();
emProperties.put(“eclipselink.oracle.proxy-type”,
 OracleConnection.PROXYTYPE_USER_NAME);
emProperties.put(OracleConnection.PROXY_USER_NAME, “john”);
EntityManager em = emf.createEntityManager(emProperties);

Or in the case of injection:
entityManager.setProperty(“eclipselink.oracle.proxy-type”,
 OracleConnection.PROXYTYPE_USER_NAME);
entityManager.setProperty(OracleConnection.PROXY_USER_NAME, “john”);

For Virtual Private Database (VPD) or manual “authentication”,
a Session Event exists “postAcquireExclusiveConnection” that
will be called whenever EclipseLink acquires a connection for
“authentication”. This event can be used to provide any required
details to the connection like a ClientIdentifier.

An additional property that specifies when EclipseLink must use the
“authenticated” connection is required for both VPD type and Proxy
authentication. “eclipselink.jdbc.exclusive-connection.mode” should
be set to “Isolated” if all Entities corresponding to secured tables
have been set to @Cacheable(false) or to “Always” otherwise .

Connection Pooling
When deploying an EclipseLink application in an environment
without managed datasources, EclipseLink offers built-in connection
management. Configuring connection pooling can be as simple as
setting the Persistence Unit Properties using “eclipselink.connection-
pool. “ during creation of the Entity Manager Factory. There are many
connection pool properties combinations that can be found in the
JavaDocs.

OTHER POPULAR EXTENSIONS

Persistence Context Memory Management
If a Persistence Context tends to have a long lifecycle within an
application, managing the size of the Persistence Context can be
difficult. EclipseLink can allow an application to leverage the Java
garbage collector and remove Entities from the Persistence Context
that are no longer in use by the application. This is done through the
EntityManager property “eclipselink.persistence-context.reference-
mode”. Possible values are:

 • HARD - the default and ensures no Entities will be removed from the Persistence Context
automatically.

 • WEAK – in combination with weaving, ensures any Entities with changes will not be removed
from Persistence Context; but other unreferenced Entities may be removed.

 • FORCED_WEAK – any unreferenced Entities may be removed from the Persistence Context
by the garbage collector. Changes in these Entities will be lost if not already flushed.

Batch Writing
EclipseLink supports writing to the database using batched writes.
This is configured through the Persistence Unit property “eclipselink.
jdbc.batch-writing” and should be used in combination with
parameter binding, which is active by default. Possible values for the
property are:

 • JDBC – this uses standard JDBC batch writing and should be used in most cases.

 • Oracle-JDBC – use native Oracle database batch writing.

Customizers
EclipseLink has a great depth to its functionality. Although the most
popular features are available, not all of the EclipseLink functionality
is exposed through JPA extensions. “Customizers” are a simple
mechanism that exposes internal EclipseLink customization to Java
Persistence API applications.

6 EclipseLink JPA: An Advanced ORM Persistence Framework

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

Both EntityManagerFactory level customizers, called Session
Customizers, and Entity level mapping customizers, called Descriptor
Customizers, are available.

To use a Session Customizer, the Persistence Unit property
“eclipselink.session.customizer” is used to specify an implementor of
the interface org.eclipse.persistence.config.SessionCustomizer.

To use a Descriptor Customizer, a Persistence Unit property
“eclipselink.descriptor.customizer.<entity name>” or @Customizer
is used to specify a class that implements the interface org.eclipse.
persistence.config.DescriptorCustomizer.

Event Listeners
EclipseLink has far more events available than those specified by
Java Persistence API. Events are available on query execution, Entity
Manager Factory creation, stored procedure output parameter
results, connection acquisition, precise Entity lifecycle events, and at
many other points during a running application.

Entity Listeners
The easiest listeners to use in Java Persistence are the Entity Listeners.
These listeners (such as aboutToUpdate, postUpdate, postDelete,
etc) provide events at points during an Entity’s lifecycle. Events like
these can be useful to implement auditing or client notification. To
receive the event notification, the interface org.eclipse.persistence.
descriptors.DescriptorEventListener is implemented or org.eclipse.
persistence.descriptors.DescriptorEventAdaptor is extended for the
desired events. Then using @EntityListeners, these listener classes are
provided to EclipseLink.

Entity Manager Factory Listeners
The Entity Manager Factory Listeners are referred to as
SessionEventListeners in EclipseLink. These listeners are notified
for more general process notifications, like connection acquisition

that is used for VPD; transaction events like preRollbackTransaction;
EntityManager process events like postCalculateChanges that are
fired after flush but before writes have begun; query execution events
like outputParametersDetected for Stored Procedure execution; and
many more events.

To receive notification of these events, a custom class is created that
implements org.eclipse.persistence.sessions.SessionEventListener
or extends org.eclipse.persistence.sessions.SessionEventAdaptor
for the desired events. Then the listener is set on the Entity Manager
Factory through the Persistence Unit property “eclipselink.session-
event-listener”.

RESOURCES

Community
EclipseLink is a very powerful product with many customization and
extension points, all of which could not possibly be covered in a
Refcard. For more information or help using a feature, EclipseLink
has an active and helpful community. Help can always be found
using eclipselink-users@eclipse.org or the forums http://www.eclipse.
org/forums/index.php?t=thread&frm_id=111. A comprehensive
User Guide can be found here: http://wiki.eclipse.org/EclipseLink/
UserGuide

Enhancements and Feedback
Because EclipseLink is an open-source project, new feature
development, designs, and bug reports are available for review and
feedback. eclipselink-dev@eclipse.org is an active mailing list, and
all feature development is tracked using wiki http://wiki.eclipse.org/
EclipseLink/Development and the bug database https://bugs.eclipse.
org/bugs

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
Continuous Delivery
CSS3
NoSQL
Android Application Development

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Gordon Yorke is an EclipseLink Architecture Council
member and committer, JSR 317 & JSR 338(JPA 2.0 &
2.1) Expert Group member and a long time developer
of EclipseLink and its past permutations. With over 11
years of ORM framework experience Gordon brings a
wealth of knowledge on object-relational persistence,
data-access and caching.

Pro JPA 2 is a detailed learning and use reference,
written by EJB co-spec lead and JPA contributor Mike
Keith and his colleague.

